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A Szegö Kernel for Discrete Series 

A. W. Knapp* 

The Szegö kernel for the unit ball in Cm is a reproducing kernel that gives a for
mula for holomorphic functions in the ball in terms of their boundary values, 
namely 

(D m = teaP±j /(O MO 
2«" ic,J=i ( l - ^ C » - ' 

where / i s the boundary function for jpand da is Lebesgue measure on the sphere. 
When m = 1, (1) easily transforms into the Cauchy integral formula. In dimension 
m9 the formula extends to be defined on all / in L2, always yielding holomorphic 
functions. If we identify holomorphic functions with their boundary values, the 
extended operator can be regarded as the orthogonal projection from L2 to the 
holomorphic functions in L2. This projection property characterizes the kernel. 

In terms of semisimple Lie groups, functions on the sphere suggest nonunitary 
principal series representations and holomorphic functions on the ball suggest 
discrete series representations, and the Szegö kernel should suggest a map from the 
one to the other. Actually formula (1) will not arise with discrete series but with so-
called limits of discrete series. For ordinary discrete series representations, we shall 
use operators that are more analogous to the formula for the {n — l)st complex 
derivative in the disc, 
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Such operators are not projections but do carry general boundary functions into 
good functions with a known relationship to the original function. 

We examine first the role of this mapping for the holomorphic discrete series of 
G = SU(1, 1) = {(*£), |a:|2 — |/3|2 = 1}. The holomorphic discrete series is a 
sequence of square-integrable unitary representations parametrized by an integer 
n ^ 2. The space is 

(3) {F{z) analytic in C1 for \z\ < 1 |Jlzl<1 | F(z)|2(l - \z\*)»-*dxdy < oo} 

with group action 

U{g)F{z) = (ßz+a)-»F{^^y 
For the nonunitary principal series, let 

A _ /cosh r sinh r\ M _ (\ + ix — ix\ v _ (eid 0 \ 
A * Vsinh r cosh r J9 iy ~ \ ix Ì - ix / A ~ ^0 er*)m 

For a the indicated matrix in A, let Xs{a) = eris+1) for complex s. Pick some com
plex s and one of "even" or "odd", say "even", for example. The space of a 
representation is the space off defined on the circle K with just "even"-numbered 
Fourier coefficients. These functions extend uniquely to G by f{ank) = Xs{a)f{k)9 

and the group action U{g)f{x) = f{xg) preserves the space. 
Fix n ^ 2, use "even" or "odd" according to what n is, and put s = ± {n — 1). 

To fix the ideas, let us take n even. Then the nonunitary principal series representa
tion is reducible. Iri terms of Fourier coefficients, the situation is as follows: At 
,y == — {n — 1), holomorphic discrete series number n arises as a quotient from 
coefficients {--9 —{n + 2), — n}9 a finite-dimensional representation appears as an 
invariant subspace from coefficients {—{n — 2), — {n — 4), •••, {n — 2)}, and an 
antiholomorphic discrete series appears from coefficients {n, {n + 2), •••}. At s = 
+ {n — 1), the numbers are the same, but the roles of quotient and subspace are 
reversed. 

The intertwining operators first constructed by Kunze and Stein [4] are equiva-
riant maps of the representation at s to the one at —s9 but at s = — {n — 1) the 
operator has a simple pole. Work by Sally [8] yields an explicit formula for the 
residue operator in terms of Fourier coefficients, showing that the residue operator 
is equivariant and maps the nonunitary principal series representation to the sum of 
the two discrete series. If we compose with the projection to the holomorphic 
discrete series and reinterpret the principal series as suitable functions on K/Z2 and 
the discrete series in its form (3), we obtain (2) as the formula for the composition 
intertwining operator. 

We shall attempt to extend these matters to arbitrary (not necessarily holomor
phic) discrete series representations of the automorphism groups of noncompact 
hermitian symmetric spaces. Let G be a connected semisimple Lie group with finite 
center, let A' be a maximal compact subgroup, and assume that G/K is hermitian. 
Let g = f + p be the corresponding Cartan decomposition of the Lie algebra of 
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G9 and let I) £ f be a maximal abelian subspace. Then tj is a Cartan subalgebra 
of g, and we let QC = If -f 2]0« be the root-space decomposition. Here ga = CEa9 

and we take the Ea to be normalized as in [1]. Introduce an ordering on the roots 
such that no sum of two noncompact positive roots is a root. 

