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Abstract

D.E. Littlewood proved two branching theorems for decomposing the restriction of an irred
finite-dimensional representation of a unitary group to a symmetric subgroup. One is for rest
of a representation ofU(n) to the rotation groupSO(n) when the given representationτλ of U(n)
has nonnegative highest weightλ of depth� n/2. It says that the multiplicity inτλ|SO(n) of an
irreducible representation ofSO(n) of highest weightν is the sum overµ of the multiplicities ofτλ
in theU(n) tensor productτµ⊗ τν , the allowableµ’s being allevennonnegative highest weights fo
U(n). Littlewood’s proof is character-theoretic. The present paper gives a geometric interpre
of this theorem involving the tensor productsτµ ⊗ τν explicitly. The geometric interpretation ha
an application to the construction of small infinite-dimensional unitary representations of ind
orthogonal groups and, for each of these representations, to the determination of its restrict
maximal compact subgroup. The other Littlewood branching theorem is for restriction fromU(2r)
to the rank-r quaternion unitary groupSp(r). It concerns nonnegative highest weights forU(2r)
of depth� r, and its statement is of the same general kind. The present paper finds an ana
geometric interpretation for this theorem also.
 2003 Elsevier Inc. All rights reserved.
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Introduction

In the 1940 edition of his book [Li], D.E. Littlewood obtained a branching theo
describing how certain irreducible representations of a unitary groupU(n) reduce upon
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restriction to the subgroupSO(n) of rotation matrices. The statement was combinato
and the proof was character-theoretic. There was no hint of any special represen
theoretic significance to the reduction he obtained. In particular, the only subspa
the given representation space that the reduction pointed to canonically were the i
subspaces corresponding to each equivalence class of irreducible representations oSO(n).
In this paper we shall see that the reduction can be recast in a concrete and natura
that exhibits a finer canonical decomposition than the one into isotypic subspaces; th
decomposition will give a direct explanation for the relationship between the bran
that Littlewood was addressing and the tensor products of representations ofU(n) that are
implicit in the statement of his theorem.

To state Littlewood’s theorem, let us consider dominant integral formsλ for U(n).
These are linear functionals on the diagonal subalgebra of the complexified Lie a
gl(n,C) of U(n). If ej denotes evaluation of thej th diagonal entry of a diagonal matri
the linearity ofλ means thatλ equals

∑n
j=1aj ej for suitable complex numbersaj . The

condition “dominant integral” means thata1 � · · · � an and that theaj are integers. We
shall often writeλ= (a1, . . . , an). Forλ dominant integral we denote byτλ an irreducible
representation ofU(n) with highest weightλ. We say thatλ is nonnegativeif an � 0. If λ
is nonnegative, we say that thedepthof λ is the smallestk � 0 for whichal = 0 whenever
l > k, and we define‖λ‖ = ∑n

k=1ak . In classical notation, whenλ is nonnegative dominan
integral,λ is often viewed as a partition of‖λ‖.

The nonnegative dominant integral formsν of depth� n/2 can be regarded as highe
weights forSO(n) by dropping 0’s in the tuples beyond index[n/2]; we writeσν for an
irreducible representation ofSO(n) with highest weightν. Forn odd, all highest weight
for SO(n) are obtained by restriction in this way; forn even, there are some other high
weights, but their behavior for current purposes can be deduced from the behavior
ones we have just described.

The representations in Littlewood’s theorem are thoseτλ’s whose highest weights ar
nonnegative and have depth� n/2. Let ν be a nonnegative dominant integral form f
U(n) of depth� n/2, and consider the representationσν of SO(n). The theorem is tha
the multiplicity ofσν in τλ|SO(n) equals the sum of the Littlewood–Richardson coefficie
cλµν over all nonnegative dominant integralµ of depth� n/2 such that‖µ‖ = ‖λ‖ − ‖ν‖
andµ is evenin the sense that every entry ofµ is even. Here theLittlewood–Richardson
coefficientcλµν is defined to be the multiplicity ofτλ in τµ ⊗ τν and can be computed by
well known combinatorial method that will not concern us. (See [Mac] for the method
a proof of its validity.)

