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A Construction of Unitary Representations
in Parabolic Rank Two 

M.W. BALDONI-SILVA - A.W. KNAPP (*)

0. - Introduction

Some years ago, B. Speh and the second author [7] investigated unitary
representations of G - SU(N, 2) that arise as Langlands quotients of the

nonunitary principal series. The nonunitary principal series consists of the
induced representations

where MAN is a minimal parabolic subgroup. For this G, M is a (compact)
double cover of the unitary group U (N - 2) and A is Euclidean of dimension 2.
To visualize matters, we fix an irreducible representation a of M and consider
the two-dimensional picture of A parameters e", where v is a real-valued linear
functional on the Lie algebra A of A. In interesting cases, the typical picture of
unitary points (i.e., those points for which the corresponding Langlands quotient
can be made unitary) within the positive Weyl chamber, is as in Figure 1.

Figure 1 : Typical picture of unitary points in 

Pervenuto alla Redazione il 4 Febbraio 1989.

(*) Supported by National Science Foundation Grants MCS 80-01854, DMS 85-01793, and
DMS 87-11593.
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There are some two-dimensional regions of unitary points along the
horizontal axis, there are some upward-sloping diagonal lines, and there is
sometimes one isolated point.

Our concern here is with the lines of unitarity in the picture. The two-
dimensional regions are a rank-one phenomenon, and we can regard them as
already understood in an inductive argument. What about the lines? The proof
in [7] that the lines give unitary points uses the fact that the lines correspond to
irreducible degenerate series; the argument for irreducibility is rather complicated
and shows little hope of generalization.

In the present paper, we shall show that the unitarity along these lines
is indeed a rank-one phenomenon, provided we take into account some formal
properties of intertwining operators. As we shall see, the argument generalizes
to other real-rank-two groups and also to other parabolic-rank-two situations.
In some cases, the argument produces isolated unitary points, as well as lines.
The main results are Theorems 4.11 and 5.2.

However, when we try to generalize the argument to parabolic rank n,
we find that it does not seem to handle (n - l)-dimensional sets in parabolic
rank n, just one-dimensional sets and certain isolated points. This failure raises
a question that we mention in Section 7.
- We use the following notational conventions throughout. The group G is

a connected linear semisimple Lie group with maximal compact subgroup K.
Subgroups are denoted by upper-case Latin letters, and their Lie algebras are
denoted by the corresponding lower-case German letters.

We are indebted to O.S. Rothaus for supplying a proof of Lemma 1.2
for us, to Chin-Han Sah for helping us to cope with some of the intricacies
of in Section 4, and to H. Schlichtkrull for giving us independent
confirmation of some of the unitarity we discovered.

1. - Oversimplified idea

In ,S U ( N, 2 ) the configuration of roots of (9, A) is of type ( B C ) 2 , for

N &#x3E; 2, and may be taken to be of type B2 for N = 2. We give the precise
diagrams below.
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In the parabolic-rank-two generalization, we assume that G is linear, that
MAN is a cuspidal parabolic subgroup of G, that all roots of (9, A) are useful
in the sense of [4], and that the corresponding configuration of roots is as in

(l.la) or (1.1b).

We work with induced representations (0.1 ) in which Q is a discrete series
or (nonzero) limit of discrete series representation of M, A has dimension 2, and
v is a real-valued linear functional on A in the closed positive Weyl chamber.

Configuration ( 1.1 a) arises with MAN minimal parabolic in G when G is
locally S’ U ( N, 2 ) , ,5 ~ ( N, 2 ) , ,S O * ( 10 ) , or the real form of E6 whose symmetric
space is Hermitian. It arises with MAN general whenever A has dimension 2 and
G has restricted roots of type (BC) n for some n; it can occur in other situations
as well. The prototype of configuration (I,lb) is a certain parabolic-rank-two
situation with G = SO(m + 1, n + 1); the parabolic subgroup is minimal when
G = S’ O ( N, 2 ) . Our detailed discussion will concentrate on (I, la); adjustments
to the arguments that allow one to handle (I ,lb) will be discussed in Section
5.

The Weyl group for the parabolic is the usual 8-element group for
our root system, and we let so be its long element, which acts on A by -1.
We shall see in Lemma 4.1 for configuration (I , la) that so fixes the class of a.

Then unitarity of the Langlands quotient of (0.1) is detected by the
standard intertwining operator of [9] corresponding to so. This operator maps
U(MAN, a, v) to It is Hermitian on each K type, and the

Langlands quotient is unitary if this operator is semidefinite. This operator
factors as a product ABCD in a fashion that mirrors a decomposition of so as
a product of four simple reflections. Here A and C are disguised intertwining
operators for the subalgebra attached to e 1 - e 2 S 0 (odd, 1) and S 1 ( 2, II~ ) in the
two cases of (1.1)], and B and D are disguised intertwining operators attached
to ( e 2 , 2 e 2 ) or to 62. We shall make use (on each K type) of the following fact
from linear algebra.

