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G
roup representations and harmonic
analysis play a critical role in subjects
as diverse as number theory, proba-
bility, and mathematical physics. A
representation-theoretic theorem of

Langlands is a vital ingredient in the work of
Wiles on Fermat's Last Theorem, and represen-
tation theory provided the framework for the
prediction that quarks exist. What are group
representations, why are they so pervasive in
mathematics, and where is their theory headed?

Euler and His Product Expansions
Like much of modern mathematics, the field of
group representations and harmonic analysis
has some of its roots in the work of Euler. In 1737
Euler made what Weil [4] calls a “momentous dis-
covery”, namely, to start with the function that
we now know as the Riemann ζ function
ζ(s) =

∑∞
n=1

1
ns and to realize that the sum could

be written as a product 

(1) ζ(s) =
∏

p prime

1
1− p−s

for s > 1. In fact, if each factor (1− p−s )−1 on
the right side of (1) is expanded in geometric se-
ries as 1 + p−s + p−2s + · · ·, then the product of
the factors for p ≤ N is the sum of those terms
1/ns for which n is divisible only by primes
≤ N ; hence a passage to the limit yields (1).
Euler well knew that the sum for ζ(s) exceeds
the integral ∫∞

1

dx
xs

=
1

s − 1.

This expression is unbounded as s decreases to
1, but the product (1) cannot be unbounded un-
less there are infinitely many factors. Hence (1)
yielded for Euler a new proof of Euclid's theo-
rem that there are infinitely many primes. In
fact, (1) implies, as Euler observed, the better the-
orem that 

∑
1/p diverges.

Euler later went on from this proof to deduce
that there are infinitely many primes 4n + 1 and
infinitely many primes 4n + 3, and that is where
the story of harmonic analysis really begins. To
understand why the above analysis does not
handle these cases, it is helpful to see in more
detail how 

∑
1/p enters the above kind of ar-

gument. Consideration of series expansions of
the exponentiated functions shows that 

log(1 + x) < x < log
1

1− x
for 0 < x < 1, and it is easy to see that the right
side is no more than twice the left side if
0 < x ≤ 1

2. Consequently it follows from (1) that 
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(2) logζ(s) =
∑

p prime

1
ps

+ bounded term

as s decreases to 1. Meanwhile, multiplication
of the series for ζ(s) by 2−s reproduces the
even-numbered terms of the series, and there-
fore 

(3a)
(

1− 1
2s

)
ζ(s) = 1 +

1
3s

+
1
5s

+ · · ·
and 

(3b)

(
1− 2

2s

)
ζ(s) =

1− 1
2s

+
1
3s
− 1

4s
+

1
5s
− · · · .

The left side of (3b) is (s − 1)ζ(s) times some-
thing that tends to log 2 as s tends to 1. Euler
knew Leibniz's test for convergence and could
see in (3b) that the series on the right is con-
vergent for s > 0 with a positive sum. It follows
that ζ(s) near s = 1 is the product of (s − 1)−1

and a function with a finite nonzero limit. Com-
bining this result with (2) gives 

(4)
∑

p prime

1
ps

= log
1

s − 1
+ bounded term

as s decreases to 1.
In handling primes congruent to 1 or 3 mod-

ulo 4, it is tempting to replace the sum over all
primes of 1/ps in the above argument by 

(5)
∑

p≡1mod4

1
ps

or
∑

p≡3mod4

1
ps
,

trace backwards, and see what happens. What
happens is that the expansion of the corre-
sponding product of (1− p−s )−1 as a sum does
not yield anything very manageable. Euler's key
new idea was to work with the sum and differ-
ence of the two terms in (5), rather than the two
terms separately, and then to recover the two
terms (5) at the end. This is full-fledged har-
monic analysis on a 2-element group.

The essence of harmonic analysis is to de-
compose complicated expressions into pieces
that reflect the structure of a group action when
there is one; the goal is to make some difficult
analysis manageable. Tracing backwards with
the earlier argument as a model, Euler found two
manageable series with product expansions. The
first was 

(6)

(
1− 1

2s

)
ζ(s) = 1 +

1
3s

+
1
5s

+
1
7s

+ · · ·

=
∞∑
n=1

χ+(n)
ns

=
∏

p prime

1
1− χ+(p)p−s ,

where χ+(n) is 0 for n even and 1 for n odd. The
second series was 

(7)

L(s) = 1− 1
3s

+
1
5s
− 1

7s
+ · · · =

∞∑
n=1

χ−(n)
ns

=
∏

p prime

1
1− χ−(p)p−s ,

where χ−(n) is 0 for n even, 1 for n ≡ 1 mod 4,
and −1 for n ≡ 3 mod 4. The log of 1

