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Szeg• Kernels Associated with Discrete Series 

A. W. Knapp*  (Ithaca) and N. R. Wallach ~ (New Brunswick) 

1. Introduction 

In [7] Harish-Chandra gave a parametrization of the discrete series of a connected 
semisimple Lie group G with finite center. For each discrete series representation 
we shall give an integral formula that provides an explicit quotient mapping 
from a suitable nonunitary principal series representation, realized as a space 
of functions on a maximal compact  subgroup K, onto a concrete analytic reali- 
zation of the discrete series [21, 22]. By duality one can obtain an explicit im- 
bedding of the discrete series representation as a subrepresentation in the non- 
unitary principal series. 

The simplest realization of the discrete series is as the space of square-integrable 
smooth functions on G that satisfy a transformation law on one side under K 
and are annihilated by an appropriate first-order elliptic differential operator. 
We shall use the operator  ~ introduced in [18, 193 as the first-order operator  
in question (see w 2). Since the kernel of ~ is contained in the kernels of some 
more familiar operators, such as the pair ~ and ~* and the Dirac operator (see w 3), 
our quotient mapping can be regarded as an integral formula carrying functions 
on K to solutions of a familiar first-order elliptic system. 

It is for this reason that we refer to the kernel in the integral formula as a 
Szeg6 kernel. In fact, it is possible to arrange our parameters in a limiting case 
so that our kernel is indeed the classical Szeg6 kernel for the unit ball in C", 
carrying functions on the boundary to holomorphic functions in the interior. 

We shall state our main result more precisely, referring to later sections 
for some of the definitions. By [7] G has a discrete series if and only if rank G = 
rank K. Thus we may assume that  G has a compact  Cartan subgroup T~_K. 
For this section we shall assume also, possibly by passing to a double covering 
of G, that G is acceptable in the sense of [7]. To each nonsingular integral form 
A on the Lie algebra of T, Harish-Chandra associates in Theorem 2 of [6] an 

* Research supported by visiting positions at the Universit~ de Paris-Sud, Rice University, and the 
Institute for Advanced Study, and by NSF Grant M PS 75-07024 
~"~ Research supported by NSF Grant MPS 71-02650 



164 A.W. Knapp and N. R. Wallach 

invariant eigendistribution OA, and he proves in [7] the existence of a discrete 
series representation n a on a space H A with character + @A" These representations 
exhaust the discrete series, and two such are equivalent if and only if their param- 
eters A are conjugate under the Weyl group of K. 

Let g be the Lie algebra of G. Given A, let the positive roots be those for which 
(A, a)  > 0, and select a fundamental sequence al . . . .  , ~,, of positive noncompact 
roots (see Definition 4.1). This sequence determines an Iwasawa decomposition 
G = ANK, and we let M be the centralizer of A in K. Let 2 = A + 6 , - 6  k be the 
lowest K-type in hA, and let z a be an irreducible representation of K with highest 
weight 2, with representation space V~, and with nonzero highest weight vector q5 a. 
Let a a be the representation of M obtained by restricting za(M ) to the M-cyclic 
subspace H a of ~ generated by ~,b a. Then aa is irreducible (Proposition 5.5). Define 

Coo(K, aa)= { f  ~Coo(g, nz) l f  (mk)=az(m) f (k), m~M, kEK}, 

C~176 za)= {FE Coo(G, V~)lF(kg) = za(k) F(g), k~K, g~G}. 

The Lie algebra of A has basis E~s+E_~j with normalizations as in w 2, and we 
let v = v(2) be the linear functional determined by 

v(E~s + E ~j) = 2 (2 + n s ~S, as) 
- ( %  aj) 

where n~ is the integer defined in (6.5b). (This expression will be interpreted in 
Proposition 8.2.) Extend the functions in Coo(K, aa) to be the smooth functions 
in the representation space of the nonunitary principal series representation 
W(a~, 2p + -v) ,  as in w 6. 

(1.1) Theorem. With 2=A+6, - (5 ,  integral and with A nonsingular and G- 
dominant, the operator 

S(f) (x)= S z~(k)-l f (kx) dk = ~ e~mtx-1)za(sc(Ix-1))-l f (1) dl 
K K 

carries Coo(K, a~) into the kernel of the operator ~ on Coo(G, zz), and, under the 
identification of Coo(K, ax) with the space of the nonunitary principal series 
W (a a, 2 p + - v), it carries the K-finite vectors of W (a z, 2 p + - v) in a g-equivariant 
fashion onto the K-finite vectors of the discrete series nA" 

The authors came to work on this problem from different directions, starting 
with [13] and [22]. The work of the first author grew out of an attempt with 
E. M. Stein to obtain explicit solutions to the ~ and ~* system in the case that G/K 
is Hermitian symmetric. 

Often a discrete series representation appears as a quotient of more than one 
nonunitary principal series representation. Indeed, Theorem 1.1 can produce 
more than one quotient mapping for a given discrete series; a particular mapping 
is determined once the fundamental system is fixed. However, the theorem does 
not provide all quotient mappings in SU(2, 1), for example, for the class of discrete 
series that have three quotient mappings, since there are only two possibilities 
for the fundamental system in this case. 

We have attempted to minimize the number of deep results about discrete 
series that we use in this paper. The proof that N annihilates the image of the 
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integral operator is elementary and occupies w167 4-7. To identify the image with 
the discrete series requires the deeper theorems and is done in two stages. First, 
in w 9, we assume the parameter A is "far from the walls." In this case we use three 
facts, which will be stated more precisely in w 9: 

(1) (Schmid [19], Hotta-Parthasarathy [10]). Far from the walls the dimension 
of the space of C ~ solutions of ~ F  =0  of a given K-type is bounded above by 
the Blattner multiplicity. 

(2) (Hecht-Schmid [8], Enright [3]). Far from the walls the discrete series 
satisfies the Blattner conjecture. 

(3) (Schmid [19], Hotta-Parthasarathy 1-10]). Far from the walls the L 2 
solutions of ~ F  =0  give a realization of the discrete series 7t a. 

The second stage is to pass to the remaining parameters by means of tensor 
products with finite-dimensional representations and suitable projections. The 
idea that problems about discrete series could be handled by this approach is 
due to Zuckerman and is based on a key lemma of his [25]. The corresponding 
machinery that we need about nonunitary principal series is based on [16] and 
is assembled in w 10. The actual proof in the second stage of the argument is 
carried out in Proposition 10.7 and Theorem 10.8. 

The Szeg~5 kernel in Theorem 1.1 is defined under the more general assumption 
that zz makes sense. Under slightly wider conditions than in Theorem 1.1, con- 
ditions that are made precise in Theorem 10.8, the image of the Szeg6 kernel 
is still irreducible. In the limiting cases, one obtains so-called "limits of discrete 
series." These representations will be used in w 12 to exhibit all the reducibility 
that occurs in the unitary principal series of a group of real-rank one. 

We should mention that Casselman [2] has announced an abstract sub- 
representation theorem for a much wider class of representations than discrete 
series. His argument is based on asymptotic expansions and does not give values 
for the parameters of the imbedding. 

We have learned that Schmid has independently obtained explicit imbeddings 
of discrete series representations in representations induced from suitable maximal 
parabolic subgroups. His work is based on [20]. Schmid has informed us that 
iteration of his result leads to our formulas. 

2. The Operator 

The following notation will be in force for w167 2-10. We let G be a connected semi- 
simple Lie group with finite center and fix a Cartan decomposition g = [ G p  of 
the Lie algebra. We assume that rank g = rank [. The Cartan involution is denoted 
0, and bar denotes conjugation of gc with respect to g. Then X ~ 0X is the con- 
jugation of gc with respect to the compact form ~ ) i p .  

Let t ___~ be a compact Cartan subalgebra. Let A be the set of roots of (gc, tc), 
and let A k and A, be the sets of compact and noncompact roots, respectively. 
The Weyl groups of A and A k are W and W K. 

We shall need to make computations with root vectors, and we fix a normaliza- 
tion of them. Namely by [9, pp. 155-156] we can select root vectors E, in such 
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a way that 

B(E~, E ~ ) =  2/(~, ~t), (2.1) 

where B is the Killing form, and 

0 / ~ =  - E _ ~ .  (2.2) 

Then it follows that H~ defined by 

H~ = [E~, E_~] (2.3) 

satisfies ~(H~)= 2 and that 

E~ + E ~ ,  i(E~-E_~) are in g if ~ is noncompact,  

E~--E~,  i(E~ + E_~) are in g if ct is compact. 

The Hermitian form 

( U, V) = - B(U, Off) (2.4) 

is a positive definite inner product on gc. 
For functions on G, we use vector field notation for differentiation, letting 

Xf(g)=~f ( (exp tX) - lg ) l !=o  if X is in ff If X and Y are in ~ and Z = X + i Y ,  

let Z f = X f + i Y f .  Then 

zf=z-=--f. (2.5) 

After we introduce a notion of positivity on the roots of (gc, tc), we let A +, A~-, 
and A + be the obvious sets of positive roots. Define 6 to be half the sum of the 
positive roots, 6 k to be half the sum of the positive compact roots, and 6, to be 
6 - 6  k. Let K and T be the analytic subgroups corresponding to ~ and t. The 
integral forms on t c are those that lift to T. As mentioned in w 1, the discrete series 
of G is parametrized, according to [7], by a set of nonsingular forms A, modulo 
the action of W K. It will be important to note that this parametrization is valid 
without reference to positivity of roots; then in considering a particular parameter 
we can introduce a positive system A + to suit our convenience. 

Let 2 be an integral form on t c, and fix a choice of the positive system A + 
that makes 2 dominant with respect to A~. Let z~ be an irreducible representation 
of K with highest weight 2, and let V~ be the representation space. 

With such a 2 fixed, we introduce, following Schmid [19], the differential 
operator ~ with which we shall work. First let C~ z~) be the space of all C ~ 
functions F: G ~  V~ such that F(kg)=Ta(k)F(g) for all k in K and g in G. Next, 
since the K-representation Ad (K)Ipc has all weights of multiplicity one, it follows 
that we have a decomposition 

z~ |  [pc = ~, maza+ a 
#~An 

with each m a equal to 0 or 1. Let z~- be the subrepresentation of this tensor product 
given by 

�9 ; =  ~ m_r ~. (2.6) 
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Then ~- acts in a subspace V Z of V~| c, and we let 

P: Vz| Vf  (2.7) 

be the orthogonal projection. Note that 

z[ (k) P(X) = n((zz(k) | Ad (k)) X) (2.8) 

for all X in V~| c and that P(X)=O if X is a weight vector whose weight is 
not of the form ). - Q with Q a nonempty sum of positive roots. 

The differential operator 9 carries C~ ~) into C~ ~ )  and is given by 

2n 
9 f  (g) = ~, P (X i f (g) | Xi), (2.9) 

where X 1 . . . .  , X2, is an orthonormal basis of pc with respect to the inner product 
(2.4). The operator 9 is independent of the choice of basis and is equivariant with 
respect to right translation by G on C~176 z~) and C~ zj-). 

We shall use both the general formula (2.9) and the specialized version obtained 
by using the particular orthonormal basis (�89 lfll2) 1/2 E0, fleA,. For this basis the 
formula is 

9 f ( g ) =  ~ �89 [fll 2 P(Eof(g)| (2.10) 
/~eA. 

3. Other Possible Differential Operators 

The operator 9 is particularly adapted to studying discrete series. However, 
some other first-order differential operators with geometric interpretations quite 
apart from group representations have been used in realizing discrete series. 
Since we are going to give an integral formula that produces functions in the 
kernel of 9,  some discussion of the relationships among these operators is in 
order. We shall apply the corollary of this section in w 10. 

Other operators that have been used are the complex ~ and ~*, the de Rham 
d and d*, and the Dirac D. Our point is that 9 is more primitive than all of these 
in the sense that the kernel of 9,  suitably interpreted, is contained in the kernels 
of the other operators. 

Schmid has pointed out to us that the realizability of discrete series in the 
kernels of such operators is not so much a property of differential operators as 
it is an algebraic property of discrete series-  specifically the lowest K-type result. 
Thus the sharpest results with differential operators should be expected to come 
from the operator that most closely mirrors lowest K-type properties in its 
definition; this operator is 9 .  

By way of illustration we shall relate 9 to the Dirac operator, used by Par- 
thasarathy [173 and Hotta and Parthasarathy [103. For this discussion we shall 
assume that 6 k and 6, are integral; this integrality can be achieved by passing to 
a covering group. Then the representation Ad(K)lpc~_SO(p c) on pC lifts to a 
representation 

L(K) _ Spin (pC) 
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on the Clifford algebra of pc and then restricts to a representation Lo of K on a 
spin module 9ff that is invariant and irreducible under Clifford multiplication Cliff 
on the left. The representation L o is not irreducible, but its highest weight is 6. 
and has multiplicity one, and the other weights are of the form 6 . - Q  with Q a 
sum of distinct members of A +. 