A parametrization of the discrete series was supplied by Harish-Chandra [3], 
If we let p be half the sum of the positive roots and if, as we may, we assume that p 
is integral, then the parameter space is the set of integral forms A + p on t) such 
that (A + p9 a} > 0 for a > 0 compact and {A + p9 a) ^ 0 for a > 0 non-
compact. Since G/K is hermitian, it follows that every such A satisfies <yl, a} ^ 0 
for a > 0 compact. 

The Langlands conjecture says that the above representation is realized in a 
certain 3-cohomology space, described as follows. Let Q = {a > 0 noncompact | 
{A + p9a) > 0} and q = |g | . TO avoid bundles, introduce a symbol ora for 
each a > 0, to be thought of as a ûfë-type differential form. If a = («i, •••, ccq) is 
any ordered #-tuple of arbitrary positive roots, let ara = of~ai A ••• A û; -"'. 

Consider expressions 

^ = 2 Faoj-«9 
\a\=q 

where each i^ is a smooth scalar-valued function on G satisfying 

Fa{hx) = £,*+«,+...+«, (A}Fa(*) for A G exp Ç, * e G. 

(Here £ denotes a character.) The 3-operator is given on functions (0-forms) by 

dF{x) = 2 £-«fWû)-«, 

«>o 
where jE"_a denotes the right-invariant differentiation computed as the real part plus 
/ times the imaginary part. Extend 3 by making 32 = 0, and let 3* be the formal 
adjoint relative to L2{G). Take ker 3 f| ker 3* in dimension q as a dense subspace 
of a representation, and use the norm (S JG \Fa\

2 dx)l/2. The group operation is a 
right translation of the coefficient functions. The Langlands conjecture is the state
ment that the completion of this constructed representation is the discrete series 
representation with parameter A + p. The conjecture is known for G = SU(1, 1) 
by easy computation, for general G and q = 0 by work of Harish-Chandra [2], 
for | (A -f p9 a} | > c whenever a is noncompact by Narasimhan and Okamoto [5], 
and for </l -|- p9 a) > 0 whenever a > 0 is noncompact by Parthasarathy [7]. 
The proofs by Narasimhan and Okamoto and Parthasarathy are not constructive. 

For the nonunitary principal series of G9 let G = AN Khz an Iwasawa decompo
sition, let M = ZK{A)9 let a be an irreducible representation of the compact group 
M9 let X be a linear functional on the Lie algebra of A9 and let p+ be half the sum of 
the positive restricted roots counted with multiplicities. The space consists of vec
tor-valued functions/on K mthf{mk) = a{m)f{k)9 which are then extended to G 
by the definition f{ank) = exp((A + p+) log a)f{k). The group G acts by right 
translation. 

Problem. Give an integral formula for passing from appropriate nonunitary 
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principal series, realized as spaces of functions on K9 to discrete series realized in 
the format of the Langlands conjecture. 

Solving the problem would consist of four steps: (1) existence—producing an 
integral formula so that the members of the image satisfy dF = 0 and 3*F = 0, 
(2) finiteness—establishing the square-integrability of the ^-finite members of the 
image, (3) uniqueness—proving irreducibility of the image, and (4) identification— 
computing the character of the image representation. We shall do (1) in general and 
(2) in some special cases. Steps (3) and (4) follow whenever (1) and (2) and the 
Langlands conjecture are known. 

To define the Szegö kernel, let A + p and Q and q be as before. The linear func
tional I is yet to be specified, but we extend arbitrary scalar-valued functions / on 
K to G by f{ank) = exp((A + p+) log a)f{k). We map a smooth / into F = 
Ei.1^1 Faar« with 

(4) Fa{x) = J Sjk)f{kx) dk = J Sa{tc{kx^)) exp((p+ - l)H{kx^))f{k) dk 
K K 

and Sa{k) = {TA{k)<f>A, <f>A){Ad{k)Ea9 EQ). Here $A is a highest weight vector, 
and Ea and EQ denote alternating tensors. This is a group-theoretic generalization 
of the formula in SU(1,1) except that the Ad factor was not present in dealing with 
0-forms. The first part of (4) shows the map is equivariant, but the second is more 
useful in computations. The formula for FQ has been considered by Okamoto [6]. 