1−χ(p)p−s is
approximately χ(p)p−s even if χ(p) is negative.
Arguing by taking the log of the product formula
in (6) (or simply copying the result from (4))
gives 

(8)
sum of terms in (5) =

log
1

s − 1
+ bounded term

as s decreases to 1. Meanwhile application of the
Leibniz test to the series in (7) proves that L(s)
converges for s > 0 and in particular is finite at
s = 1. In addition, the test shows that L(1) > 0.
Consequently taking the log of the product for-
mula in (7) yields 

(9) difference of terms in (5) = bounded term

as s decreases to 1. Comparing (8) and (9) shows
that each of the series in (5) is unbounded as s
decreases to 1. Hence there are infinitely many
primes congruent to 1 modulo 4 and also infi-
nitely many primes congruent to 3.

Role of a Group in Euler's Products
Where is the group and what is its role? The
property of the two functions χ+ and χ−, call ei-
ther of them χ, that allows the sums in (6) and
(7) to be rewritten as products is that
χ(mn) = χ(m)χ(n) for all positive integers m and
n. Nowadays such functions are called Dirichlet
characters modulo 4. We can think of χ+ and χ−
as lifts to the integers of functions on the mul-
tiplicative group {1,3} of integers modulo 4 and
prime to 4, with 0 used as the value on integers
that are not prime to 4. The two functions on the
group {1,3} are 

ω+(1) = ω+(3) = +1 and

ω−(1) = +1, ω−(3) = −1.

These functions ω on this 2-element group are
multiplicative characters, i.e., homomorphisms
to the multiplicative group of nonzero complex
numbers, and they are the only multiplicative
characters for this group. They form a basis for
the complex vector space of all complex-valued
functions on the 2-element group. Essentially
Euler had two functions to study, the char-
acteristic function of each 1-element set for
this group: 
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I1(1) = 1, I1(3) = 0 and I3(1) = 0, I3(3) = 1.

The series under study in (5) may be written as 

∑
p prime

I1(p)
ps

and
∑

p prime

I3(p)
ps

.

Euler's proof worked because he expanded the
functions I1 and I3 in terms of the basis of mul-
tiplicative characters 

I1 = 1
2 (ω+ +ω−) and I3 = 1

2 (ω+ −ω−),

succeeded at some computations for the indi-
vidual terms 

∑
p prime

ω+(p)
ps

and
∑

p prime

ω−(p)
ps

of the expansion, and reassembled his functions
by means of 

ω+ = I1 + I3 and ω− = I1 − I3.
This is the process of harmonic analysis.

Although the harmonic analysis in this work
may be regarded as trivial linear algebra, the
point is that the particular linear algebra is a ve-
hicle for taking advantage of a group structure.
This example is in a way too simple for under-
standing the basic principle. In fact, it was more
than one hundred years before Dirichlet saw

through it and proved his own theorem about
primes in arithmetic progressions.

The above work of Euler is of more than his-
torical interest. It is the direct ancestor of a
large amount of current research in algebraic
number theory, including the representation-
theoretic input from the Langlands program
into Fermat's Last Theorem. In addition, it il-
lustrates the principle that although harmonic
analysis may be at the core of the solution of a
problem, several layers of ingenious ideas may
lie between the statement of the problem and the
use of harmonic analysis.

Multiplicative characters played a rather in-
cidental role in mathematics from 1737 until
about 1807. Cramer introduced determinants
in 1750, defining the sign of a permutation and
proving what we now call Cramer's Rule. The sign
of a permutation is a multiplicative character on
the permutation group on n letters, and deter-
minant is a multiplicative character on nonsin-
gular matrices of a fixed size. But the harmonic
analysis aspect of these characters played no role
in Cramer's work. Gauss, in expanding on Euler's
work representing integers by binary quadratic
forms, introduced his own notion of character,
which corresponds roughly to what we now call
a Dirichlet character. But again harmonic analy-
sis was not involved.