Suppose that 2 is integral and that 2 - 6 .  (and not merely 2) is dominant 
with respect to K. Then we have a canonical inclusion 

zx~zx_~.|  

since L o has a highest weight vector with weight 6,, and we can regard C~176 z~) 
as contained in Coo(G, z~_~.| The Dirac operator 

D: C~ z~_~. |  Coo(G, z~_~.| 

is given by 
2. 

Of(g) = ~ ( I |  Cliff(X,))_~,f(g), 
i = l  

where X1, ..., X2, is an orthonormal basis of pC. Thus we can regard the domain 
of ~ as included in the domain of D. 

(3.1) Proposition. If  f in Coo(G, zx) satisfies ~ f = 0 ,  then Df=O. 

Proof. Write r~| = r~- @z~-, and let P and P+ be the orthogonal projections 
on the two constituent spaces V~- and V~ +. Define 

D 1 f (g) = ~ X, f (g) | )(,, 

so that D~f(g) is in VxQpC~_v~_a.|174 c. Let D 2 be the mapping of 
Vx_~,|174 c) into Va_o,| 0 given by/@Clif f .  Then ~f (g )=PD~f (g )  and 
Df(g )=D2Dl f (g  ). We claim D2 P+ =0. If so, then 

D~ f (g) = ~ f (g) + P+ Dx f (g) 

and 

Df(g) = D 2 Da f (g) = D 2 ~ f (g )  + D 2 P + D x f(g) = D 2 ~ f  (g), 

and the proposition follows. To see that D2 P+ =0, simply observe that D 2 and 
P+are K-equivariant, that the highest weights of V~ + are of the form 2+f l  with 

in A. +, and that all weights of the target space V~_~,| o are of the form 2 - Q  
with Q a sum of positive roots. 

(3.2) Corollary. I f  ~2 is the Casimir operator, if f in Coo(G, z~) is in the kernel 
of ~, and i f 2 - 6 ,  is dominant with respect to K, then 

Of  =(IAI2-1612)f, 

where A = 2 + 6k-- 6,. 

Proof. Under the hypothesis on 2, Parthasarathy [-17, p. 16] shows 

- O  2 = g2- (IAI 2 -1612)I (3.1) 
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on Ca(G, zz_~, | Lo). I f f  is in C ~ (G, z~), then (3.1) applies to f By Proposition 3.1, 
@ f = 0  implies D2f=O. The result follows. 

4. Construction of Orthogonal Roots 

We work with the roots defined relative to the compact Cartan subalgebra of 
w 2 and with a fixed notion of positive roots. Let cq , . . . , e , ,  be a sequence of 
strongly orthogonal positive noncompact roots. (That is, no ei_+% is a root.) 

The space ~ R(E~s + E ~ )  is an abelian subspace of p. If it is maximal abelian, 
j ~ l  

then the sequence ~a . . . . .  e., is maximal (but not always conversely). In any 
case if el . . . . .  ct,, is maximal, then we can define a function 7 ~ e(7) carrying A, 
into {~l . . . . .  cq,} by this rule: e(7) is the first % such that 7 is not strongly 
orthogonal to ej. 

(4.1) Definition. A sequence ei . . . . .  a m of positive noncompact roots is a 
fundamental sequence if 

(1) the ej form a strongly orthogonal set, 

(2) a = ~ R(E~j + E_~j) is maximal abelian in p, 
j=l 

(3) c 9 is a simple root in the subsystem of roots strongly orthogonal to 
0(i~ . . .  , 0 ( j _  1 , 

(4) for each 7 in A + either 

(a) 1~(7)1>L71, or 

(b) I~(7)I<LTI and 7-3~(7)  is a root. 

By (1) and (2) and the remarks above, ~(7) is well defined. Thus requirement 
(4) is meaningful. 

Properties (1) and (2) will allow us in the next section to define an Iwasawa 
decomposition with the aid of e~ . . . . .  ct,,, and property (3) should be regarded 
as a compatibility condition between the ordering of A and the ordering of the 
yet-to-be defined restricted roots. For later use we isolate a consequence of 
property (3): 

7 > 0  and 7+~(7) and 7-n~(7)~A imply 7 - n ~ ( 7 ) > 0 .  (4.1) 

Property (4) accomplishes several things. Its main effect is to make the 
explicit computation of the Iwasawa decomposition easy on the Lie algebra 
level. The next lemma shows how it allows us also to control compact roots 
that are orthogonal to a~ . . . . .  ~,,. The option of (4b) is introduced to ensure the 
existence of fundamental sequences, proved below. If we insisted on (4a) always, 
then the group split G 2 with the short simple root noncompact and the long 
simple root compact would admit no fundamental sequence. Conversely if 7 > 0 
satisfies (4b), then e(~,) and 7 -3e (7 )  are the simple roots of a split G 2 factor of g, 
e(7) is short and noncompact, and 7 -3e (7 )  is long and compact. 
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(4.2) Lemma. I f  fl is a compact root orthogonal to each root ~ . . . . .  ek in an 
initial segment of a fundamental sequence ~1 . . . . .  era, then fl is strongly orthogonal 
t o  O~ 1 ,  . . .  , 0~ k .  

Proof. Assuming the contrary, let j = k be the least index such that fl is not strongly 
orthogonal to ~j. Then fl+~) is a noncompact root. Moreover, ~(fl+~j)=~j.  
[In fact, if f l + ~ j + ~  is a root, then ( f l + ~ + ~ i ,  f l )>O says ~j+~i is a root, 
contradicting (1).] Since fl is orthogonal to ~), 

Ifl+~j[ > I~jl = [c~(fl + ~j)l, 

and (4a) fails for fl+otj. Then (4b) holds and fl and ~tj are orthogonal roots in a 
common simple factor of type G z. Since orthogonality implies strong orthog- 
onality in G 2 and fl + 7j is a root, we have reached a contradiction. 

We turn to the question of existence of fundamental sequences. Let e I . . . . .  e, 
be the simple roots of A. We begin with a naive attempt at constructing a funda- 
mental sequence. Namely fix a lexicographic ordering C yielding e I . . . . .  e, as 
simple roots. Define, relative to (9, 

~1 =smallest root in A~ +, 

ct z = smallest root in An+ strongly orthogonal to el ,  

% = smallest root in A~ + strongly orthogonal to cq, e2 

etc. 

Call el . . . . .  am the sequence associated to (9. Properties (1) and (3) in Definition 4.1 
are trivially valid. Since ~ . . . .  , c% is clearly maximal, the function e(7) is defined. 
We shall prove that (4a) implies (2). 

(4.3) Lemma. I f  a 1 . . . . .  a m is the sequence associated to (9 and if I~(~)l>__b,I for 

all ~ in An, then a= ~ R(E~j+E_~j) is maximal abelian in p. 
j = 1  

Proof. Suppose 

X =  ~ aa(Ep+E_a)+ ~ bpi(Ea-E_p) (al~, bp real) 

centralizes a. We may assume a~j=0 for l < j < m  without loss of generality. 
We form 

0 =  [X, E~j + E_~j] = ~ (root vectors)+ ib~j([E~j, E_~j] - [ E ~ ,  E~j]) 

= ~ (root vectors) + 2 i b~j H~j. 

Thus b~ = 0, 1 < j <  m. Changing notation, we then have 

X =  ~, caE a (cacomplex). 

p* +a~ 

Let j be the least index such that ~(fl)=~j and cp:~O for some ft. Form 
[X ,E~+E_~f l ,  suppose fl+~j is a root, and consider the term containing 
Ep+~. It is 

c a [-Ea, E~j] + c a, [Etr,  E _ j = 0, where fl + ~j = fl' - ctj. 
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If fl + ~j and fl' are bo th  roots,  then fl, fl + a j, fl + 2(x j =  fl '  is a root  string. Since 
f l+~ j4 :0  and since fl or fl' must  be the end of the full string, we obtain I~jl<lfll 
or laj[ < Ifl'[. Since 7(f l )=a(f l ' )=c~,  the result is a contradic t ion to the inequality 
[a(?)l => 171 for all 7. We conclude that  if fl + ctj is a root, then fl' is not  a root. Hence  
our equat ion reads ca[Ea, E~j] = 0, and we conclude c a =0 .  

Thus  we may  assume f l - ~ j  is a root  and consider the term containing Et~_,j, 
which is 

c a [E a , E_  J + ca,, lEa,,, Eaj] -~- O, where fl - aj = fl" + ctj. 

If  f l -  c~j, and fl" both  exist, then we argue as above with the root  string fl, f l -  ~j, 
f l -2c t j .  Thus fl" is not  a root  and we conclude c a = 0 .  This proves the lemma.  

(4.4) Lemma.  Unless g has a factor whose complexification is F 4 or G2, every 
system of  simple roots e l , . . . , e  n for A admits a lexicographic ordering (9 whose 
associated sequence satisfies ]~(?)1>-]7] for all 7 in A n. 

Proof. We m a y  assume ,q is simple, and we investigate the var ious complex 
Dynkin  d iagrams separately. For  the single-line diagrams,  any (9 will work  
trivially. For  example,  use e 1 . . . . .  ~, as a basis to define the ordering (9. In view 
of our hypotheses,  we are left with B n and C n. 

Case C n. List the simple roots  in the order  

e 1 - - e  2 , e 2 - - e 3 ,  . . . ,  e n _  1 - - e  n ,  2 e  n, 

and let (9 be the resulting lexicographic ordering. We claim I~(y)l>lwl for all 
n o n c o m p a c t  7. There are two subcases. First, if some 2e~ is noncompac t ,  then 
2e~ differs f rom 2e~ by twice a root  and hence is noncompac t .  The  sequence 
associated to (9 is then 2e n, 2e ,_  1 . . . . .  2e 1 and 1~(7)1>__ [71 clearly. Second, if no 
2ei is noncompac t ,  then all the n o n c o m p a c t  roots  have the same length, and 
1~(7)1 > [7[ trivially. 

Case B.. List the simple roots  in the order  

e n ,  c 1 - - e  2 , e 2 - - e  3 , . . . ~  e n _  1 - - e  n ,  

and let (9 be the resulting lexicographic ordering. We claim 10~(7)1>1~1 for all 
n o n c o m p a c t  7. First, e~ + ej and e ~ - e j  differ by twice a root  and hence are both  
compac t  or else bo th  noncompac t .  In the associated sequence al . . . .  ,am, the 
first ~'s are of the form e~-e j .  Once the roots  of this kind stop, there can be no 
more  such roots. Any root  e~+ ej after the first ~'s is such that  e ~ - e  i is already 
in the list, since otherwise e~ - e i could have been adjoined to the list after the first 
~'s. There  can be at most  one root  e k in the list since the ek'S are not  strongly 
or thogonal .  Also in our  ordering any e k is less than any e~+ ej. Thus  the list 
al . . . . .  0~m is of the fo rm 

certain ( e i -  e j), possible e k, cor responding  (e, + e j). 

The only p rob lem that  can occur is if 0~(7)= ek with ~ long. Then  we may  assume 
~ = e k + e  k, is n o n c o m p a c t  and a(7)=ek.  But o~(ek--ek,)=ek implies ek--ek, is 
s t rongly or thogona l  to the e l - e j  in our  list and can be adjoined before e k occurs 
in the list. This  contradic t ion  shows that  I~(~)1 >--171 as required. 
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(4.5) Proposition. Each system of simple roots ~ . . . . .  e, for A admits at least one 
fundamental sequence of positive noncompact roots. 

Proof. We may assume 9 is simple. In G 2 there are only three possibilities up to 
isomorphism, obtained by labeling some nonempty  subset of  simple roots  as 
noncompact .  If the long simple root  is noncompact ,  choose it as ~1 and let (x 2 
be or thogonal ;  the result is a fundamental  sequence with (4a) always valid. 
Otherwise choose cq to be the short  simple root, and let ~2 be or thogonal ;  the 
result is a fundamental  sequence that  has (4b) holding for some ~. This handles G 2 . 