PROPOSITION 1.1. Suppose that A, B, C, and D are n-by-n complex
matrices with ABCD Hermitian. Suppose further that

(1) B and D are Hermitian positive semidefinite

(2) A = PC* with P Hermitian positive semidefinite. _

Then ABCD is positive semidefinite.
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In fact, ABCD = P(C* BC) D. So the proposition reduces to the following
lemma, which will be proved in Section 2.

LEMMA 1.2. If R, S, T are positive semidefinite Hermitian n-by-n matrices
and RST is Hermitian, then RST is positive semidefinite.

In our application B and D are intertwining operators for the parabolic-
rank-one situation built from (e2, 2e2) or from e2. Positivity for them corresponds
to unitarity of certain Langlands quotients obtained from maximal parabolic
subgroups, and this unitarity is understood completely [1]. Thus we know

exactly when (1) holds in the proposition.
In considering condition (2), we must take into account slight differences

between ( 1.1 a) and (I,lb). For now, we consider (I,la). Condition (2) for

(I,la) is a condition only on A and C, which are operators for S 0(odd, 1),
and these operators are well understood. (For formulas on all K types, see

Klimyk-Gavrilik [3, p. 54].) The following properties of the operators and

corresponding representations (nonunitary principal series) will be relevant for
us in the situation ( I , I a) :

(i) The K types have multiplicity one. This is well known and follows from
Frobenius reciprocity and the branching theorem for 1).
As a consequence, the intertwining operator is a scalar for each K type
and each v. As v varies through real values, this scalar moves through
real multiples of some complex number. (This last fact can be read off
from Klimyk-Gavrilik [3] and presumably can be derived directly from
Theorem 5.1 of [2]).

(ii) The total operator (on all K types) has a kernel at v if and only if (o.1 )
is reducible at v. This is part of the Langlands theory; see Theorem 7.24
of [6].

(iii) Reducibility of (0~ 1 ) can occur only at integral points of the infinitesimal
character. See Proposition 6.1 of Speh-Vogan [12].

(iv) For fixed ~ parameter and varying A parameter, Figure 2 gives
the connection between reducibility of (0.1) and singularities of the
infinitesimal character at points where the infinitesimal character is integral.
This will be proved in Section 3.

Figure 2: Reducibility points in So (odd, 1)
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(v) In Figure 2 on any interval between two consecutive singularities of the
infinitesimal character, the kernel of the intertwining operator at integral
points decreases as one moves to the right. This can be read off from
Klimyk-Gavrilik [3]. We do not have an abstract proof, but possibly one
can be constructed with the aid of Zuckerman’s translation functors [14].

Let us see how these properties are relevant for condition (2). Let AS o
be the standard intertwining operator for ,S O (odd, 1) attached to e 1 - e 2 , and
let a be the positive restricted root for this group. If we write v = ae1 + be2,
then the operators A and C are essentially

for a suitable cro constructed from 0’. Since v is real,

The upward-sloping lines in Figure 1 are the set of v’s where the factor
A of ABCD has a kernel. Each line b) constant and equal to the
value at one of the reducibility points in Figure 2. Fix attention on one such
line.

As b varies (increasing from 0), the argument of C* increases from its

starting value, which is the argument for A. In terms of Figure 2, the argument
of C* is moving to the right from the initial reducibility point. According
to property (v) above, ker A D ker C* until the argument of C* gets to a

singularity of the infinitesimal character.
Let us see the effect on the scalar function in (i). On a K type where A

is 0, certainly A is a nonnega ive multiple of C*. On a .F~ type where A is not
0, the operator 2 ( a - b ) -f- t a is not 0 for 0  t  b, because
of the inclusion of kernels 2 (v). By (I) this operator is a real multiple of Aof the inclusion of kernels o (v). By (i) this operator is a real multiple of A
on the K type, and continuity says that it is a positive multiple. We conclude
that A = PC* for an operator P that is a nonnegative function of v on each
K type, this condition holding until the argument of C* gets to a singularity
of the infinitesimal character. Beyond that, the equality A = PC* extends until
the next integral point, by (iv) and continuity.

In other words, the two conditions in Proposition 1.1 are satisfied for the
intertwining operator ABCD in configuration ( 1.1 a) provided

(1) the horizontal and vertical coordinates of v (namely ae 1 and b e 2 )
correspond to unitary points in the appropriate parabolic-rank-one situations

(2a) v is on an upwardly sloping line corresponding to reducibility coming
from ker A nontrivial
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(2b) the parameters of A and C* for the group S’O (odd, 1) are not so far
apart that they are separated by a singularity of the infinitesimal character,
followed by a reducibility point.

Then Proposition 1.1 says that ABCD is semidefinite, and the

corresponding Langlands quotient must be unitary. _
For the special case of SU(N,2), the group SO (odd, 1) is SL(2,C).