Fourier Series
The next big development in the subject of group
representations was the subject of Fourier series.
The account here is taken from Grattan-Guinness
[1]. In 1747 d'Alembert presented his work on
the vibrating string problem: He found the dif-
ferential equation

∂2y
∂x2 =

1
c2
∂2y
∂t2

,

specified initial conditions, and obtained the
solution y = 1

2 (f (x + ct) + f (x− ct)) . Although
Euler in 1748 considered trigonometric func-
tions as examples of solutions of the equation,
no one expected that such functions would offer
any generality until d'Alembert in 1750 intro-
duced the method of separation of variables
into the solution of partial differential equa-
tions. Daniel Bernoulli argued philosophically
that a trigonometric sine series should be gen-
eral enough to express all solutions, but Euler
rejected that argument on other philosophical
grounds. Research into trigonometric series
made little progress for the remainder of the
eighteenth century. In 1777 Euler did discover
the familiar motivating argument for the formula
for Fourier coefficients, consisting of multiply-
ing a trigonometric expansion through by a sine
or cosine and integrating term by term, but this
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work was not published until 1798. And in 1799
Parseval published a formula for the sum of the
squares of the coefficients of a trigonometric se-
ries in terms of integrals; his formula is rea-
sonably close to what is now called Parseval's for-
mula.

Then came Fourier, who was interested in the
diffusion of heat. Fourier derived the heat equa-
tion, made a systematic study of cases that could
be investigated with separation of variables, of-
fered his own insights into the vibrating-string
problem, introduced what we now know as
Fourier series, and addressed the representability
of certain discontinuous functions by such se-
ries, all in a single paper submitted in 1807. The
paper ran into objections, particularly from La-
grange and Poisson, and was blocked from pub-
lication. At base the objections were that Fouri-
er's results were inconsistent with the prevailing
intuition about functions. Functions were sup-
posed to be of an algebraic character. If a trigono-
metric series sinx− 1

2 sin 2x + 1
3 sin 3x− · · ·

were to sum to a function like 1
2x on an interval

(−π,π ), the algebraic character of the limit
should force the limit to be 1

2x everywhere, and
then the limit would not be periodic, contradic-
tion. Fourier submitted a revision, including the
1807 material and also the inversion formula for
the Fourier transform, in 1811 and won a prize.
But publication of the revision too was blocked.
Fourier's work finally appeared in 1822 in his cel-
ebrated book Théorie analytique de la chaleur.

The solution to the vibrating-string problem
involves Fourier sine series. No group of sym-
metries is involved, and this work does not fore-
shadow harmonic analysis with group repre-
sentations. Instead, this example is motivation
for Sturm-Liouville theory, which began in 1836.
Similarly Fourier's work with the heat equation
does not automatically carry a group along with
it. A group occurs only in examples having some
symmetry, one such example being the case of
an annulus, which has circular symmetry. In the
case of the annulus, Fourier was led to series in-
volving both cosines and sines, which nowadays
are customarily written with complex exponen-
tials: 

(10) f (x) ∼
∞∑

n=−∞
cneinx,

where 

(11) cn =
1

2π

∫ π
−π
f (x)e−inx dx.

The group lying behind these formulas is the cir-
cle group R/2πZ. The functions einx are ex-
actly the (continuous) multiplicative characters
for this group, and (10) suggests that f (x) is to
be expanded in terms of these functions. Fourier
was troubled by the issue we nowadays refer to

as L2 completeness of the orthogonal set {einx},
and for this reason he preferred a more com-
plicated method than (11) for obtaining the co-
efficients cn . Fourier obtained the Parseval for-
mula, 

(12)
1

2π

∫ π
−π
|f (x)|2 dx =

∞∑
n=−∞

|cn|2,

by a manipulation of series, evidently without
connecting the validity of his argument with the
same completeness question.

Wiener's View of Harmonic Analysis
The expansion (10) enters after the variables
have been separated in the partial differential
equation. A linear ordinary differential operator
D is to be applied to f (x), with the result 0. This
operator commutes with translations
τx(y) = x + y by the circle group. If ω
is a multiplicative character, then
(τxω)(y) = ω(x + y) = ω(x)ω(y) , and we com-
pute that 

Dω(x + y) = (τxDω)(y) = (Dτxω)(y) =

(Dω(x)ω)(y) = (Dω)(y)ω(x).
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Putting y = 0 shows that Dω is a multiple of ω.
In other words, the differential operator D sends
each multiplicative character into a multiple of
itself, and the effect on f (x) is that its Fourier
coefficients are multiplied by various constants.
The result is to be 0 term-by-term, and we ob-
tain necessary and sufficient conditions on f (x).

The work of Fourier provides a second illus-
tration of the principle that although harmonic
analysis may be at the core of the solution of a
problem, several layers of ingenious ideas may
lie between the statement of the problem and the
use of harmonic analysis.