Since g is simple and g c =  G2 has been considered, Lemmas  4.3 and 4.2 prove 
the proposi t ion except when ge =F4.  Thus let ~c =F4.  If  all noncompac t  roots  
have the same length, the two lemmas again provide a fundamental  sequence. 
Thus  suppose there are noncompac t  roots  of both lengths. Let the roots be 
+_ ei, +_ e i -t- e~, �89 (_+ e 1 _+ e 2 -I- e 3 q- e4). Suppose, for definiteness, that  e 1 - e 2 or 
e x + e 2 is noncompact .  Then  both  are noncompac t  since 

e 1 + e 2 = (e I - -  e2)  + e 2 + e 2 , 

and exactly one of �89 1 - - e 2 ) q - e  3 q - e4 )  is noncompact ,  since the difference is 
noncompact .  But then the sum e 3 + e 4 is noncompact ,  and e a -  e 4 must also be 
noncompact .  Adjust ing notat ion,  we find as a result that  either all the roots 
in the set 

{ e a - e  4, e a + e  4, e I - e 2 ,  e 1 + e 2 }  (4.2) 

must  be noncompac t ,  or all the roots  in the set 

{e 2 - e 4, e 2 + e 4, e 1 - e s, e 1 + e3} (4.3) 

must  be noncompac t ,  or else all the roots in the set 

{e 2 - e s , e 2 q- e 3 , e 1 -- e 4, e 1 + e4} (4.4) 

must  be noncompact .  N o w  assume that the simple roots are 

�89 (e l - -e2- -  e 3 - -  e4), e 4 ,  e 3 - - e  4 ,  e 2 - - e  3 . 

If all the roots  in (4.2) or  in (4.4) are noncompac t ,  easy computa t ion  shows that  
the sequence (4.2) or (4.4), respectively, satisfies (3) of Definition 4.1. Since it 
clearly satisfies (1) and (4), L e m m a  4.2 shows it is a fundamental  sequence. Finally 
our  computa t ions  showed that the only remaining case has all roots in (4.2) 
and (4.4) compac t  and all roots in (4.3) noncompact .  But this is impossible since 
then the n o n c o m p a c t  e 2 - e  4 would have to be the sum of the compac t  roots 
e 2 - -  e s and e a - e 4. 

5. lwasawa Decomposition in the Lie Algebra 

Fix a fundamental  sequence cq, . . . ,  ct,, of positive noncompac t  roots,  in the sense 
of  Definition 4.1. Such a sequence exists, according to Proposi t ion 4.5. We 
shall associate to this sequence a canonical  Iwasawa decomposi t ion of  g, and 
we shall obtain explicit formulas for the project ion operators. At  the end of this 
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section we shall prove a result about restricting representations of K to a sub- 
group M defined in terms of this Iwasawa decomposition. 

Let a be the maximal abelian subspace of p given by 

m 

a = ~ R(E~j + E_ , ) .  
j=l 

Form restricted roots with respect to a, and define an ordering on the restricted 
roots by means of the basis E~, +E_~I, .... E,m +E_am. Let n be the sum of the 
positive restricted-root spaces. Then g=tff~aff)n is an Iwasawa decomposition 
of g, and we have a corresponding decomposition of the complexifications 
gc= ~cq)acff)n c. Let P~ and Po be the projections of ~c on [c and a c, respectively, 
defined by this decomposition. 

Later we shall use the notation A and N for the analytic subgroups with 
Lie algebras a and n, M for the centralizer of a in K, and p + for half the sum 
of the positive restricted roots counted with multiplicities. 

(5.1) Lemma. I f  X in gC has the property that 

+ E  ~ , , X ] = ~ O  for l<=j<=k 
- " ( c X  for j = k + l  

with c>O, then X is in ~t c. 

Proof  Let g~ be the complexified restricted root spaces. Write X =  ~ X ~ + X  o 
with X~6g~ and X o ~ m C O a  c. Then 

cX=[E . . . .  + E  . . . . .  , x 3 = Z ~ ( E  . . . .  + E  . . . . .  )X~. 

Hence X o = 0  and q~(E . . . .  + E  . . . . .  ) = c  whenever X~#0.  Similarly for 1 < j < k ,  
q~(E, + E _ ~ ) = 0  whenever X ~ # 0  Thus X is in ~g,p with the sum taken over 
those q~ for which (o(E,j+E , ) = 0 ,  l < j < k ,  and q~(E~+,+E . . . . .  )=c.  Such 
restricted roots ~p are positive, and thus X is in u c. 

(5.2) Proposition. Let the lwasawa decomposition be defined by means of a 
fundamental sequence, and let fl be a noncompact root. I f  fl= 4-~(fl), then 

P.(E~) = Po(E_~) =�89 (E~ + E_t~), 

P,(E~) = ~ I-I~. 

I f  fl # 4- a(fl), let ct = ~(fl) and let the a-string containing fl be fl + n ~, - p <= n <= q. 
There are two possibilities: 

(i) Every noncompact root 7 with ct(y)=a has 17[_<]~[. Then p and q are at 
most 1 and not both O, and 

Po(Ea)=P,(E_I~)=O, 

1 
P,(E~) = - p  +--~ ([E_~, E~] + [E~, E~]). 

(ii) Some noncompact root 7>0  with ~(7)=cz has 17'1 > I~l, and ~ -  3o~ is a root. 
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Then fl is one of +_ 7 or +_ (Y-2 ~t), and 

Po(E )=O 
[ -�89 [E,, +f i  E&, [E,, [E,, Eo]]] i f  = 

P~(E~)= ] _�89 [E~, Eg]-�88 [E_~, E~] /f fl= -(7-2:0 
[ - I  [ E _ , ,  t0]  - �88 [E,, Ep] /f f l = 7 - 2 ~ .  

Proof Since P~ is an orthogonal projection, the expressions for Po(Eo) are 
immediate in all cases. However, Pf is not an orthogonal projection. First suppose 
fl = m(fl)= ek" This case can be handled by imbedding ~ 1(2, R) in g, but we shall 
do the computation directly to illustrate the general method. We have 

[Ep+E_~, Ep-�89 (E~+E_p)-~ H~] = 2  (E~-�89 (E~+E p)-�89 Hr (5.1) 

and, for 1 ~ j  < k - l, 

[E,j + E_,j ,  Ep - �89 (E# + E_#) - �89 H#] = 0. (5.2) 

By Lemma 5.1, Ep - �89  p)-�89 in n c. Hence 

E# = {I H~} + {�89 (E# + E _~)} + {E# - I  (E# + E_p) - �89 Us} 

exhibits E# as in fcGaCGnC and must be the lwasawa decomposition. That is, 
P~(E~) = I  Hp. 

Similarly if fl=-~(fl)=--~k, equations (5.1) and (5.2) are still valid, and we 
again conclude Pr(Et~)=�89 H~. 

Now suppose a(fl)=~ _+ft. Write ~ for 0~(fl), and suppose we are in case (i). 
Since la(fl)]__>lfll, we have 

2<fl, a> 
- 1 or 0 or 1. P-q= }a12 

Also p+q<3 in any case, and thus p and q are both <1 unless p=l and q=2  
or vice-versa. Say p = l  and q=2.  Then fl+2m is a noncompact root and 
1fl+2~l>l~l. If we show that ~(f l+2a)=a,  then we have a contradiction to the 
assumption that we are in case (i). For previous ~y in the fundamental sequence, 
<fl+2~,a~>=0. Thus a(fl+2a)---~ implies f l+2~+~y are both roots. Then 
~, fl + 2 a, and fl + 2 a + ~ are roots of three distinct lengths, contradiction. Hence 
a ( f l+2a)=~  and we conclude p---1 and q = 2  is impossible. Similarly p=2 and 
q= 1 is impossible. Thus p and q are both < 1. They cannot both be 0 since 
=(fl)=a implies fl and a are not strongly orthogonal. 

To verify the formula for P~(Ee), we use the formula 

[E_, ,  [E,,  Ea]] = q(p + 1) Ea (5.3 a) 

on p. 143 of [9] and its companion formula 

[E~, [E _ ~, E~]] = p(q + 1) Eg, (5.3 b) 
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both  combined with the fact that p and q are ___< 1. We simply compute  

[E~,+ E_~, E~+p~q ([E ~, E~]+[E~,, E~])] 

1 
= [E_~, Et~ ] + [E~,, EtJ + ~-~ {p(q + 1) + q(p + 1)} Ea 

=(p + q) ( Et~ +pTq ([E_,, E~] + [E,, Etj])) (5.4) 

since p+2pq+q=p2+2pq+qZ=(p+q) 2 for our  values of p and q. Moreover ,  
if aj precedes e in the fundamental  sequence, 

[E~j + E ,,, E a _ . P + q ( [ E _  ~, Ea] + [E~,  Ea] ) ]  = 0. (5.5) 
+ 1 

To show this, it is enough to show that  % and f l+~  are strongly orthogonal .  
There are two cases. If f l+~  both  are roots, then (fl, ~ ) = 0 .  If, say, fl+a+aj is 
a root, then ( f l + a + % , a ) = ( a , a ) > 0  and (fl+o~+aj)-a=fl+aj is a root,  
contradicting a(fl)=~. We can argue similarly for the other possibilities in this 
case. In the second case, only one of fl _+ a is a roo t  and (fl _+ a, a )  = - (fl, a )  4: 0. 
If, say, fl++_a+o~j is a root,  then ( f l _+a+%,  ~ ) = - ( f l ,  a ) 4 : 0  and we find that  
fl + ~j is a root, contradict ing a(fl) = a. We conclude that (5.5) is valid, and L emma  
5.1 then shows that  

E a + p ~ q  ( [ E ~ ,  Ea] + [E, ,  Ea] ) 

is in n c. Since f l + a  are compact  roots, the correct ion term to Ea here is in fc 
and we can argue as in the first half of the proof  to complete  the p roof  of the 
formula for P~(Ea). 

By proper ty  (4) of a fundamental  sequence, the only alternative to case (i) 
is case (ii). In this case a and Y - 3 a  are the simple roots  of a split G 2 factor of fl, 
and thus fl has to lie on the a-string through 7 or through - y .  Therefore fl is 
one of + y or + (y - 2 a). To  consider the two root  strings of length 4 simultaneously, 
let 6 be the smallest root  on the string; 6 is - 7  or y - 3 a .  The a-string through 6 
is then 6, 6 + a ,  6 + 2 ~ ,  6 + 3 a .  Lemma  5.1 shows that 

a E~ + b [E, ,  Eo] + c EEl, [E, ,  E~]] + d [ E , ,  [E , ,  [E, ,  E~]]] 

is in n c if 

(a,b,c,d) 3 1 (3,1, 2, = ( 3 ,  3, g , 2 )  or 1 �89 

and hence is in n c if 

[(0, 1, 1,�89 or 
/ ( - 3 , 0 ,  3 ,1) or 

(a'b'c'd)=l(1,�89 or (5.6) 

[(L 1,�88 
Returning to fl, whose a-string is fl + na with - p < n < q, apply (5.6) with 6 = f l -  pa  
and use (5.3). Then  we get the result of the proposit ion.  
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(5.3) Lemma. M = MoF, where M o is the identity component of M and F is a 
finite subgroup of both the compact torus T and the center of M. 

Proof If G is a matrix group, this result is well known; F can be taken as G c~ exp i o. 
In the general case G is a finite cover of a matrix group GI, and we obtain M = MoF 
with F the complete inverse image under the covering homomorphism of the group 
F~ in G~. Then Ad (F) = Ad (F 0 is trivial on the Lie algebra of M; hence F centralizes 
M o. Moreover F is contained in T since T is the inverse image of the torus in Ga. 
Since F is contained in T, F is abelian. Thus F is in the center of M. This proves the 
lemma. 

If ~ is a noncompact root, the standard Cayley transform relative to ~ is 
Ad (u~), where 

u, = exp ~ (E, - E _,). (5.7) 

(5.4) Lemma. Let ct and fl be orthogonal roots. 

(i) I f  ~ and fl are strongly orthogonal, Ad (u~) Ea = Ep. 

(ii) I f~  and fl are not strongly orthogonal, Ad (u,) Ea =�89 ([E,, Ea] - [E_~, Ea]). 

Proof In (i), every term in the exponential series is 0 but the first. In (ii), we must 
have I/~l=l~l since otherwise ct, fl, and ~+f l  would be roots of three different 
lengths. Then the a-string containing fl is f l -  0~, fl, fl + c~. Applying (5.3) with p = q = 1, 
we have 

(ad E_~) (ad E~) E~ = (ad E~) (ad E _~) E~ = 2 E~. 

Thus 

ad 2 (E~-  E_~) E~ = - 4 Ep. 

Then 

Ad (u~) E~--(cos 3) E~+�89 (sin ~) ([E~, E~] - [ E ~ ,  Ep]), 

and the lemma follows. 

Let zx be an irreducible representation of K with highest weight 2, let V~ be 
the representation space, and let q~z be a nonzero highest weight vector. We denote 
by a~ the restriction of z~(M) to the M-cyclic subspace generated by ~b~, and we 
let Hx be the subspace of V a in which trz operates. 