There is at most one singularity of the infinitesimal character in Figure 2. Thus
there are only two intervals in the picture. Since the argument of A corre-

sponds to a reducibility point, the arguments of A and C* both correspond to
the right-hand interval. Thus (2b) is automatic above. So when (1) and (2a)
are satisfied, we have unitarity. This fact accounts for the lines of unitarity in Fig-
ure 1.

In the situation ( 1.1 b), the above argument needs some minor modifications
and additional hypotheses. We defer discussion of these points to Section 5.

2. - Proof of linear algebra lemma

In this section we prove Lemma 1.2. The argument is due to O.S. Rothaus.
Let K = ker T, and write T = Ul with U Hermitian. Define U’ to be

U -1 on K 1 and to be 0 on K. Then T U’ = U, and U’RSU = U’RSTU’. Since
RST(K) = 0 C K, 9 Therefore U’(RST)U’ leaves stable both
K and K 1. On K 1 it has the same signature as RST, while on K it is 0 (and
so is RST). Thus U’RST’U’ has the same signature as RST.

We claim that the nonzero eigenvalues of U’RSU(= U’RSTU’) are a

subset of the eigenvalues of RS. In fact, RST( K 1-) C and T carries
onto (being invertible there). So C K 1. Thus we can write

in block form as

and its nonzero eigenvalues are those for mi.
To complete the proof, it is enough to show that all eigenvalues of RS

are &#x3E; 0. This is well known. We simply write S’ = V 2 with V Hermitian. Then
RS = (RV)V has the same eigenvalues as VRV, which is positive semidefinite.
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3. - Reducibility in SO (odd, 1)

In this section we prove property (iv) of Section 1 for the nonunitary
principal series of (odd, 1).

PROPOSITION 3.1. For S’O (odd, 1), let a be the positive restricted root,
let a be the M parameter, and let the inte ral points for the A parameter be
v = (c + n) a, with c fixed (equal to 0 or -) and n varying in Z. Let no be
the least n such that c + n _ &#x3E; 0 and suc~ that the infinitesimal character of
U(MAN,a, (c + n) a) is singular. For n E Z and c + n &#x3E; 0, U(MAN,a, (c + n) a)
is irreducible if n  no or if the infinitesimal character is singular, and it is

reducible otherwise.

PROOF. For n  no, this result follows from Proposition 6.1 of Speh-Vogan
[12]. Next suppose that ( c -f- n 1 ) a gives a singular point. Then the Plancherel
factor Po (v) of Knapp-Stein [8] is 0 at v = (c -I- n1 ) 0 (see p. 543 of that paper).
If w is a representative in .K of the reflection Sa, then Proposition 27 and
Theorem 4 of [8] give

as an identity of meromorphic functions. It follows that A ( w -1, w Q, - v ) has a
pole at v = This pole can only be simple, according to Theorem
3 of [8]. Since the right side of (3.1) has a pole (on all functions 0 0) at

v = (c + we see that A(w, Q, (c + has kernel 0. Then the Langlands
theory says that is irreducible.

Finally suppose that (c+n1)Q is not a singular point and that n 1 &#x3E; no. The

previous paragraph shows that A ( w -1, wu, -v) has a pole at v = ( c + no ) a . We
shall deduce from this fact that A ( w -1, w Q, - v ) has a pole at v = (c + 
Assuming this conclusion temporarily, we examine (3.1 ). The right side is

regular at v = ( c + n 1 ) a, since (c + is not a singular point of the
infinitesimal character. It follows that A ( w, ~, ( c + n 1 ) a ) has a nonzero kernel.
Since (c + cannot be the 0 (c + is

reducible.
To get at the pole, it is enough to show that if has a pole

at v = (c + n)a, then it has a pole also at v = (c + n + 1) a. We refer to pages
524 and 550 of [8]. In the notation of that paper, we expand

where gj is entire in z and a-homogeneous of degree j in y. Then a pole occurs
at z = - j/p+2q (which corresponds to v = -1 j a ) if and only if y)P q 2

has mean value nonzero at z = -j/p+2q . When there is a pole, we can multiply
f by a function on K such that the new expansion (3.2) is IIyl12 times the old
one, except for the remainder; here is the Euclidean norm. Unwinding
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the notation, we find that the new f fives us a pole at z = - . + 2 , which
corresponds to v 2 (j + 2) rx.

4. - Precise results

The treatment in Section 1 is an oversimplification in two ways. The first
way is hidden by the vague description of what intertwining operator from [9]
we are actually using. As we shall see, there are three slightly different kinds
of operators coming into play. Moreover the multiplicative relations that the

operators satisfy usually mirror multiplication only in the normalizer NK (A),
not in its quotient W ( .~4 ) .