We shall make repeated use of the fact that ifλ, µ, andν are nonnegative domina
integral and if the Littlewood–Richardson coefficientcλµ,ν is greater than 0, then the dept
of µ andν are automatically� the depth ofλ. Also ‖λ‖ = ‖µ‖ + ‖ν‖ automatically, so
thatcλµ,ν is well defined in any unitary groupU(p) with p � depthλ. Finally the value of
cλµ,ν is independent ofp in this range.

Now we establish our geometric setting, which will allow an extra parameterm; thism is
to be a positive integer satisfying the inequalitym� n/2 and two inequalities about dept
that we state in a moment. LetMmn =Mmn(C) be the vector space ofm-by-n matrices
overC, and letSmn = S(Mmn) be the algebra of symmetric tensors onMmn. The groups
U(m) andSO(n) act onMmn by matrix multiplication on the appropriate side:u(x)= ux
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andr(x)= xr−1 for u ∈ U(m), r ∈ SO(n), andx ∈Mmn. These actions extend natura
to Smn, andSmn becomes the setting for our geometric interpretation. We introduc
expression[A : B]G for the multiplicity of an irreducible representationB of G in the
restriction ofA toG.

With λ andν as above, suppose thatm satisfies

depthλ�m� n/2 and depthν �m� n/2. (0.1)

Because of this inequality,λ can be regarded as a highest weight forU(m) as well asU(n).
We write τmλ and τnλ for the respective irreducible representations. Results of clas
invariant theory, particularly Corollary 4.5.19 and Theorem 5.2.7 of [GoW], justify the
step in the following computation of multiplicities, in which( · )c indicates contragredien[

Smn : τmλ ⊗̂ σν
]
U(m)×SO(n) =

[
Smn : τmλ ⊗̂ (σν)c

]
U(m)×SO(n)

= [
Smn : τmλ ⊗̂ (

τnλ
)c]

U(m)×U(n)
[
τnλ : σν

]
SO(n)

= [
τnλ : σν

]
SO(n). (0.2)

Let V λ,ν be the subspace ofSmn whereU(m)× SO(n) acts byτmλ ⊗̂ σν , i.e., whereU(m)
acts byτmλ andSO(n) acts byσν . Because of the above equality of multiplicities,V λ,ν can
be regarded as the tensor product of the space forτmλ with the full ν-isotypic subspace fo
τnλ |SO(n).

The symmetric-tensor multiplication mapSmn × Smn → Smn is bilinear and extends t
a linear mapM :Smn ⊗ Smn → Smn that respects the group actions. Withµ as above, we
defineV ν,ν andV µ,0 in the same way thatV λ,ν was defined above. LetV λ,ν,µ be the
intersection ofV λ,ν with the image ofV ν,ν ⊗ V µ,0 underM; this is a subspace ofV λ,ν

stable underU(m) andSO(n); let (V ν,ν ⊗ V µ,0)λ be the subspace ofV ν,ν ⊗ V µ,0 that
transforms according toτmλ on the left.

Theorem 0.1. Letλ andν be nonnegative dominant integral forms withdepthν �m� n/2
anddepthλ�m� n/2. Then the multiplication map

M :

(
V ν,ν ⊗

⊕
µ dominant integral
µ even nonnegative

‖µ‖=‖λ‖−‖ν‖

V µ,0

)λ
→ V λ,ν

within the algebraSmn of symmetric tensors is one–one and onto. ThereforeV λ,ν is the
direct sum of the subspacesV λ,ν,µ over all even nonnegative dominant integralµ such
that depthµ� depthλ.

The proof of Theorem 0.1 will make use of Littlewood’s theorem. Conversely
assertion of Theorem 0.1 easily implies Littlewood’s result: since the multiplication
is one–one from(V ν,ν ⊗V µ,0)λ ontoV λ,ν,µ, the multiplicity ofτm⊗ σν in V λ,ν,µ is cλµν .
λ
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From the direct-sum decompositionV λ,ν = ⊕
µ V

λ,ν,µ, we see that the sum overµ of the

cλµν equals the multiplicity ofτmλ ⊗̂ σν in V λ,ν . By (0.2) this in turn equals the multiplicit
of σν in τnλ |SO(n).