(5.5) Proposition. I f  zz is an irreducible representation of K, then the representa- 
tion ax of M is irreducible. The highest weight of a~ on the Cartan subalgebra 

n l  

~ - = r e  y Rin~j (5.8) 
.i=1 

of m, with the relative ordering, is 21b-, and q~ is a highest weight vector. The value 
of az on z in the central subgroup F is a~(z)=~(z)  I, where ~ is the character of 
T whose differential is 2. 
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Proof  The Lie algebra a•b-  is a Cartan subalgebra of g, and the Cayley transform 
Ad (u,1... u J  carries t c to ( aOb- )  c. It carries roots vanishing on ~CH~j  to roots 
vanishing on a c, and thus the roots for M with Cartan subalgebra b-  are of the 
form 7 = A d  (u~. . .u, , , ) f l  with fl a root of (gc, tc) orthogonal to ~j for l < j < m .  
The root vectors correspond similarly. 

The Cayley transform acts trivially on b-  and so preserves the ordering. 
However, it does not act trivially on the root vectors. To show that ~ba is a highest 
weight vector of a~, we are thus to show that i f / ~ = A d  (u~, ... us,,)E~ with fl>O 
and flA_aj for 1 < j < m ,  then z~(/~) qS~=0. 

First suppose fl is compact. By Lemma 4.2 with k = m, fl is strongly orthogonal 
to all a~. Then Lemma 5.4 shows tha t /~r=  Ep and we conclude that zz(/~)~ba= 
za(Ea) qS~=0 since q~x is a highest weight vector. 

Next let fl be noncompact. By maximality of {cq . . . . .  a,.}, fl fails to be strongly 
orthogonal to some aj. By Lemma 5.4, 

Ad (u~) E~ = c 1E~ +~j + cz  E fl - a j .  

For i+j ,  ~ ++_ (fl ++_ ~) cannot be roots since we would have roots of three different 
lengths. By Lemma 5.4 all the other Ad(u,.) fix Ad(u~)Er and we obtain 

/~. = Ad (u~ ... u~m) Ep = c I Ea +,j + c 2 Ea_~. 

In particular, this equation shows that j is unique and hence that ~j=c~(fl). Since 
the sequence is fundamental, (4.1) says that f l -  a(fl) is >0. That is, fl + % are both 
positive roots. Hence zz(/~r) ~b~ = 0. 

We have now proved that qSz is a highest weight vector for az. The proposition 
follows directly from Lemma 5.3. 

6. Szegii Kernels 

Fix an integral form ), on the compact Cartan subalgebra t, and introduce a 
system of positive roots such that 2 is dominant with respect to the positive 
compact roots. With respect to this ordering, fix a fundamental sequence ~1 . . . . .  ~,, 
of positive noncompact roots (see Proposition 4.4), and form the corresponding 
Iwasawa decomposition of g as in w 5. We shall write G = A N K  for the corre- 
sponding global decomposition of G and write g = e  rag) nx(g) for an individual 
element of G. 

Let ~a be an irreducible representation of K with highest weight 2, let V~ 
be the representation space for zz, and let qSz be a nonzero highest weight vector. 
Let v be a real-valued linear functional on a. Then we define S(x, I) to be the func- 
tion on G x K given by 

S(x, l) = e ~mtx- ') zz(x(lx -1))-1 (6.1) 

S(x, l) is the Szeg6 kernel with parameters 2 and v. It is clear that 

S(k x, 1)= z ~(k ) S(x, 1) (6.2) 

for all k in K. 
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As in w 5 let H A be the M-cyclic subspace of V z generated by 4)a, and let az be 
the representation of M given by za operating in H A. By Proposition 5.5, a a is 
irreducible. Let Coo(K, aa) be the space of smooth functions f :  K ~ H z  satisfying 

f(mk)=az(m)f(k) for m6m, k~K. (6.3) 

Then we define the Szeg6 mapping with parameters 2 and v by 

S(f) (x)= ~ S(x, 1) f (l) dl = ~ e ~na~-') ~a(tc(lx-~))-~ f (l) dl (6.4) 
K K 

for f in C~176 aa). The definition makes sense since f takes values in HA___ V z. 
Equation (6.2) shows that the Szeg6 mapping carries Coo(K, aa) into Coo(G, ~). 

We can now state the main theorem of this section in its first form. 

(6.1) Theorem. The image of the Szeg6 mapping with parameters 2 and v is con- 
tained in the kernel of the operator ~, provided ,t and v are related by the formula 

v(E,j + E ,j) = 2(2 + njc~j, ~j) (6.5a) 

where 1 <= j <= m and 

nj= [{~A,  + I~(~) =c~ and ~(7)+ ~eA}[. (6.5b) 

Remark. We use the notation v = v(2) later. 

We shall give a second form of this theorem, cast in terms of the nonunitary 
principal series. The nonunitary principal series representation W(a a, v'), where 
v' is a linear functional on o, operates in the space of those smooth functions f 
from G to H A such that 

f (manx)= e v' log a a~(m) f (x) (6.6) 

with G-action given by 

W(az, v', g ) f (x )= f (xg ) .  (6.7) 

The parameters are arranged so that W(a a, v') is unitary when v'= p+ + ip with/~ 
real. 

If we fix v' and use (6.6) to extend members of Ca(K, a z) to be defined on all 
of G, then we can regard COO (K, az) as exactly the representation space for W(a~, v'). 

(6.2) Lemma. l f  f is in C~176 az) and is extended to G by means of v' and if S 
is the Szeg6 mapping with parameters 2 and v, then 

S(f) (x)= ~ vz(k)- ' f (k  x) dk, (6.8) 
K 

provided v and v' are related by v'= 2 p + - v .  

Proof The change-of-variables formula 

h(k) dk= ~ h(x(Ix-1)) eZP* mtx-') dl 
K K 
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is a consequence of the fact that W(1, p+, x -1) is unitary in LZ(K). Applying this 
formula with 

h(k) =- T(k) -1 f ( k  x) = eV'mkx) r(k)-l f(~c(kx)), 

we see that the right side of (6.8) equals 

j eV'mK~tx -,)x) e2O + H(tx-')Z(x(lx-1))-I f(tc(~C(Ix-1)X)) dl. 
K 

It is easy to see that x(x( lx-1)x)=l  and H(~c(lx-1)x)=-H(Ix-1) .  Substituting 
and using the identity v '= 2 p § - v ,  we obtain the lemma. 

The lemma shows that the Szeg6 mapping with parameters 2 and v is a G- 
equivariant mapping from the nonunitary principal series W ( a z , 2 p + - v )  to 
C~~ ra). Thus we can restate Theorem 6.1 in the following form. 

(6.1') Theorem. The Szeg6 mapping with parameters 2 and v is a G-equivariant 
map that carries the nonunitary principal series representation W (a a , 2 p + - v) into 
the kernel of the operator ~ on C~ za), provided 2 and v are related by (6.5). 

We shall prove the equivalent Theorems 6.1 and 6.1' in w 7. Later we shall 
see that if the chosen system A + of positive roots makes 2 + 6  k -  6, dominant 
and nonsingular with respect to all positive roots, then the image of the Szeg6 
mapping in the theorem is substantially the discrete series representation with 
Harish-Chandra parameter 2 + 6 k -  6,. The lowest K-type in the sense of Schmid 
[19] is 2. If 2+6k--6 . is dominant with respect to all positive roots and non- 
singular with respect to all compact roots, the image is a discrete series or "limit 
of discrete series." 

In any event each discrete series representation is exhibited explicitly as a 
quotient of a nonunitary principal series representation. We can obtain an 
explicit subrepresentation theorem for discrete series by duality. 

It is often true that the fundamental sequence is not unique. Generally, distinct 
choices for the fundamental sequence exhibit a discrete series representation 
as quotients of distinct nonunitary principal series representations. However, 
it is not necessarily true that all quotient maps are obtained by suitable choices 
of the fundamental sequence. 

Before turning to the proof of Theorems 6.1 and 6.1', it is appropriate to note 
that S is not the zero operator. To see this, let P~ be the orthogonal projection 
of V~ on H a and define f ( k ) = P ~ a ( k  ) ~b a. Then f is in C~(K, aa), and it is easy 
to see that 

(Sf(1), ~ba)= ~ If(k)[ 2 dk. 
K 

The right side is not 0 since f(1)  = qS~. 

7. Proof of Theorem 6.1 

Let f be in C~ ax) and let F=S( f ) .  Since by Lemma 6.2 the Szeg6 mapping 
is equivariant with respect to the actions of G on the right and since ~ is built 
from right-invariant derivatives, it is enough to prove that ~F(1 )=0 .  
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By an argument similar to Proposition 4.1 of [1], we can choose a scalar- 
valued function f in C~ such that 

f(k) = I aa(m)-l f(ink) ~adrn. 
M 

Then 

F(x)= ~ e~n(kx-1)za(t~(kx-a))-I zz(m) -1 c~af(mk )dm dk 
K x M  

= ~ e ~'(kx-') z~(~(kx-l))-i Oaf(k) dk 
K 

and 

NF(1) = ~ ~{S(x, k) 4)a}x=l f (k) dk. 
K 

Hence it is enough to show that 

~{S(x,  k) ~}x=, =0. 

Next, let X a . . . .  , Xz, be an orthonormal basis of p. Then 

2n ( d 
~ {S (x, k ) (oa}~=, = ,~1P J.d[ S(exp ( -  t Xi)' k ) dp a | X'},=o 

2n (d } 
= ~ P~-~[e~n(k~xptX')%(K(kexptX~)) -~ r174 

i=1 l 

2, ( d 
= Z P ~ z |  - [ evn(e'p'Aa(k)x') 

i=1 k 

t Ad (k) X,)) -1 r 1 7 4  (k) X,t T ~(K(exp 
I '  

= z~-(k) -1 ~{S(x, 1) r 

since {Ad (k)Xi} is another orthonormal basis of p. Hence it is enough to show 
that 

~{S(x,  1) r =0. 

To compute this expression, we use the formula (2.10) for ~ with the explicit 
orthonormal basis (llfl[z)~/z E o of pC. Let Etj=Xt~+ iY~. We have 

= ~ 1 P{-~[e ( P  z)%(~:(exptX,))- q~a],=o| ~ { S ( x ,  1)~Oa}x= 1 ~ a 2 l f l [  2 d ~ne~ ,x 1 

2 d vH(exp tre) t y#))- i  ~b,],= o| E_~ + ~ /[fl[ P { ~ [ e  za(K(ex p J 
= Y, �89162174 - Y, �89174 

p~a. t/ea. 

We are ready to use the Iwasawa decomposition given in Proposition 5.2. The 
fact that we shall use about P is that it annihilates all weight vectors that are not 
of the form 2 - # with # a sum of elements of A +. Temporarily let us assume that 



Szeg6 Kernels Associated with Discrete Series 181 

case (ii) of Proposition 5.2 does not arise. Then 

~{S(x, 1) qba}x= 1 = ~ �88 ]~jl 2 v(E~,j + E_~,) P{~z| 
j=l 

- ~ �88 2 2(H~ s) P{c~x| 
j = l  

1 
+ ~ ~2(p+q~Ifll2P{zz[E-"EIJ]Ox| (7.1) 

fl* -+~U 

In the third sum, the terms corresponding to f l>0  are 0 by (4.1) since ~bx is a 
highest weight vector. For the terms with fl < 0, we have 

0 = ~; [E _~, Ea] P(Ox| 
= P(rx |  [E ~, E~] (qSx| 

= P(%[E _~, Ep] qS~| r P(qS~| [[E _~, E~], E a] ). 

Introduce normalized vectors X~=(�89 and X~=( llfllz)l/2Er With 
notation N~ as on page 146 of [9], we have 

[[X_~, X~], X_p]=N_~,~[X_~+~, X pJ=m_~,~m_~+t~ ' _tjX ~ 
= N_~.~ N~. _r X_~. 

But by (5.3) 

�89 1c~[2 p(q + 1)Xt~ = [S~, [S_~, Xa]]=N_~,,r _,+r 
Thus 

[[E_~, Ea], E_a] = ~  p(q+ 1) E_, ,  

and we conclude, for f l<0,  that 

p(q + 1)I~12 
P(,x[E ~, Ea] (/)z| a)= [fl12 P(~)x| 

Substituting in (7.1), we obtain 

2p(q+l )~  ~{S(x, 1)4)xIx=,-=�88 ~la3l 2 v(E~,+E_~)-R(H~)- E (p+q) j 
j = l  /~<0 

�9 p(4~ | e _ O .  