The other way that oversimplification occurs is in the passage from

operators for G to operators for a subgroup SO (odd, 1). When intertwining
operators for G are realized in the noncompact picture in the sense of [9],
the operators for G corresponding to simple reflections are tensor products of
operators for ,SO (odd, 1) and identity operators. But it is necessary to use the
compact picture in the present investigation, and the relevant formula ((7.10) of
[9]) is not very helpful for deducing condition (2) in Proposition 1.1.

So let us be more precise. In this section we work exclusively with the
configuration (I,la). For any A root Q, we let go be the corresponding root
space, and we put 

, -, -

Situation (I,la) is to mean that G is connected linear, that the A roots
form a system of type (BC) 2, and that ~C ~~~ -e~ ~ is the direct sum of ideals

S 0 e SO’ with H ,acSO and (odd, 1).
In this situation, Lemma 2.7 of [5] shows that 2 e 1 and 2 e 2 extend to real

roots (relative to a Cartan subalgebra ~4 e 3 in which B is a compact Cartan

subalgebra of M). Then Lemma 7.8 of [5] says that the reflections 1 
and 6262

have representatives wl and W2 in NK (A) that commute with each other and
centralize the identity component Mo. We fix w 1 and w2 with these properties.
Also we fix in NK (A) to be a representative of sel-e2.

LEMMA 4.1. In the situation ( 1.1 a), let a be a discrete series or (nonzero)
limit of discrete series representation of M. Then a and a.

Moreover a extends to a representation (on the same Hilbert space) of the
group generated by M, wi, and W2.

PROOF. To see that 6, we apply Lemma 10.3 of [10]. Since 2 e 1 is a
real root, Lemma 3.8b of [5] says that S2el fixes the Harish-Chandra parameter

The central character of Q has domain the group generated by the center
Z~o and the elements 12el 1 and 12e2 defined in (2.3) of [10], according to (1.6)
and Lemma 2.1 b of [10]. Since wi centralizes these generators, w 1 fixes the
central character. Then Lemma 10.3 of [10] says a . Similarly ~ .
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Since 0", Lemma 7.9 of [9] says that a extends to a representation
cr2 of the group M2 generated by M and w2. Meanwhile the same lemma allows
us to define cr(tui) so as to extend Q to the group generated by M and w 1.

We shall invoke the lemma a third time to extend Q2 to a representation of the
group generated by M2 and To do so, we are to prove that 0"2. Put
E = Q ( w 1 ) . For m in M, we have

and for w2, we have

since WI W2 = W2W1

by an argument below

For (4.1b) we have used that a(wi) and commute; this follows since

Q ( w 1 ) and are in the commuting algebra of which is commutative

by Lemma 4.4 of [5]. From (4.1), W12= Or2. Thus Q extends to the group
generated by M, w 1, and w2 , as asserted.

Invoking Lemma 4.1, we fix an extension of or and hence consistent
definitions of a(w1) and a (w2 ) . We use unnormalized intertwining operators as
follows.

If ,S = MAN is our parabolic subgroup and S’ = MAN’ is an associated
parabolic and if the induced representations act by left translations, we define
a formal expression by

where N is opposite to N. This operator formally satisfies

and is made rigorous in [9]. For w in NK (A), let

and
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This operator formally satisfies

When v is real-valued and is in the positive Weyl chamber,

is the operator that decides the unitarity of the Langlands quotient of U ( S’, a, 1.1),
according to Theorem 16.6 of [6].

LEMMA 4.2. In situation ( 1.1 a),

where

Here (W120’)(W2) = a(w121w2W12), and the adjoint is taken K type by K type
relative to the L~ (~f ) inner product for the induced space.

PROOF. The elements wi and both represent 1 
in W(A).

Since (4.5) is independent of the representative of S2el S2e2’ (4.5) is

by Lemma 13.1 of [9].
If we expand the factor in brackets first by (4.4), then by Theorem 7.6 of

[9], and finally by Proposition 7.1 of [9], we find that it equals ABC above. It
is easy to check that E = 0’( wï21 W2WI2) satisfies

and that

and then Lemma 7.9 of [9] says we may take (Wl2a)(W2) = E. This proves the
lemma.

LEMMA 4.3. In situation (l.la), the operators B and D of Lemma 4.2 are
Hermitian (on each K type).
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PROOF. Proposition 7.10 of [9] gives

Since w2 and both represent S2e2’ the right side is

In a suitable open subset of (A’)~, Theorem 6.6 of [9] makes sense of (4.2) as

Here p is half the sum of the positive ,~ roots (with multiplicities) and
is a decomposition of n according to KMAN. In (4.7),

lies in and (4.7) is unchanged if we replace v by wlv. Thus (4.6)
on an open set of (A’)C is

and this equality must extend to other v’s by analytic continuation. Hence D
is Hermitian. A similar argument proves B is Hermitian.