To Wiener [5] in the twentieth century, the
above method for treating constant-coefficient
differential operators is the stuff of harmonic
analysis. We have a linear operator T carrying pe-
riodic functions to periodic functions and com-
muting with translations. The operator T must
carry einx to a multiple bneinx , and linearity
yields the formula 

(13) T
(∑

cneinx
)

=
∑
bncneinx

on trigonometric polynomials. Under a suitable
condition of boundedness or closed graph for T,
(13) extends to all functions in the domain of T.
Thus Fourier series provide a tool for under-

standing linear operators that commute with
translations, i.e., that respect the group of trans-
lations as symmetries.

Further Use of Multiplicative Characters
The remainder of the nineteenth century saw a
few other developments with harmonic analysis
related to multiplicative characters. Cauchy, in
the course of his investigations of water waves,
began to work with integral solutions of partial
differential equations and published in 1817
the reciprocal formulas 

f (x) =

√
2
π

∫∞
0
g(q) cosqxdq

and 

g(q) =

√
2
π

∫∞
0
f (x) cosxq dx.

It is not known whether Cauchy saw Fourier's
1811 manuscript containing a version of the
Fourier inversion formula for the Fourier trans-
form. In today's notation the Fourier transform
and inversion formula are often written 

(14a) f̂ (y) =
∫∞
−∞
f (x)e−2πixy dx

and 

(14b) f (x) =
∫∞
−∞
f̂ (y)e2πixy dy.

Further work with the Fourier transform in the
nineteenth century included the Poisson Sum-
mation Formula, which on a formal level relates
the two functions of (14) by 

∞∑
n=−∞

f̂ (n) =
∞∑

n=−∞
f (n),

and the development of the Mellin transform,
which is a version of the Fourier transform or
Fourier-Laplace transform written with the mul-
tiplicative positive reals in place of the additive
reals. In an important application Riemann used
the Poisson Summation Formula in one of his
proofs of the functional equation for the ζ func-
tion. (The functional equation itself is due to
Euler.) But more serious theoretical work with
the Fourier transform itself had to wait for
Lebesgue integration, which is a twentieth-cen-
tury invention.

In 1840 Dirichlet published his theorem that
an arithmetic progression an + b with a and b
relatively prime contains infinitely many primes
as n runs through the positive integers. The
proof is a generalization of Euler's argument
for 4n + 1 and 4n + 3, replacing multiplicative
characters on the multiplicative group prime to
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4 by multiplicative characters ω on the multi-
plicative group G prime to a. To each ω corre-
sponds a Dirichlet character χmodulo a, defined
as the lift to the integers of ω, with 0 used as
the value on integers that are not prime to a. In
place of the two functions (6) and (7) are the
Dirichlet L functions 

L(s, χ) =
∞∑
n=1

χ(n)
ns

=
∏

p prime

1
1− χ(p)p−s ,

one for each Dirichlet character χmodulo a. Har-
monic analysis is contained most visibly in an
inversion formula for multiplicative characters
of this kind: If f is a complex-valued function on
G , then 

(15) f (x) =
1
|G|

∑
ω

[ ∑
y∈G

f (y)ω(y)
]
ω(x).

There is another key ingredient in the proof,
and harmonic analysis is present there also, al-
beit less visibly. Euler's proof for a = 4 used
that L(1) �= 0, and Dirichlet had to prove that all
L(s, χ) are nonvanishing at s = 1. One proof of
this assertion works with the product of all the
L functions for fixed a and relates it to the ζ
function of the field generated by the rationals
and e2πi/a ; harmonic analysis is involved in this
identification. The nonvanishing of the L(s, χ) at
s = 1 then follows by showing that the ζ func-
tion of this field has a pole at s = 1.

Later Dedekind worked with multiplicative
characters of the (finite abelian) ideal class group
of the ring of algebraic integers of a number field
(finite extension of the rationals), and in 1882
Weber introduced multiplicative characters for
an arbitrary finite abelian group G . The multi-
plicative characters of G form a group Ĝ under
pointwise multiplication of their values. Distinct
multiplicative characters are orthogonal in the
sense that 

∑
x∈Gω(x)ω′(x) = 0, and the inver-

sion formula (15) is valid.
Multiplicative characters are less helpful in ex-

ploiting a nonabelian group of symmetries. A
multiplicative character must send every com-
mutator xyx−1y−1 into 1. For a group that is
generated by its commutators, as for example a
nonabelian simple group, it follows that 1 is the
only multiplicative character. To be able to do
harmonic analysis with nonabelian groups, one
introduces a multidimensional generalization
of multiplicative character, the group represen-
tation. In Part II we shall examine group repre-
sentations and their role in harmonic analysis.
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