To evaluate the sum over fl, let us replace fl by - f l ,  interchanging p and q. 
A term is 

2q (p+ l )  
(p + q) 

If q=0,  this is 0. Otherwise q = l  and p+l=p+q. Hence the term counts 2 if 
fl + e(fl) is a root, 0 if not. The sum is 2 n j, with nj defined by (6.5 b). Consequently 

~{S(x, 1)~Oa}x=X= �88 ) 2(2+,~e,,~j)'~p..~,~) j (q)x | (7.2)" 

By (6.5a) the expression in braces vanishes. Thus the left side is 0 as required. 
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Finally we indicate what modifications are necessary if case (ii) of Proposi- 
tion 5.2 arises. In the third sum of (7.1) fix ~=~i  so that case (ii) applies and sum 
over fl with c~(fl)= ~ .  A typical term is a coefficient times P{zz(Etj +,,~,)49 z @ E_a}. 
Here we may take n < 0  since P annihilates the other terms. I f /3>0,  (4.1) shows 
the term is 0. Thus we can take fl <0  and n negative and odd. In the notation 
or Proposition 5.2, we have simple roots c~ and 7 - 3  c~ for a split G 2 factor, and fl 
must be - 7  or - 7 + 2 a  to be negative and noncompact. Since fl+not is to be a 
root for some odd n<0,  the only possible choice is / 3 = -~+2 c~  and n = l .  
Tracking down the coefficient by means of Proposition 5.2, we see that the 
relevant term in the third sum of (7.1) is 

+8 a- [fll 2 P{zx[E, ,  Ep] ~p~QE_p}. (7.3) 

Since p + q = 3, this is 3 of 

1 
2(p+q~ [flIZ P {'r z[ E-~" Ea] c~,~ | E_p}. 

Hence we can repeat the argument that computed the relevant term in the third 
sum of (7.1) in the previous case to see that (7.3) equals 

2q(p+ 1)~ 
3.�88 p-+q l P(qS~| 

Since nj= 1, p = l ,  and q = 2  for this exceptional ~j, formula (7.2) is still valid. 
The proof is complete. 

8. Infinitesimal Character of W(a,,v'(2)) 

The main result of this section, Proposition 8.2, relates 2 to the parameters 
a~ and v of Theorem 6.1 by means of the standard Cayley transform built from 
the roots in a fundamental sequence. This result will be applied in w 10. An 
immediate consequence of the result is a simple formula in terms of 2 for the 
infinitesimal character of the image of the Szeg6 kernel. 

We continue with notation as in w 2. Let G=ANK be the Iwasawa decom- 
position of G constructed as in w 5 from a fundamental sequence {~1 . . . .  , ~m} 
of positive noncompact roots. With [9- defined as in (5.8), let [9 = [9 - �9 a. Then b 
is a Cartan subalgebra of g, and the corresponding Cartan subgroup is FToA, 
where M=MoF as in Lemma 5.3 and To is the analytic subgroup corresponding 
to [9-. To is the identity component of M n T. 

Let 7' denote the root system of (gc, [9c), and let 7"m ~ _ 7' be the root system 
of M. Let 7"+ be the system of positive roots of 7" obtained by requiring that a 
comes before [9-. The corresponding restricted positive roots of (g, a) are as in 
w 5, and the positive roots of hum are as in Proposition 5.5. Put 7"+--7"mC~ 7" +. 

NOW M=MoF as in Lemma 5.3. Let T O be the identity component of 
M n  T. Then FToA is a Cartan subgroup of G. If (a, H) is an irreducible represen- 
tation of M and if v is a complex-valued real-linear form on a, let a |  denote 
the representation of MAN on H given by (a | v) (ma n) = a(m) e v(l~ a). Let 2(a, v) 
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denote the representation of F ToA on the lowest weight space of ( a |  
relative to 7 '+ . Clearly 2(a, v) determines a |  

Let A(a, v) denote the complex-linear extension of the differential of 2(a, v) 
to b c, Set 

n + =  ~ g~, n - =  Y', g_~. 
~tELr~ + Ct~'~ + 

The universal enveloping algebra U(g) of gc decomposes as 

v (g) = u (b) | (n + u (g) + u (g) ~-) ,  

and we let t/: U(g) ~ U(b) be the corresponding projection. For z in the center 
of U(g) and for A a complex-linear form on b c, define 

Z~(z)=A(~(z)). 

We say that XA is the infinitesimal character corresponding to A. According, 
for example, to [4, p. 87], the infinitesimal character of the nonunitary principal 
series is given as follows. 

(8.1) Lemma. For z in ~ ,  W(a, v, Z)-=)~A(o,v)(2)I. 

The main result of this section is a formula that yields the infinitesimal 
character of the nonunitary principal series representation appearing in Theo- 
rem (6.1). With (za, Vx) as in w 6, let a~ be defined as in Proposition (5.5) and let 
v= v(2) be as in (6.5). Set v ' (2)=2p + -v(2).  

To state the result, we introduce Cayley transforms as in (5.7). Let. ui= 

( r t  E - E ~,)) f o r i = l , . . . ,  Set u = u  1 exp ~-  ( ~, m. �9 . . . .  u,,. Then Ad (u) t c = l) c. Also, 

the Weyl group W(7",,) of 7",. canomically imbeds in the Weyl group of 7", and 
we let s o be the element of W(7",,) such that s o 7"+ = - 7"+. 

(8.2) Proposition. 

A(a~, v'(2)) = s o (A o Ad (u)- 1) + p, 

where p=�89 ~ ~ and A=~.+bk--6 .. 
at ~ trlt + 

The proof of this proposition takes some preparation. To simplify the notation, 
we write u -1 for Ad(u) -1. 

(8.3) Lemma. If  fl is in A,, if fl ~ + a j for j =  1 . . . .  , m, and if ct(fl)=a i but (fl, ei) =0, 
then (fl, aj) = 0  for j=  1 . . . .  , m. 

Proof If (fl, e~)+0,  then j>i.  We may suppose by changing fl to - f l  that 
( f l , ~ } > 0 .  But fi+~i is in A since a(fl)=a i and ( f l ,~ i )=0 .  Since ( f l+~i ,~i}  
= (fl, aj}, we see that f l+~ i -~ j  is a root, clearly noncompact. If c~(fl+~i-aj)=a~ 
for some r<i, then []~+al-aj l2--- lf l -~j lz+lai[  2, and f l+ai -a~+a , are roots 
with [fl+ai-aj+e,12=lfl-e312+[ai[2+[a,I 2. Thus we would haveroots  of three 
different lengths. Hence a(fl + e l -  e j) = ai. But [a ilz < Ifl + ai - ~j[2 = ]fl_ c~jl2 +[ei]a. 
Thus (4a) fails in Definition 4.1 for 7 = f l + ~ - a j ,  and (4b) must hold. But 
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then ~ cannot be orthogonal to fl without being strongly orthogonal, since 
orthogonality implies strong orthogonality in G 2. 

(8.4) Lemma. Let 

A +,n.J,1 ~ - -  { f l e A :  [~(fl)= ~j and fl-ctjeA}, 
A +  - -  . , j ,  2 -  {fleA+. [a(fl)=ctj and f l+~jeA}, 

A~ j, 1 = {fl e A; [ <fl, ~i> =0  for i < j and <fl, ~i> >0}, 

d~,i, 2={fleA~ I(fl, ~i> =0  for i<j and <fl, c~j> <0}. 

If  each fl in A + with ~(fl)=ctj has ]fll<]aj[, then the mappings 

d+j, 1 "-+ ZI~,j, 2 given by f l ~ f l - ~ j  

and 

d+j,E~d~j,a given by fl~fl+ctj 

are bijective. 

Proof. If fl is in d~i, 1, then f l-~j  is in A~- by (3) of Definition 4.1. Since [c~j[_-> [fll, 
the Schwarz inequality implies < f l -%,  ~ j )<0.  Hence f l - %  is in A k+ j, 2" Next, 
if fl is in A~j, 2, then fl+~j is in A+". Then ct(fl+~j)=~tj. [-In fact, if ct(fl+c~j)=c~ i 
with i<j, let y be the longer of fl and ~j. Then ( f l + ~ j + ~ i - 7 ,  Y) is >0, and we 
conclude that either fl+~i or ~ j + ~  is a root. But fl+~i cannot be a root by 
Lemma 4.2, and ctj+cq cannot be a root by strong orthogonality of the funda- 
mental sequence. Thus ~(fl+~j)=~j.] Then fl+aj is in A~j.1 and the map A + . n, j, 1 
to A~,i, 2 is bijective. 

If fl is in A+j, 2, then fl+~j is in A; and the Schwarz inequality implies 
(fl+%,ctj)>O since I~jl>[/~l. Hence fl+% is in d~.i, 1. Finally, iffl is in dk+.j,x, 
then f l - %  is a noncompact root. Lemma 4.2 shows that fl is strongly orthogonal 
to ~ . . . . .  ctj_~. Hence f l - %  is positive by (3) of Definition 4.1. Arguing as in 
the previous paragraph, we see that ~(fl-~i)=ctj. Thus f l -~j  is in d~j,2. The 
proof of the lemma is now complete. 

(8.5) Lemma. Let m j= + + [A,,j,I[ and nj=[A.,j, 2[. If  each fl in d + has [fll<lc~(fl)[, 
then 

(a) p+(E,~+E , j )=l+mj+niand 

(b) 2 <6 k -  fin, ~j> <~j, ~j> = - 1 -mj+nj .  

Remark. The integer n~ coincides with the integer in (6.5b) of Theorem 6.1. 

Proof. p+(E~+E_~)=�89 ~, ~(E~+E_~). Now Ad(u)H~ = - E ~ - E _ ~ .  Thus 

T + = {ct o u -~ IcieR___ A}, where 

R = kgm + w {~ e A If or some j, (~, ~j> < 0 and <~, ~fi> = 0 when i < j}. 

Since %(H,)= 2, we obtain 

~ <% ~>" 

We note that ff fl is in A + . . ,~,~ A + ..,~,~, then <fl, g,>=O for all r by Lemma 8.3. 
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Hence 

p+(E, +E_, , )=I+ }" ~" (fl, c@ 

- E  E <t~,~j> 
i< j BeAn +, ,,2 <O~j, O~j> 

+ Y Y~ </~' ~j> </~, ~j> 
i<=j "~d/~,i, 1 <O~j, (~j> I<jflEA~,E E <O~j, ~j> 

<~, ~j> <1t, ~j> 
i<j ~eA +, ,, 1 i<_j ~eA +, ,, 2 

+ 2  E <fl"~-O~i'O~J> E E <fl--O~i'O~J> 

by Lemma 8.4. If i<j, <~i, %>=0. Hence we find 

P-c-(Ectj~-E-~xj )-~-l'J[- E <~'(~J> <[~,o~j> 
flza+,j, 2 O~j> 

+ ~ <~+~J'~J> Z <~-%~J> 
IIeA+,j,2 <gj,~j> fleA+,j.1 <O~j,O~j> 

= 1 +mj+ nj 

as asserted. Conclusion (b) is proved in the same way. 

Proof of Proposition 8.2. We may assume that G is simple. First suppose that 
Ifll<le(fl)l for all fl in A +. By (6.5a) and Lemma 8.5a, 

A(az, v'(2)) (E~, + E_~,) = 2 p + (E~,, + E_~,) 
2 <2 + njc~j, ~j> 

<% ~> 

2<2,~> 2nj = 2 + 2mj + 2nj--<aj, c@ 

2 ()~, ~j> 
= 2 + 2 m j  (~zj, c@" 

2 <A, ~> 

By Lemma 8.5b 

(so(A o u-~) + p) (E=j + E_~,) = 
<~j ,  CXj> 

2 <~., czj> 

_ 2 ( 2 , ~ j >  

<% =j> 
2 <2, czj> 

+ + + p  (E~j E_~) 

2<6k--•,, O~j> 4- 1 +mj+nj 
<% ~j> 

F 1 +mj -n j +  1 +mj+nj 

(c~j, ~j) b2+2mj .  
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Hence A(aa, v'(2))[a=(so(A o u-1)+p)J , .  Now A(aa, v'(2))l~- =So2lb-.  Thus 
we must show s o A I~- + P Ib- = So 21~-. That  is, we want s o (6 k - 6,)Ib- + P I~- = 0. Now 

rn 

A ~ - = { f l ~ A [ [ ( f l , . ~ ) = 0  for j = l  . . . . .  m } w  ~ ( A [ s , , u A { s , z  ) 
i=1 

A:={cq .... (A.,s, lWA.,j,2). 
j= l  

The decomposi t ion of A[  is disjoint, but the decomposi t ion for A~ + is not. In fact, 
Lemma 8.3 gives 

~) (A.+j, 1 n A ~ ,  2) = {Be A~ [(B, , s )  = 0 for j -  1, ..., m}. 
j=l  

By Lemma  8.4, 

A+S, II~ - - A +  A +' =1~ - A +  - k,S. 2[b- and ..j, - k,S, 1[b- 

Hence 

Z Y, 
( f l ,  ~ s )  = o ( # ,  ~ s )  = 0 
for all  j for a l l  j 

=�89 Z f l=Plb- .  (8.1) 

This proves the proposi t ion in the case that I/~l < l,(fl)[ for all fl in A2. 
Since we are assuming that  G is simple, the only case in which Ifll > l"(fl)[ can 

occur for some fl in A, +, i.e., in which (4b) of Definition 4.1 can occur, has G = G  2 
and m = 2. As in the proof  of Proposi t ion 4.5 we see that  if el, e2 are the simple 
roots  of A +, then ]g212-----31el[ 2. We find A~-={/32 ,2e l+e2}  , A+={/~1,~31+e2, 
3 e l + e 2 , 3 e l + 2 e 2 } ,  . 1 = e l ,  . 2 = 3 e l + 2 e 2 ,  n x = l  , n2=O. We have 

("2 ,  fl) 1 

("2,  "2) 2 

if fl is in A + and fl is not  "1 or "2. Also 

( C a , e l ) =  3 (2e  i+e 2 , . 1 )  1 
("1,"1) 2' 

( e l + e 2 , " 1 ) =  1 

( " l ,  "1> 2'  ("1 ,  al> 

Hence we find 

(a) p + (E~, + E_~,)= 5, 

(b) 2 (6  k -  5.,  al > _ _ 3, 

("1, "1 ) 
(c) p + (E.~ + E_~)  = 1, 

(d) 2 (6  k -  6.,  a2)  _ _ 1. 