The above discussion handles the first sense in which Section 1

oversimplifies matters. To handle the second sense, we rewrite the intertwining
operators using Frobenius reciprocity as in Section 5 of [7]. Let T be an

irreducible representation of K acting in a space V , let Va be the space on
which Q operates, and let V~ be the subspace of the induced space transforming
under K according to T. If v is in V T and E is in we define

Then is in V~, and the resulting bilinear mapping on pairs ( v, .E) gives
us a linear map

that is known to be a linear isomorphism onto. (See Wallach [13], p. 270).
The space V ° comes equipped with an inner product ( ~, ~ ~ 0. Let (’, .)" be a

K-invariant inner product on VI. If E is in we then have a

well defined adjoint E* in VI), and we define an inner product
on VO) by (E’, E) = d;lTr(E* E1), where d, is the degree of
T. The inner products on V ~ and HomKnM(V", VO) yield a canonical inner
product on V~ 
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LEMMA 4.4. The mapping 4) of (4.8) respects inner products.

PROOF. Let be an orthonormal basis of V 1’. Then

by Schur orthogonality

as required.
The next lemma moves our intertwining operators from the image of ~

to the domain. If the parabolic subgroup S = MAN is minimal, the formula
simplifies to the one in Wallach [13, p. 270].

LEMMA 4.5. If Q is an S-simple A root, then the map 4) in (4.8) satisfies

where a (". : (J : fi : v) is analytically continued from

Here pg is half the sum of the A roots tf3 with ’t &#x3E; 0 (counting multiplicities)
and g = is a decomposition of g according to G = KMAN.

REMARK. The operator a (T : (J : f3 : v) is in

Endc (HomKnM (V’, V ~) ).

Identity (4.9b) can be written more concretely as
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The proof of the lemma is a routine calculation starting from (4.2) with
,f and taking into account that p on R Hp (see Proposition 1.2 of
). 

’

Next we relate the operators A, B, C, D of Lemma 4.2 to operators in a

parabolic-rank-one setting. For each ,~ root Q, let be the analytic subgroup
of G with Lie algebra g(O), and let = If Q is S-positive, put

= S n and form the induced representations

These representations depend on v only through VIRH,,.
Let us study the intertwining operator D of Lemma 4.2 given by

Let D2 be the corresponding operator for G ~ ~ e ~ ~ 1 given by

Fix an irreducible representation T of K. Under the correspondence (D in
(4.8), Lemma 4.5 and arguments in [7] give us

we have dropped from the notation the tensor product with the identity. Put
~ = K n and let decompose into irreducible representations as

Let VT be the subspace of Vt in which Tj operates, and let
VtJ J be the J.th injection. For each Tj we have, in obvious notation,

LEMMA 4.6. If VlRH2e2 is real and is in the positive Weyl chamber for
G~2~~ ~ 1 and is such that the Langlands quotient of Ut2~2 ~ (S(2e2), a, v) is unitary,
then the operator D of Lemma 4.2 is semidefinite. Similarly if w2vlRH2el is real

and is in the positive Weyl chamber for l and is such that the Langlands
quotient of Q, is unitary, then the operator B of Lemma 4.2
is semidefinite.

PROOF FOR D. The assumed unitarity means that D2 is semidefinite, say
positive semidefinite. By Lemma 4.4 the operators on the right side of (4.10)
are positive semidefinite for all j. Let E be given in (V1’, B ° ) , and
put Then Ej is in and the given positivity
means that
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i.e.,

then

since the operator in question l to Vrk. Summing (4.11) on j, taking
(4.12) into account, and sorting matters out, we obtain

By Lemma 4.4, D is positive semidefinite.

PROOF FOR B. The assumptions imply that W12W2VlJRH2e2 is real, is in the

positive Weyl chamber for and is such that U{2e~~ ~,St2e2~, W120’, 
is unitary. Then the proof for D shows that B is semidefinite.

Next let us study the operators A and C of Lemma 4.2. The condition we
seek for Proposition 1.1 is that there must be a positive semidefinite P with
A = PC*, i.e., A* = CP. Taking the formulas of Lemma 4.2 into account, we
are looking for circumstances when

with v real-valued. The operators here all carry Vo into itself if T is a K type
of ~7(S’,cr,~). Translating this equation by ~ in (4.8) and applying Lemma 4.5,
we see that we are seeking an operator d(v) carrying into
itself such that

Let a = e 1 - e 2 . First we study equation (4.13) in a(a). Let =

etc., and let To be a type of U { a ~ ( S’ ~ a ~ , ~, v ) . Recall the

decomposition = S 0 EÐ SO’, with S D and 1 ideals in p~; here

S D (odd, 1). Since ç M c g (a), we have

On the level of connected groups, we write correspondingly

as a commuting product, possibly not direct. The group M normalizes each
factor of (4.14) since M normalizes 9a and ~C _ a , which generate ,M n 
Theorem 1.1 of [10] allows us to write



593

with each ai irreducible on Mo and the various oj inequivalent. Since Q is
irreducible and (4.15) is the primary decomposition of it follows that

(4.16) cr~ ~ for some m; E M.