The subspacesV λ,ν,µ are canonical, and the direct-sum decompositionV λ,ν =⊕
µ V

λ,ν,µ produced by the theorem therefore represents a canonical decomposition

isotypic subspaceV λ,ν . In a later paper [Kn2] it is shown that this canonical decomposi
has an application to the unitarity of certain exotic infinite-dimensional representatio
indefinite orthogonal groups and to a description of the splitting of these represen
under a maximal compact subgroup. The specific form of the decomposition that is
in the first instance in [Kn2] is an inclusion ofV λ,ν into a set of sums of product
V λ,ν ⊆ ∑

µ V
ν,νV µ,0.

Littlewood’s branching theorem fromU(n) to SO(n) appeared on page 240 of the 19
edition of [Li]. On page 295 of the 1950 edition, Littlewood stated a companion the
for branching fromU(2r) to the rank-r quaternion unitary groupSp(r). This theorem ha
a geometric interpretation in the spirit of Theorem 0.1; the statement of the geom
interpretation and an indication of its proof appear in Section 6 below.

There have been other efforts to find representation-theoretic interpretation
Littlewood’s two theorems. Let us mention specifically some joint work of Deenen
Quesne [DeQ] and some work of Quesne [Q1,Q2] and Maliakas [Mal1]. These pape
quite different in spirit from the present one, and they do not appear to offer any insigh
our main results or help with the proofs. The papers by Quesne are related to Howe’s
of dual reductive pairs [Ho], and the one by Maliakas involves resolutions of module
application of the Euler–Poincaré principle.

In proving his theorem for branching fromU(n) to SO(n), Littlewood was building on
ideas in [Mu], but the statement in [Li] is not absolutely clear and the proof is difficu
decipher. Statements of Littlewood’s results forSO(n) andSp(n) with all the hypothese
in place appear in [DeQ] and [Mal2], respectively, and references to modern proof
be found in [Mal2]. Newell [Ne] showed how Littlewood’s theorem forSO(n) could be
modified to eliminate the limitation on the depth of the given highest weight; there
attempt below to give a geometric interpretation of Newell’s modification.

The first three sections develop relevant properties ofV ν,ν , V µ,0, and sums of space
V µ,0. Section 4 contains a proof thatM is one–one. Section 5 completes the proo
Theorem 0.1 by combining Littlewood’s Theorem and the result of Section 4 to show
the domain and range of the mapM in Theorem 0.1 have the same dimension, so
M one–one impliesM is onto. Finally, Section 6 states as Theorem 6.1 a compa
geometric interpretation of Littlewood’s other branching theorem, the one conce
restriction fromU(2r) to Sp(r).

1. Highest weight vectors for V ν,ν

We assume throughout Sections 1–5 thatm� n/2. The complexified linear Lie algebra
of our two groupsU(m) andSO(n) aregl(m,C)=Mmm andso(n,C)⊆ gl(n,C)=Mnn.
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We denote general members ofgl(m,C), gl(n,C), andMmn byE,E′, andX, respectively,
so that the actions are given by

E(X)= EX and E′(X)= −XE′,

the right side in each case being a matrix product.
Let r be the greatest integer inn/2, so thatm� r. The row indices forX will be written

simply as{1, . . . ,m}, but the column indices will usually be written as

{1, . . . , r,1′, . . . , r ′} if n is even,

{1, . . . , r,1′, . . . , r ′,∞} if n is odd.

In this case we shall write matrices out correspondingly in blocks of respective sizer, r,
and 0 ifn is even, orr, r, and 1 ifn is odd. We reserve the indexk for a column index tha
goes from 1 ton. A symbolE, E′, orX with the appropriate kind of subscripts stands
the matrix that is 1 in the indicated entry and 0 elsewhere.