"2) 

("i,~i) 2' 

(3e~ + ~ ,  ~ )  3 

2" 
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N o w  
2 (2 ,  ct 1 ) 

' E 2=8 A(az,v(2))( ~, + E _ ~ ) = 2 p + ( E ~  +E ~) 2(2 '"1) ,  
-- (0{1 '  0{1 ~) ( ~ 1 '  0{1 

2(2, at)  (so(Aou-~)+p)(E~, +E_,~)=5 2 ( A , % ) _  5 2 ( 2 , ~ ) t _ 3 = 8  , ) ,  
((Xl' 0~1) ((Xl' 0{1 ) (~1 (Xl 

A(oa, v'(2))(E,,: +E =~)=2p+(E~,~ +E_~,) 2(2'~2) 2 2(2'~2) 

(so(A u - I )+p) (E~:+E_~: )=I  2"A'~2~-  1 ~ ' ~ '  2(2,~ 2) o ~-1=2 
2 (2 ,%)  
(~:,~)" 

Comparison of these formulas completes the proof of Proposition 8.2. 

9. Image of S "Far from the Walls" 

With 2 integral and dominant with respect to A~, let S~(x, I) be the Szeg6 kernel 
defined by (6.1) with parameters 2 and v= v(2), with v(2) given by (6.5). The Szeg6 
mapping, which is also denoted S~ and is defined by (6.4), carries C~ aa) into 
the kernel of ~ in C*(G, %). Let Q~ be the right regular representation of G on 
C ~ (G, za) and ~ be the subspace of K-finite vectors in the kernel of ~ in C ~ (G, za). 
Then (Q~, ~ )  is a representation of g. 

(9.1) Definition. The integral parameter 2 is said to be far from the walls if 
2 - ( Q )  is A~--dominant for all Qc_A, +. (Here ( Q ) =  ~ . )  

cL~Q 

We now quote more precisely the three results mentioned in w 1 that we need. 
If A = 2 - 6  k+6.  is regular and A+-dominant, we let (hA, H a) be the discrete 
series representation with Harish-Chandra parameter A, as in w 1. 

(9.2) Theorem (Schmid [19], Hotta-Parthasarathy [10, p. 156]). I f 2  is far from 
the walls, then the representation (QxIK, ~x)  splits into a direct sum Zt~m2~)  % 
with 

m~(p) < ba(#) = ~ det (s) Q(s~ + 6k) - (2 + 6k)), 
s~WK 

where Q(~) is the number of distinct ways that ~ can be written as a sum of elements 
of 3:. 
Remarks. In Hotta-Parthasarathy [10] the unnecessary condition that G be linear 
is imposed. The proof in [10] goes through without this condition since ~ is then 
the first term of the elliptic complex E', of [10, p. 153]. This complex is defined 
for all 2 far from the walls. The proofs in w 5 of [10] go through without change. 

(9.3) Theorem (Hecht-Schmid [8], Enright [3]). Suppose that the integral param- 
eter 2 is far from the walls and that A = 2--(~ k-~- r is regular and A +-dominant. 
Then the representation ~zal r of K splits as 

with ba(kt) as in Theorem 9.2. 
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(9.4) Theorem (Schmid [19], Hotta-Parthasarathy [10, p. 164]). I f  the integral 
parameter 2 is far from the walls and if A = 2-(~k -~ (~n is regular and A +-dominant, 
then the subspace of square-integrable elements of (Qx,)fa) is equivalent as a 
representation of 9 with the representation of 9 on the space of K-finite vectors 
of (na, HA) �9 

(9.5) Corollary. If  the integral parameter 2 is far from the walls and if A = 2 - 6 k + 6, 
is regular and A +-dominant, then (Qx, i f  x) is equivalent as a representation of 9 
with the representation of 9 on the space of K-finite vectors of (7~a, HA). 
Proof. The point is to show that every member of )fix is square-integrable. Theo- 
rems 9.3 and 9.4 show that z, occurs in the space of square-integrable elements 
with multiplicity at least b~(p), and Theorem 9.2 shows that z, occurs in all of 
) fx  with multiplicity at most bz(/t). Since all elements of ) f z  are K-finite, the result 
follows. 

(9.6) Corollary. I f  the integral parameter 2 is far from the walls and if A = 2 -  6k + 6, 
is regular and A +-dominant, then the image under the Szeg6 mapping Sa of the space 
of K-finite vectors in C~176 ~ )  is the full K-finite kernel ) f z  of @ in Coo(G, zx). 
Therefore S x is a g-intertwining operator from the K-finite subspace of W (a x, v'(2)), 
where v'(2)= 2 p + -v(2), onto (Q z , ) fx)  and exhibits the K-finite vectors of (ztA, ) fa )  
as a g-equivariant quotient space of the K-finite subspace of W(ax, v'(2)). 

This corollary is immediate from Corollary 9.5 and Theorem 6.1 since we 
know that S x is not the zero operator. We have thus proved Theorem 1.1 in a 
particularly sharp form far from the walls. 

10. Tensoring with Finite-Dimensional Representations 

Theorem 1.1 was proved in w 9 when 2 is far from the walls. In oversimplified form 
the idea in the general case is that everything can be shifted compatibly from a 
parameter 2 +/ t  far from the walls to a general parameter 2 by forming suitable 
projections of tensor products with finite-dimensional representations. This 
technique was introduced by Zuckerman [25] in a general context, and a specific 
result of his concerning discrete series will be used in Theorem 10.8. The other 
machinery concerning tensor products will be developed in this section, and 
Theorem 1.1 will then be proved at the end. 

Let 2 be an integral form that is A~--dominant. We retain the notation ofw167 8-9. 
Fix # to be the highest weight of an irreducible finite-dimensional representation 
of G. Let 0t, U) denote a finite-dimensional representation of G with lowest 
weight - # .  We make repeated use of the following lemma. 

(10.1) Lemma. z~+u| contains the K-type z~ with multiplicity 1, and its 
other K-types have highest weights 2+7  with 7 a sum of elements of A +. I f  c~+u 
is a nonzero highest weight vector for z~+ u and v o is a nonzero lowest weight vector 
for r~, then the z~ projection of ~ + u| v o is a nonzero highest weight vector for zz. 

Remarks. All but the last assertion of the lemma is well known, but we reproduce 
part of one standard proof of the remainder in order to obtain the last assertion. 
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Proof Let #o . . . .  , #d be the weights of nlK arranged in increasing order and re- 
peated according to their multiplicities, and let v o . . . .  , v a be a corresponding basis 
of weight vectors. Let M i be the cyclic space of th~+u| in the tensor product, 
and let Vii= ~ Mj. Then V o __ ... ___ Vd___ Vd+ 1 ----0, and it is clear that the root vectors 

j>i  
corresponding to d~ carry c~+u| i into Vi+ 1 . It follows readily that 

VJV~+I=0 or za+u+u, (10.1) 

and correspondingly that 

zz +.~| = ~niz~+u+u, (10.2) 

with each n~=0 or 1. An elementary argument with characters shows that n o = 1. 
Hence Vo/V 1 = ~ 4:0. Therefore ~b~+u| 0 has nonzero projection on the v a space. 
Since its weight is 2, it projects to a nonzero highest weight vector. This proves 
the lemma. 

For the remainder of this section we shall assume that # is chosen so large 
that 2+kt--6k+6 . is regular and A+-dominant and that 2+/~ is far from the 
walls in the sense of Definition 9.1. For now, we do not require that 2 - 6  k + 6, 
itself be A +-dominant. 

We shall use Lemma 10.1 to introduce the shift that carries J fx+"  to 3r ~. Let 

Qa : CO~ G, z~+u)| u--* c~(  G, z~+u| (10.3) 

be the G-equivariant map defined by 

Ql( f |  (g) = f (g) |  v 

for f in C~ ra+,) and v in U. Let Px: V~+u| be a nonzero K-inter- 
twining operator;  Pz exists and is unique up to a scalar factor by Lemma 10.1. 
Define 

Pz(f | (g)= Px(Q,(f | (10.4) 

for f in C~(G, zz+u) and v in U, and let 

~ = p,~(~,- +,,@ tr).  (10 .5 )  

(See w 9 for the definition of ovfz +u.) 

(10.2) Proposition. (a) Pa carries 31fz+u| into Wz  and is a o-intertwining 
operator from (Q ~ + u | W z + u| U) to (Q z , ~r 

(b) The image ~ of ~ ~+ u| U under P~ contains the K-type za with multiplicity 1, 
and its other K-types have highest weights 2 + 7 with y a sum of elements in A +. 

(c) ~ z  has an infinitesimal charcter. 

Remark. In Theorem 10.8 we shall see that ~z  is independent of # if 2 satisfies 
certain properties. 

Proof (a) It is enough to show that @(P~(f |  whenever f is in ~,'r z+u and 
v is in U. Since/3 is G-equivariant from C~(G, zz+u)| to C~ ~z), it is enough 
to show that ~(Pz( f |  (1)=0. This expression will be 0 because of the map P 
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in the defining formula (2.9) for ~.  In fact, the map ~ o P~ followed by evaluation 
at 1, as a map from ~,~ff~+u| to the representation space for ~- (see (2.6)), is a 
K-intertwining operator. Every K-type of ~ff~+u is of the form r e with ~ = 2 + p + 
and with V a sum of elements of A +, by Theorem 9.2, and zx+u has multiplicity 1. 
By Lemma 10.1 applied to 2+ 7, we obtain a decomposition 

Jf~+~'| + ~ z~+~, (10.6) 

with each ~,' a nonempty sum of members of A +. Since, by (2.6), every K-type of 
z~- is of the form zz_a with/ / in  A +, we see that ~(P~(f|  (1)=0. 

(b) Equation (10.6) proves the assertion about K-types, provided we show 
Pz (~ space):#0. We saw in w 6 that there is some fo in ~ + u  with fo(1) =~0. It then 
follows from the transformation property for Coo(G, ~+,) that evaluation at 1 
carries ~ + ~  onto V~+u and hence carries ~f~+" |  onto V~+u| U. Composing 
with Pz, we see that the map F ~ F ( 1 )  is a K-intertwining operator carrying 
~z+u@ U onto V~. By (10.5), this map must annihilate all but the ~ space. Hence 
it must carry the ra space onto V~. Therefore Pz (T~ space) 4:0, and zz does appear 
in ~ .  

(c) The K-finite dual space (~a)* of ~z  is a g-module. For v in Vx* let 6~(f) = 
(f(1) ,  v). Then 6~ is in ( ~ ) *  and we obtain a K-homomorphism of V* into (~)*.  
The image is not 0 by the argument for (b) above. I f f  is in ~a  and U(g) Vz* maps f 
to 0, then f = 0  by real analyticity o f f  Hence Vx* is U(g)-cyclic in (~)*.  Since V~* 
appears with multiplicity 1, it follows that ( ~ ) *  has an infinitesimal character: 
z. u = Z(z) u for all u in ( ~ ) *  and z in the center ~e of U(g). If u is in ( ~ ) *  and f 
is in ~ ,  we have 

(z .f, u) = ( f ,  'z. u) = (z('z) f, u) 

and 

(z .  f -  Z('z) f u) = 0. 

Since u is arbitrary, z f - -  Z(~z) f. The proof is complete. 