Meanwhile the irreducibility of crj and the compactness of Mgo imply

with (11° and irreducible on and respectively. Since the
element mj in (4.16) normalizes M-90 and MsO’, (4.17) gives

LEMMA 4.7. Up to inner automorphisms, the only nontrivial outer

automorphism of SO (odd, 1) is the Cartan involution.

PROOF. Let p be an automorphism of S 0 = S 0 (odd, 1), and let

Cartan decomposition. Since any two T’s are conjugate,
we may assume ~p(T) = T. If B is the Killing form, it follows that p carries
the orthocomplement (with respect to B) of T into itself. Thus ~p(~) _ P. Let

where 0 is the Cartan involution. Since leaves T
and P stable, ~p is an isometry of SO with respect to Bo. In particular, 
is in the orthogonal group O(~). Since SD is SO (odd, 1), 0 has determinant
-1 on P. Possibly composing with 0, we may assume p) p is in SO(P).
Since Ad(K) Ip = SO(P), we can choose k E K with Ad(k)lp = Then

is 1 on P and maps T to itself. Since = T, = 1

on SO. Thus p = Ad(k).
In terms of (4.18), Lemma 4.7 implies that each alo is equivalent with

aro or with its Weyl group transform saaro. Thus the space Va on which a
operates splits as

with M~ ° operating on Vi and ~2 by and respectively, and
with operating in V/ and V]. (When we just write

Next consider the irreducible type To . 
I

with T ("I gives us

On the level of connected groups, we have a commuting product decomposition
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possibly not direct. The group K(a) normalizes each factor of (4.20) 
is generated by K(a) n M and K¿a). We write

with the To,,. irreducible and inequivalent, and (4.20) gives us

Since To is irreducible and (4.21) is a primary decomposition, we obtain

Since kj normalizes each factor of (4.20), we conclude

LEMMA 4.8. Every automorphism of SO (odd) is inner.

PROOF. The argument is in the same style as Lemma 4.7. Write

S D ( 2 n -~-1 ) = with i p built from the last row and column. Given an

automorphism (p, we can compose with an inner automorphism so that p leaves
SO(2n) and iP stable. Moreover will act as an orthogonal transformation of
iF. The matrix diag ( 1 , ... , 1, -1, -1) gives an inner automorphism on SO(2n+l)
and acts on i P with determinant -1 since dim P is even. If p has determinant
-1 on iP, we can compose with this inner automorphism and make it have

determinant + 1. Once p acts as a rotation on has to be inner by the
same argument as in Lemma 4.8.

In terms of (4.22), Lemma 4.8 implies that each is equivalent with
"~f. Thus the space VIO on which To operates splits as

with operating by in Vo and with KsO’ operating in Vo’.

LEMMA 4.9. Within let To be a type of (S(a), 0’, v). Then
the endomorphism a(a) (TO : 0’ : a : v) of HOMK(-) YO) is scalar, and
the scalar is obtained as follows: Within the group SO (odd, 1 ), let ~i o
be the representation of in (4.17), and let -ro-90 be the representation
of in (4.22). Then the scalar is the scalar by which the operator

v) operates on the type (Recall property
(i) in Section 1.) 

’

REMARK. Note that O’fo is determined only up to the operation of the
Weyl group reflection Sa.
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PROOF. For E in we compute Q : a : v) from
(4.9b). The group Na is contained in (with no need for M),
and so can be taken to be 1. Thus

By (4.23), this expression is conjugate (by a transformation of VTÜ) to

The integral here commutes with Since the Ms° types have

multiplicity one, the integral is diagonal and is scalar on each Ms° type. On
the other hand, E is in and is 0 on the types that are

incompatible with a. By (4.19), the operator acts on the direct sum of two

spaces as a scalar in each, the two spaces corresponding to Qi ° and saaro. .
The scalar in each case is the value of the S’O (odd, 1) intertwining operator
on the K-90 type by Lemma 4.5. But these two scalars are the same, as
it is seen from the bottom display on p. 22 of [9]. This proves the lemma.

COROLLARY 4.10. Within G(a), let TO, and be as in Lemma

4.9. Suppose that v = to a, with to &#x3E; 0, is a reducibility point for
Then there is a meromorphic complex-valued function

do (z) with the following properties:

(i) a : to Q) = 0’ : a : za)
(ii) do (t) takes values in R U for t real

(iii) do (t) is finite and &#x3E; 0 for those t &#x3E; to such that there do not exist t1
and t2, with to  t1  t2  t, for which has singular
infinitesimal character and Us 0 aro, t2Q) is reducible.

PROOF. This is immediate from Lemma 4.9 and the properties of S4 (odd,
1) listed in Section 1.