Two comments are in order before we state precise theorems. First, no special 
M-dependence off is assumed in (4). However expansion off in Fourier series on 
M and a change of variables show that only one particular representation of M 
plays a role. Thus the domain can be regarded as a single nonunitary principal 
series, but with a finite multiplicity. Second, the choice of A in the Iwasawa de
composition is not arbitrary. [In fact, assume the Langlands conjecture. Then the 
infinitesimal character of the nonunitary principal series is determined in one way 
by that of the discrete series and in another way by the character of A and the 
placement of M in K. These cannot match unless M is placed in K properly.] 

Thus we must define A. Any two A's are conjugate by a member of K. Define a 
standard AQ by ûO = S R{Eai + £-«,), where a,- is defined inductively as the 
largest noncompact positive root orthogonal to a\, •• •,«,•-!, and use the basis 
{Eai + E_a} to define an ordering. Let A = pA$p~l

9 where p is a member of the 
Weyl group of K yet to be specified. 

THEOREM 1. If p and Q satisfy a compatibility condition (*), then to each A cor
responds a unique }. = X{A) such that the image F = £ Fa co~a satisfies dF = 0 and 
3*F = Ofor each fin C°°{K). 

We shall state (*) shortly. Our finiteness theorem is as follows. 

THEOREM 2. Let G = SU(1, 1), or let G be general but q = 0. If{*) holds and if 
A = X{A)9 then the image of the trigonometric polynomials under (4) is exactly the 
space ofK-finite elements in the cohomology space, and the cohomology space is the 
discrete series representation with parameter A + p. 
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Also, by a lengthy computation, we have established square-integrability of the 
image of / = SQ for SU(2,1) when q = 1,1 = 1{A)9 and p is trivial. 

To state condition (*), let a{T) be the function from positive noncompact roots to 
the a/s defined above, given as the first CCJ such that T is not orthogonal to a,-. Then 
a{7) — T is always a positive compact root or 0. Hence pa{p~lT) — T is always a 
compact root or 0. 

Condition^). Every positive noncompact root T not in g satisfies pa{p~lT) — 7^ 
0. Also every positive noncompact root/ in g satisfies pa{p~lT) - T ^ 0. 

One can show case-by-case that to each g corresponds some p such that p and 
g satisfy (*). 

EXAMPLE. G =SU(/w, 1). One can arrange that the positive compact roots are 
e( — ej9 i < j ^ m9 and the positive noncompact roots are e{ — em+Ì9 i S m- The 
element p is a permutation of {1, •••, m}. Then AQ is built out of Eex-em„ -f 
üLc„_,B+1), and pA0p~l necessarily is built out of 2£ft_fc41 + JEL(ft_fa„) for some /. The 
set g has the form {e,- — em+i, i ^ q}. If 0 < q < m9 two choices of / (namely 
1 = q and q + 1) are such that /? and g satisfy (*), and generally these lead to 
really distinct nonunitary principal series. If q = 0 or m9 there is only one such 
choice (namely / = 0 or m9 respectively). However, when m — 2 and q = 1, it is 
known that there are three nonunitary principal series, not two, with a given dis
crete series as quotient. 

We conclude with the formula for X{A). Let 

w| = | {T > 0 noncompact | TeQ9T ^ pai9pa{p~lT) = pa,} |, 

«7 = | {T > 0 noncompact| T $Q,T # poci9 pa{p~l7) = pctv} |. 

Then /I is determined by the values of ^' = p+ - I on all Ad(p)(£'ai + E^a). If 
pa,- is not in g, 

A'(Ad(/0(£Bi + £_„,)) = - \at-\-W^<A + g - n^pa^paiy. 

If pa{ is in g, 

•A'(Ad(/>)Œr. + £ _ J ) = | a , | - i V 2 < ^ + g + fqpai9pai>. 
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