The next step is to study tensor products of nonunitary principal series re- 
presentations with finite-dimensional representations. To describe matters 
we introduce a class of representations wider than the nonunitary principal 
series. If (~, H e) is a finite-dimensional representation of MAN, let ye be the space 
of all C ~ functions f :  G-o He such that 

(i) f(bg)= r for g in G and b in MAN 

(ii) f is right K-finite, 

and define 
d 

(W(r X) f)  (g)= ~-~ f (g exp tX)l,= 0 

for X in g and f in ye. Then (W(~), ye) is a representation of g. For a special case, 
let a be an irreducible representation of M, let v be a complex-valued real-linear 
form on a, and put (a |  "~~ aa(m). The representations a| describe 
all irreducible representations of MAN, by [1, p. 186]. Moreover, W(a| is 
the infinitesimal version of the nonunitary principal series representation W(a, v). 
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(10.3) Lemma. Let (4, H r be a finite-dimensional representation of MAN,  
let H 1 ~ H  ~ be an MAN-invariant subspace, and let 41 and 42 be the associated 
representations of M A N  on H 1 and H/Ht,  respectively. Let p: H--+H/H 1 be the 
quotient map, and regard Y~ as a subspace of Y~. For f in Yr define 

P(f) (g) = p(f(g)). 

Then p is a g-intertwining operator of Y~ onto y~2 with kernel Yr 

Proof It is enough to prove that p(Yr yr the rest being obvious. On the level 
of representations of M, we can regard H 2 = H/H 1 as a subspace of H, writing 
H = H I @ H  2 and 41u=~l~@~21M. I f f  is in Yr we look upon f ix  as a function 
from K into H 2 ~ H  satisfying f (mk)= ~z(m)f(k). Define g(b k)= ~(b)f(k). Then g 
is in Y~ and p (g )= f  Hence p maps onto Y~2. 

(10.4) Lemma. Let (~, H r be a finite-dimensional representation of MAN.  Let 

H r = H 1 ~ H 2 D"" ~ H a ~ {0} 

be a composition series for (~,H ~) with ai| i the corresponding irreducible re- 
presentation of M A N  on Hi~Hi+ 1 . I f  4i denotes the restriction of ~ to Hi, then there 
corresponds a chain 

Yr = Y~' ~ Yr ~ . . .  ~ Yr ~ {0}, 

and the representation of g on Ye'/Yr is infinitesimally equivalent with W(oi, v~). 

Remark. We follow [11] in the terminology "chain" and "composition series." 

Proof Iterate Lemma 10.3. 

(10.5) Lemma. Let (~,H ~) be a finite-dimensional representation of MAN,  
and let (z, U) be a finite-dimensional representation of G. Set ]~=Zt]MAN. For f 
in Yr and v in U define 

Q2(f | (g)= f (g)| v. (10.7) 

Then Qz : Y ~ |  yr174 defines a one-one g-intertwining operator of W(4)| 
onto W(r174 

Proof An obvious computation shows that Q2 carries Y~| into Y~| and is 
a g-intertwining operator. For f in Y~| let 

(Q3 f )  (g) = (I| -1) ( f  (g))- 

Then Q3 ~ Q2 is the identity on Y~| Moreover, i f f  is in Y~| let {vl} be a 
basis of U and define functions f by 

f(g) = ~ f/(g)| v,. 

Then each f~ is in Y~ and it follows readily that Q2 ~ Q3 is the identity on yr174 

(10.6) Proposition. Let 4 = a|  be an irreducible finite-dimensional representation 
of M A N  on H, and let (zt, U) be a finite-dimensional representation of G. I f  4| 
has a composition series 

H |  I ~ H  2 ~ ' ' '  ~Ha~{O} 
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with irreducible quotient representations ai| i on Hi~Hi+ 1, then W(a, v)| has 
a corresponding chain, and the respective quotients are infinitesimally equivalent 
with the W(al, v i) for l <_i<_d. 

Proof Combine Lemmas 10.4 and 10.5. 

We have studied tensor products of finite-dimensional representations with 
the representation on the space ovf z and with nonunitary principal series. Next 
we study the effect of tensoring on the Szeg6 kernel. 

(10.7) Proposition. I f  the integral parameter ). is such that A = 2 + 6 k - - 6  . is 
A +-dominant and A - 6 k = 2 - - 6 ,  is A[-dominant, then the Szeg6 kernel S a carries 
W(aa, v'(2)) into ~a. 

Remark. So far, we have not proved that ~z is independent of #. We do not prove 
this until Theorem 10.8. 

Proof Again introduce # and (r~, U). Let ~ and fl be the representations a~+,| v'(2 +/~) 
and 1rlMAN, respectively, of MAN.  By Corollary 9.6, S~+ u maps Y~ onto 3/{' z+u. 
By (10.5), ~(Sz+u| maps Y~@ U onto ~a. On the other hand, if f is in Y~ and 
v is in U, (10.4) and (10.7) give 

Pa (S x +~, f | (g)= Pz ( j c x + u(k ) f (k-  ' g) dk | v) 
K 

= nz( ~ cz +,(k)| ( f (k-1  g) |  g) v) dk 
K 

= ]" ca(k ) Pa(f(k- lg) |  - '  g) v) dk 
K 

= j ca(k) PaQ2(f| (k -x g) dk. 
K 

Here Qz( f |  is in y~| by Lemma 10.5, and we conclude that the operator 
Z defined on yr174 by 

Z ( f )  (g)= ~ ca(k ) Pz(f  (k -~ g)) dk (10.8) 
K 

carries Yr174 onto ~z. 
Let v o be a nonzero lowest weight vector for ~, taken relative to the Cartan 

subalgebra t. Let u = u , .  . . . .  u,~, be the Cayley transform with u,j defined by (5.7). 
A computation in SL(2, C) gives 

rc(u,j) = exp n(E,)  exp n(log (]/2) H~j) exp ~ ( -  E_~). (10.9) 

Since v o is a lowest weight vector, we can apply (10.9) to see that 

n(u) v o = e exp n(E,~ + . . .  + E,,,) v o = c v o + higher weight vectors, (10.10) 

where c is the nonzero constant 

In view of (10.10) and Lemma 10.1, we see that 

C p P~(~b~+,| Vo)=cPa((o~+u| 4~a, (10.11) 

where c' ~:0 and ~b a is a unit highest weight vector for the c z subspace of cz+u| K. 
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We return to the operator Z, given by (10.8). For f i n  y,~| define 

f (k)  = ~ (r174 -a k), c~) (c~x+,| Vo) dm. (10.12) 
M 

A change of variables shows that 

f (m k) = (~(m)| ~(m)) f (k), 

so that we can extend f t o  G and obtain a member of y~| by defining 

f (b k) = ~ | f (k) 

for b in M A N  and k in K. Thus Z is defined on f .  Under the hypotheses of the 
proposition, we shall prove that 

S a f(g) = c" -~ Zf(g) (10.13) 

with c":~0, and this equality will finish the proof since the image of Z is ~a. 
For now, let us observe that (10.13) holds at g = 1. In fact, first we note that 

Pa ( f  (k)) = c" f (k) (10.14) 

because 00.12) and (10.11) give 

Pa(f(k)) = ~ ( f  (m -1 k), qba) Pa((za+u(m)| (q~+,| Vo) ) dm 
M 

= ~ {f(k), aa(m ) qba) "ca(m ) Pa(~a+u| Vo) dm 
M 

=c' ~ ( f (k) ,  az(m ) 4),~) za(m) cpzdm 
M 

=c' ~ ( f (k) ,  aa(m ) r aa(rn) c[)adm 
M 

=c"f(k)  

by Schur orthogonality. Combining (10.14) and (10.8), we see that (10.13) holds 
for g = 1. Since S a is a g-intertwining operator; the proof will be complete if we show 
that f---~ Z f  is a g-intertwining operator. This step will require some preparation. 

The Cayley transform u carries t c to the Cartan subalgebra [ c defined in w 8, 
and hence rc(u)v o is a weight vector of n relative to If.  Its weight is - g o  u -1. 
Let #1 . . . .  , pa be the weights of (n, U) relative to b c, repeated according to their 
multiplicities and arranged in increasing order relative to T +. Let v~,..., v d be 
corresponding nonzero weight vectors; we can arrange that v~=n(U)Vo is a 
member of this list. Let wj=tka+, |  let W~ be the M A N  cyclic space for wj 
within the space H~+u| of ~| and let Uk= ~ Wj. Then we have 

j>=k 

II ~_ U2 ~_ ... ~_ Ua~_ {O}. 

The Lie algebra 1t operates trivially on ~bz+u and increases the weight of vj relative 
to T+; thus ~@fl(n)Uj=_Uj+ 1. Also root vectors corresponding to T + carry 
U/into Uj+ 1 . It follows that M A N  operates irreducibly on Uj/Uj+ 1 if UHU~+ 1 is 
not O. That is, 

U/Uj+t=O or aj@v;. 
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Setting Yj= {f~ Yr174 Us for all g}, we see from Lemma 10.4 that 

Yj/Yj+I=O or Y"~| 

as g-modules. 
If i is the index with v~=c~+,| v o and i f f  is in ya~| then f takes its 

values in Wi___ Ui, and hence f is in Yi. We shall identify the parameters (a t, vi). 
In fact, for any j, our arguments above give the highest weight of aj| as 

s o A (a2, v j) = s o A (a~ + ~, v' (2 + #)) + (weight of n), (10.15) 

and the weight ofrt is - p  o u -1 +Q o u -1 with Q a sum of members of A +. More- 
over, Q is 0 if and only if j = i. Applying Proposition 8.2, we see that the right 
side of(10.15) is 

=(A +#)  o u -1 + S o p -  # o H -1 -] . -Q o 1 1 - 1  

= A  o IA - 1  +Sop+ Q o u -1 (10.16) 

= soA(ax, v'(2)) + Q o u-1. (10.17) 

Taking j =  i, we see from (10.17) that ailMo ~--aXlMo and 

vi= v'(2). (10.18) 

With this much information, we can see that f ~ f +  Y~+I is a g-intertwining 
operator. In fact, it is easier to work on the G-level and differentiate afterward. 
Denoting the operation of G by subscripts, we are to compare (fg)" with (f)g. 
With the Iwasawa decomposition G = A N K  as g = emg~n x(g), we have 

(fg)'(k) = f ~| <fg(k), az(m ) ~bz> (q~z+.| %) dm 
M 

= ~ ~| <f(kg),  a~(m) Cz> (q~z+~| %) dm 
M 

= ~ ~| e *'~z)H~kg) <f(~c(kg)), a~(m) Cz> (qS~+~| %) dm 
M 

= e'" <z) mkg)f(~(k g)) 
and 

(f)g(k) = f (k g) = r | fl(e n(k*' n) f (K(k g)) 

=_- e ~'Hckg) f (~(k g)) mod U i +1. 

By (10.18), we therefore have 

( f) ,(k)  =- (fg)'(k) mod U i +1. 

Differentiating in g and applying Lemma 10.3, we conclude that the map 

f ~ f  + Yi+l 

of Y'*| into Y~/Y~+I is a g-intertwining operator. Now Z is a g-intertwining 
operator, and hence f ~ z f + z ( Y ~ + I )  is a ~-intertwining operator from Ya~| 
to ~Z/Z(Yi+l). 

To complete the proof, we shall show that Z(Y~+I)=0. It is enough to show that 
the value of the Casimir operator ~2 on 9 ~x (Proposition 10.2c and Corollary 3.2) 
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is different from the value of t2 on W(aj, v) if j > i +  1. Corollary 3.2 gives the 
value on ~a as IA[2-[612, since Proposition 10.2a says ~z~_~z .  The value on 
W(aj, v j) is 

IA(aj, v) - -p l  2 - - Ipl  2, 

which by (10.16) is 

= Iso(A o u-l)  + p + so(Q o u-1) _ p 12 _ Ip I 2 

---IA+QIZ-[pl z. 

Since A is A +-dominant, (A, Q) is >0. Therefore 

IA -I-QI 2 - I P l  2 > IAI 2 -  IPl 2 

as soon as Q is not 0. Therefore the values oft2 do not match and we have Z(Y~ + 1) = 0. 
The proof is complete. 

The final step is to bring in tensor products with discrete series. We obtain 
the theorem below as a sharp form of Theorem 1.1, in view of Theorem 6.1'. 

(10.8) Theorem. Suppose the integral parameter 2 is such that A=2+3k- -6  . is 
A +-dominant and A - 3 k is A +-dominant. Then 

(i) ~a is canonically defined, is independent of#, and is irreducible, 

(ii) S~ carries W(tr~, v'(2)) onto ~ ,  and 

(iii) ~a contains z a with multiplicity 1, and r a is the lowest K-type in :~a. 

Moreover, if (A,  ~) >0 for all ~ in d +, then ~a is infinitesimally equivalent 
with the discrete series representation (Tza, Ha). 