Corollary 4.10 addresses equation (4.13) in the group G(a). We return to
equation (4.13) in G. Let be a decomposition into irreducibles,
let ri act on and let ii and pj be the jlh injection and j t h projection
for the direct sum decomposition V T The functional v varies over a

two-parameter family, and we freeze one of the parameters by insisting that the
projection of v, in the direction of a, be to a, with to as in Corollary 4.10. Let
dj be the function provided by Corollary 4.10 for the type rj, and write,
in obvious notation, in place of Then the corollary gives us
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have

Define i(v) in Homc

Then we find

Consequently d(v) = (right by d ~ v ) ) is in HomKnM(VT, VO) and satisfies
(4.13 ). Evidently d(v) is Hermitian when it is finite, and (iii) in Corollary 4.10
tells us conditions under which it is positive semidefinite. We summarize as
follows.

THEOREM 4.11. In situation ( 1.1 a), as defined at the beginning of Section
4, let (J be a discrete series or (nonzero) limit of discrete series representation,
and let be associated to a and SO (odd, 1) by (4.17). With v in the
closed positive Weyl chamber, write v = a e 1 -~- b e 2 , and assume that U(S, (J, 0)
is irreducible in G and

is reducible in S’O (odd, 1). Further assume that v has the property that
there do not exist t1 and t2, with 1 (a - b)  t1  t2  + b),
such that t1 (e1 - e 2 ) ) has singular infinitesimal character and
U 80 t2 ~e1 _ e2)) is reducible. Then the operators A and C of Lemma
4.2 satisfy A = PC* with P positive semidefinite. If, in addition, the Langlands
quotients of U~2~~~ (S’{2e~~, or, be2) and u(2el) (S(2el), 0’, ae1) are unitary, then the
Langlands quotient of U ( S, or, v) is unitary.

PROOF. The assertions about A and C have just been proved above in
the setting of the domain of 1&#x3E;. Lemma 4.4 allows us to transfer them to the
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induced space. The hypotheses about u(2e2) and imply that B and D
in Lemma 4.2 are semidefinite, according to Lemma 4.6. By Proposition 1.1,
ABCD is semidefinite. But Theorem 16.6 of [6] and Lemma 4.2 show that
ABCD is the operator that decides the unitarity of U(S, a, v).

5. - Configuration (1.1b)

Previous sections have dealt largely with configuration ( 1.1 a) for the roots
of (9, A). The above arguments need some changes - and some additional
hypotheses - in the case of (I,lb). In (I,lb), replaces 5 D (odd, 1).
The list of properties of intertwining operators and nonunitary principal series
for SL(2,R) is almost the same as for S O (odd, 1); this time the properties
are more elementary.

(i) The K types have multiplicity one.

(ii) The total operator has a kernel at v if and only if (0.1 ) is reducible at v.

(iii) The representation a is one-dimensional, and we write it as I or sgn. If
a = I, then reducibility occurs at odd multiples of the restricted root a.
If 6 = sgn, then reducibility occurs at even multiples of a.

(iv) The infinitesimal character is singular only at v = 0.

(v) On any interval in the positive Weyl chamber, the kernel of the intertwining
operator at reducibility points decreases as one moves to the right.

Lemma 4.1 does not extend to (I . lb) without modification. For one thing,
e 1 and e 2 need not be real roots, and for another thing, and 
have become real roots. Thus we shall incorporate the conclusion of Lemma
4.1 into our hypotheses.

Then everything through Lemma 4.6 works without further change. Again
we study (4.13). Taking a = e 1 - e 2 , we first study equation (4.13) in 
Since a is real, the element lies in the center of M. Thus is scalar,
necessarily ±1. Since { 1, 7« } is the M group for the SL (2, R) subgroup, 6 yields
a well defined one-dimensional representation (1SL of by restriction. We
do not need Lemma 4.7.

Next we trace through what happens to the K("I type To . On the
level of connected groups, we have a commuting product decomposition

in obvious notation. The group K s L is a circle, with one-
dimensional irreducible representations parametrized by integers N. An outer
automorphism of K S L interchanges N and - N. Now the S L (2, R) intertwining
operators are the same for N as for - N, by (5.8) of [7], for example. So we
get an analog of Lemma 4.9 as follows.

LEMMA 5.1. Within To be a type of ~J~«~ (S~«~, Q, v). Then
the endomorphism (1 : a : v) of is scalar, and
the scalar is obtained as follows: Within the group SL(2, R), let asL be the
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representation of { 1, obtained by restriction from a, and let N or (N, -N)
be the parameter(s) of the representation(s) of obtained from Ta ( x ~ 0 a ~ . Then
the scalar is the scalar by which the operator as L : 1))
operates on the KSL type(s) with parameter(s) N or (N, -N).

Consequently we obtain a function do (z) just as in Corollary 4.10. Property
(iii) simplifies in the corollary to say that do ~t) is finite and &#x3E; 0 for t &#x3E; to,
since singular infinitesimal character cannot occur in S L ( 2, II~ ) for t &#x3E; 0.