Proof. By Corollary 9.6, ~ a + u  is irreducible and is equivalent with (rCA+ u, H A+u) 
if # is sufficiently large. Form (~t, U) with lowest weight - #. Zuckerman [25] has 
proved that the image of the projection of H a +u| U according to the infinitesimal 
character corresponding to so(Aou-1)+p is irreducible if A is A+-dominant 
and is infinitesimally equivalent with rr a if A is also nonsingular. Now HA+u| 
is isomorphic with Jga+u| and the image of the Szeg~5 kernel also has in- 
finitesimal character corresponding to so(Ao u-~)+p, by Proposition 8.2. By 
Proposition 10.7, the image of the Szeg6 kernel is contained in ~z, and by 
Proposition 10.2c ~a  has an infinitesimal character. Hence ~a  has infinitesimal 
character corresponding to so(A o u -~) + p and is contained in the image of the 
projection according to this infinitesimal character. By Zuckerman's irreducibility 
result, we must have equality. Then ~z  must be irreducible, and Sz must map 
onto it. That is, ~a  is canonical. Result (iii) is by Proposition 10.2b. The final 
statement of the theorem is now clear. 

Remark. The hypothesis in both Proposition 10.7 and Theorem 10.8 that 
A - 6k = ), -- 6, be A~-dominant was made in order to guarantee that the eigenvalue 
of the Casimir operator on ~a  be [AI2-1612. By means of Corollary 3.9 of 
Wallach [23], it is easily seen that this fact persists for all A+-dominant 2. The 
proofs of Proposition 10.7 and Theorem 10.8 go through unchanged for the 
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wider class of 2 if this observation is made. Therefore Proposition 10.7 and Theo- 
rem 10.8 are valid without the additional assumption that 2 - 6 ,  is A]-dominant. 

11. Analog of Harish-Chandra's q/A-Function 

In this section we describe an alternate, and as yet unsuccessful, approach to the 
proof of Theorem 1.1. We start with a generalization of Harish-Chandra's 
~A function for holomorphic discrete series. With the parameter 2 chosen so that 
A=2+6k--6 . is A+-dominant and nonsingular, introduce the member fz of 
C~176 a~) defined by 

f~(k)= ~ za(m) -1 (z~(mk) (~, (a~) (o~dm. 
M 

Then f~ is K-finite. Extend it to a function on G as in w 6. 
We compute a particular K-finite matrix coefficient for the representation Q~ 

in the image of the Szeg6 kernel S a. The coefficient is 

~ ~(g) = ( Q a(g) S~ f, 6), 

where f is f~ and 6 is the K-finite linear functional on the image of S z given as the 
composition of evaluation at 1 followed by inner product with ~a. If 4)~ is a unit 
vector, easy computation gives 

~Oz(g) = S e~n(k*) (zzOc(kg)) c~z, cPz) (zx(k) 0~, Oz ) dk. (11.1) 
r 

Suppose that one could prove 

(i) q;z is square-integrable on G and 

(ii) the image of S~ is irreducible. 

Since ~z is ~e-finite and right-and-left K-finite, it would follow from Harish- 
Chandra's theory that the image of S z is infinitesimally equivalent with the cyclic 
space for ~0 z, which in turn would be an irreducible subspace of LZ(G). Then it 
would have been proved that the image of S z is an irreducible discrete series 
representation. Proposition 8.2 would show its infinitesimal character matches 
that of (n A, HA), and we would know it contained the K-type zx, since S z fz has 
that K-type. These facts would substantially prove Theorem 1.1. 

Partial results in this direction have been proved by the authors in some 
special cases. For  SU(2, 1), see [24]. 

12. Groups of Real-Rank One 

We assume in this section that rank G = rank K, that G has a simply-connected 
complexification G c, and that G has real-rank one. That is, dim A = 1 in any Iwa- 
sawa decomposition G = ANK. We shall show how irreducible images of Szeg6 
kernels account for all of the reducibility of the unitary principal series of G. 

Temporarily fix a system A + of positive roots. We begin with four easy results 
that give interpretations of the real-rank one data. 
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(12.1) Lemma. All the elements of A+, have the same length. 

Proof If c~ and fl are in A, +, then R(E=+E_~) and R ( E a + E  t~ ) are maximal 
abelian subspaces of p. Consequently there is an element k in K with 
Ad(k ) (E=+E, )=c(Er  Possibly by interchanging ~ and fl, we may 
assume that [c[< 1. By Lemma 3 of [12], the eigenvalues of ad(E, + E_=) on g are 
bounded by 2 in absolute value, and 2 is achieved, say on a vector X. Similarly 
the eigenvalues of ad (Eo+E a) are bounded by 2. But we readily compute that 

[E~ + E_t~, Ad (k) X] = 2 c -1 Ad (k) X, 

and we conclude that IcL = 1. Then (2.1) shows that I~1 = I/~i. 

(12.2) Corollary. I f  ~ in A, + is simple, then ~ is a fundamental sequence of positive 
noncompact roots, in the sense of  Definition 4.1. 

Fix ~ as in the corollary, and construct the corresponding Iwasawa decomposi- 
tion as in w 5. 

(12.3) Lemma. M = M o Z ,  where Z is the center of G. 

Proof We may assume G is simple. By Proposition 5 of [12], either M is connected 
or G_~ SL(2, R). The lemma is clear in both cases. 

(12.4) Lemma. Let 2 be integral and A~ dominant, and let A = 2 + a k - - 6  .. 7hen 
W(az,  v'().)) is in the unitary principal series if and only if (A,  ~)=0.  

Proof By (6.5) and Lemma 8.5, 

v'(2)(E=+E ,)= 2 p + (E~ + E_=) 

= p + (E~ + E_~) 

= p + (E~ + E _,,) 

2n 1 

2<~+a~-6.,=> 

2(A,~) 
<~,~>" 

Since 2 is integral, v ' = p  + + i #  with/~ real on a if and only if (A, ~) =0.  

To proceed, we shall adopt in succession two points of v iew-f i r s t  that we 
want to imbed a class of "limits of discrete series" in unitary principal series, 
and second that we want to decompose all reducible unitary principal series by 
means of Szeg6 kernels as sums of "limits of discrete series." For a special case 
of these results, see w 8 of [14]. 

For the first point of view we start with A integral such that A is orthogonal 
to each member of a nonempty set of noncompact roots and to no compact roots. 
Introduce A + so that A is dominant with respect to A +. The data (A, d +) determine 
one representation that we shall imbed. 

(12.5) Lemma. / f  the integral parameter A is A+-dominant and is orthogonal to 
at least one noncompact root and to no compact roots, then there is exactly one 
in A + such that (A,  ~) = O, and ~ is simple. 



198 A.W. Knapp and N.R. Wallach 

Proof Since A is dominant, the set of roots in A + orthogonal to A is generated 
by the simple roots in the set. All of these must be noncompact. If there is more 
than one, two such cannot be orthogonal since they would be strongly orthogonal 
and would exhibit the real rank of G as greater than one. If they are nonorthogonal, 
their sum is a compact root, and A is orthogonal to it, contradiction. This proves 
the lemma. 

With ~ as in Lemma 12.5, let 

A +' =P,A + =(A + - {ct}) w { - a } .  (12.1) 

Then A +' is a new system of positive roots, A +' has the same positive compact 
roots as A +, and A is dominant with respect to A +'. The data (A, A +') determine 
a second representation that we shall imbed. Let 5', be half the sum of the positive 
noncompact roots for A +' 

Since ~ is simple in A + and - ~  is simple in A +', Corollary 12.2 allows us to 
apply our theory to (A +, ~) and to (A +', - ~). If G = A N K  is the Iwasawa decomposi- 
tion associated to (A +, ~), then G = A N K  is also the Iwasawa decomposition 
associated to (A +', - ~), since E_~ + E~ = E~ + E _,. 

(12.6) Theorem. Suppose the integral parameter A is A +-dominant and satisfies 
( A , ~ ) = 0  for a noncompact simple root ~ and (A,  fl~:~O for all other positive 
roots. Define d +' by (12.1) and let 

2 = A - - f k + 6  . 

2 ' = A - - g k + 6 ' = 2 - - ~ .  

Then 2 and 2' are integral and A~-dominant and tr ~ is equivalent with tr z,. Moreover, 
the unitary principal series representation W(ax, p +) is infinitesimally equivalent 
with the direct sum of the K-finite images of S~x. a +) and S~, z + ,). 

Proof Since G c is simply-connected, 6 is integral. Thus - - 6 k + 6 , = - - 2 6 k + 6  is 
integral and 2 is integral. The form 2 is A~--dominant since 6, is and since A - 6  k 
is (A being A~- nonsingular and G being linear). Similarly 2' is integral and A~-- 
dominant. Now 2' = 2 -  ct shows 21b- = 2'lb-, where b-  is the Cartan subalgebra 
of m given by (5.8). Since 2' and 2 differ by a root, their associated characters are 
equal on the center Z of G. Then Lemma 12.3 and Proposition 5.5 show that 
tr~ and a~, are equivalent. The domain of S~z ' z + ~ is W(ax, p +) by the proof of Lemma 
12.4. Since W(trz, p+) is unitary, the K-finite image of S~z, 4+) imbeds in W(a~, p+). 
Now p+ is insensitive to the change from A + to A +', and thus S~z, ' 4+ ,) has domain 
W(az,, p+)~ W(a~, p+). Then the K-finite image of S~z, ~+,) imbeds in W(az, p+). 

In any ordering compatible with A +, Theorem 10.8 shows that zz is the lowest 
K-type in the image of S~z,a§ ). In particular, za occurs and zz ,=zz_ ,  does not. 
Symmetrically z z, occurs in the image of Stz, ' 4+,) and zz does not. Since by [1] 
W(trz, p+) decomposes into at most two irreducible pieces, we obtain the theorem. 

Turning to the completeness theorem, we note that the case A = 0  when 
G=SL(2,  R) in Theorem 12.6 accounts for the only reducibility of the principal 
series of SL(2, R). Thus we may assume that M is connected, by Proposition 5 
of [12]. For  this theorem we regard M A N  as fixed, obtained in the standard way 
from a noncompact root  + ~. Let b-  be the Cartan subalgebra of m given by 
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(5.8), and fix a system 7 j+ of positive roots of m. Let p -  be half the sum of the 
positive roots of m. 

(12.7) Theorem. Suppose M is connected. Let cr be an irreducible representation 
of M with highest weight A -, and suppose that the unitary principal series representa- 
tion W(r + +ilt) is reducible. Then #=0.  Moreover if A denotes the extension 
of A -  + p-  to t c by 0 on RH~ and if A + is chosen to make A A +-dominant and to 
make ~, say, positive, then 

(i) cr is simple 

(ii) (A, cr =0,  and (A, fl) =I=0 for all other positive roots 

(iii) A is integral 

(iv) 2 = A - 6  k + 6, has the property that aa is equivalent with a. 

Consequently the reducibility of W(a, p+) is accounted for by Theorem 12.6. 

Proof. By Theorem 5 of [15] and the remarks after it, the reducibility implies 
that #=0 ,  that ( A - + p - ,  f l ) = 0  only for f l= +~, and that exp {(A-+p-) (H)}  = 
+ 1 for any element H in b- with exp H=7-=exp ~ i (E~+E, ) .  

Since (A, f l ) =  ( A - +  p- ,  fl) for all fl, (ii) is immediate and (i) follows from 
Lemma 12.5. To prove (iv) we are to show that 21~_ = A - .  That is, we want p -  = 
( - 6 k + 6,)ls - .  But this is simply formula (8.1), which is valid since (i) shows that M 
has been constructed from a fundamental sequence. 

We are left with (iii). A computation in SL(2, R) shows that the element 7 is 
also given by 7=exprtiH~. For any root fl let 7~=exprciH~ and f l=-p~f l .  
Suppose ( f l , ~ ) > 0  and f14=~. Then Lemmas 1 and 3 of [12] show that either 
2(fl, 

- 1 and/~+f i=~  o r / J ~ )  =0  and �89 (fl+/~)=~. In either case it follows 
2(/3, 

Jill z Ifll 2 

that 7~7~=7. A computation in SL(2, C) shows that 7}=1, and so 7=TpT~q= 
exp rc i (He-  H~). The element zt i(H a -H~)  is in b-,  and therefore 

(A-  + p-)  (rci(Hp- H~)) is in 2 rciZ. 

2 ( A -  +p-, f l> . 
That is, 1fll2 ts an integer. For the remaining roots fi, we note that 

( A - + p - , f l >  . 
( A -  + p- ,  ~) --0 and that [j~l 2 IS an integer if (]3, ~> =0 since fl is then 

a root of m. Consequently A = A - +  p -  is integral in the algebraic sense. Since 
G c is simply-connected, A is integral. The proof is complete. 
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Notes Added in Proof. (1) J. Carmona has discovered a proof of Proposition 4.5 that avoids the case-by- 
case check for B~, Cn, and F4, but not for G2. 

(2) The second named author has recently carried out the program of w 11 in the case of real- 
rank one. 