The remainder of the argument requires no change, and we arrive at the
following result.

THEOREM 5.2. In situation (l.lb), let a be a discrete series or (nonzero)
limit of discrete series representation of M. Let w, and W2 be representatives
in of Sel and Se2’ and assume that in such a way
that a extends from M to the group generated by M, wi, and W2. Let alL be
the restriction of a to ~ 1, With v in the closed positive Weyl chamber,
write v = ae1 -+- be2, and assume that U (S, a, 0) is irreducible in G and

is reducible in SL(2,R). Then the operators A and C of Lemma 4.2 satisfy
A = PC* with P positive semidefinite. If, in addition, the Langlands quotients

and are unitary, then the Langlands
quotient of U(S, a, v) is unitary.

6. - Examples

1) S’ U ( N, ~ ) . The diagram of roots of (~j~!) appears at the beginning
of Section 1, and a qualitative picture of unitarity appears in Figure 1. There
is reducibility along the diagonal lines below the diagonal, and Theorem 4.11
addresses what happens along the upward-sloping diagonals. At the end of
Section 1, we observed that the numbers t 1 and t2 cannot exist in the theorem,
and thus A = PC* all the way along the upward-sloping diagonals. The theorem
goes on to say that we get unitarity at a point on such a diagonal whenever the
horizontal and vertical coordinates correspond to unitary points in subgroups
that are essentially 1,1 ) .

2) 2). The diagram of roots of (9, A) is as in (I , lb) with m = N -1
and n = 1, and a qualitative picture of unitarity is as in Figure 1, except that
the outlined rectangle is now square. Theorem 5.2 implies that A = PC* all
the way along the upward-sloping diagonals. The theorem goes on to say that
we get unitarity at any point on such a diagonal whenever the horizontal and
vertical coordinates correspond to unitary points in subgroups that are essentially
SO(N - 1, 1).
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Figures 3 and 4 give two illustrations of what can happen.

Figure 3: Unitary points in Sp(6, 2) with minimal K type 2e8 ~- 2e7

In Figure 3, a downward-sloping diagonal terminates unitarity along
the upward-sloping diagonals. Imagine inserting the missing downward-sloping
diagonal that meets the e 1 axis at 6e 1. This diagonal meets the upward-sloping
diagonals at parameters that correspond to t 1 in Theorem 4.11. The downward-
sloping diagonal that terminates unitarity crosses where the parameters are t2.
So the theorem gives no further unitarity along the upward-sloping diagonals.
It is known that this picture is sharp.

Figure 4: Known unitary points in Sp(6, 2) for a trivial
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In Figure 4, one has A = PC* all the way along the upward-sloping
diagonals. Thus Theorem 4.11 says we get unitarity at any point on such a
diagonal whenever the horizontal and vertical coordinates correspond to unitary
points for the spherical case in Sp ( 5,1 ) . Since the trivial representation is
isolated as a unitary representation in Sp(5, 1), the effect is that Theorem 4.11
gives us several isolated unitary representations in Figure 4. At our urging, H.
Schlichtkrull has obtained this unitarity in the spherical case by other methods
[11].

Figure 4 illustrates something else. The relationship A = PC* is valid
within the triangles along the e 1 axis. So once again we get unitarity when the
horizontal and vertical coordinates correspond to unitary points in Sp(5, 1). The
result is an interval of unitarity at the bottom of the vertical line of isolated
unitary representations.

7. - Concluding remarks

Not all parabolic-rank-two situations, even with (BC) 2 or B2 as (9, A) root
diagram, lead to configurations as in (1.1). Such parabolic-rank-two situations
perhaps exhibit totally new phenomena. We do not know. What we have

investigated is whether there is some parabolic-rank-n generalization of our
theorems. All of our investigations suggest that the multiplicity-one behavior
that we used for SO (odd, 1) or is vital. Meanwhile Lemma 1.2 is

special to three Hermitian operators and does not extend to arbitrarily long
products.

Thus any generalization of our results whose techniques are not too

far removed from ours ought to use Proposition 1.1 in a situation where A
and C correspond to a real-rank-one group. When B or D corresponds to a
parabolic-rank-two situation, the generic sets of unitary points, for large v, are
one-dimensional, and we find that Proposition 1.1 is at best giving us one-
dimensional sets of unitary points for large v. This phenomenon persists if
we induct on the parabolic rank. When all coordinates are large, we get only
one-dimensional sets of unitary points (as well as isolated points).

Now one might except from Figure 1 that there are (n - 1 ) -dimensional
sets of unitary points in parabolic rank n if all coordinates are large. Yet
our construction gives only one-dimensional sets. This situation suggests the
question:

In parabolic rank n (say with (9, A) roots of type (BC)n), are there sets
of unitary points with dimension &#x3E; 1 and with all coordinates large?

No examples come to mind.
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