We use the customary Cartan subalgebra, root ordering, and root vectors forgl(m,C):
The Cartan subalgebra is the diagonal subalgebra{∑m

a=1haEaa}. We defineeb to be
evaluation of thebth diagonal entry, witheb(

∑m
a=1haEaa)= hb. The roots are allea − eb

with a �= b, and corresponding root vectors are theEab. The usual ordering makesea − eb
positive if a < b.

For the action ofgl(m,C) onMmn, we haveEaaXbk = δabXak. Thus the weights fo
this action are the variousea , and the weight space for the weightea is

r∑
b=1

CXab ⊕
r∑
b=1

CXab′ ⊕ CXa∞. (1.1)

The root vectors affect only the row indices of members ofMmn:

Eab(Xck)=EabXck = δbcXak. (1.2)

The corresponding remarks about the action on the right side ofMmn are more
complicated because (0.2) assumes use forgl(n,C) of the diagonal Cartan subalgeb
which meetsso(n,C) in 0. Let us write members of the diagonal subalgebra ofgl(n,C) as

diag(H,H ′, h∞)=
(
H

H ′
h∞

)

withH andH ′ diagonal of sizer and withh∞ ∈ C. Define an automorphismΦ of gl(n,C)

byΦ(E′)= CE′C−1, where

C =


√
2/2 −i

√
2/2 0

−i
√

2/2
√

2/2 0

 .

0 0 1
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Φ
(
diag(H,H ′, h∞)

) =
 1

2(H +H ′) i
2(H −H ′) 0

− i
2(H −H ′) 1

2(H +H ′) 0

0 0 h∞

 (1.3)

is another Cartan subalgebra ofgl(n,C). Meanwhile we take the set of all( 0 ih 0
−ih 0 0

0 0 0

)
, (1.4)

with h diagonal of sizer, as a Cartan subalgebra ofso(n,C). The matrices (1.3) that are o
the form (1.4) are those withH ′ = −H andh∞ = 0, and equality is achieved in this ca
by takingH = h. Defineẽ′k on diag(H,H ′, h∞) by

ẽ′k
(
diag(H,H ′, h∞)

) =

Hkk if 1 � k � r,
H ′
k−r,k−r if r + 1 � k � 2r,

h∞ if n is odd andk = n,
and definee′a on (1.4) for 1� a � r to behaa . The result is that

e′a

( 0 ih 0
−ih 0 0

0 0 0

)
= ẽ′a

(
diag(h,−h,0)) for 1 � a � r. (1.5)

If ν is a nonnegative dominant integral form on the diagonal subalgebra ofgl(n,C) of depth
� r, formula (1.5) allows us to reinterpretν as a form on the Cartan subalgebra ofso(n,C).
This is the reinterpretation to use in passing fromgl(n,C) to so(n,C) in Littlewood’s
theorem. Without it one may not find the correct highest weight vectors forV ν,ν .

The roots forso(n,C) are the±e′a ± e′b with a �= b whenn is even, and these plus th
±e′a whenn is odd. With the usual ordering, the positive roots are thee′a ± e′b with a < b
whenn is even, and these plus thee′a whenn is odd.

For the action ofso(n,C) onMmn, we have

(
i
(
E′
aa′ −E′

a′a
))
(Xbk)= −iXbkEaa′ + iXbkEa′a =

{−iδacXba′ if k = c,
+iδacXba if k = c+ r,
0 if k = n,

from which it follows that(
i
(
E′
aa′ −E′

a′a
))
(Xbc − iXbc′)= δac(Xba − iXba′),(

i
(
E′
aa′ −E′

a′a
))
(Xbc + iXbc′)= −δac(Xba − iXba′),(

i
(
E′
aa′ −E′

a′a
))
(Xb∞)= 0.

Therefore
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Xbc − iXbc′ has weighte′c,

Xbc + iXbc′ has weight− e′c,
Xb∞ has weight 0. (1.6)

Because of our interest in nonnegative highest weights, we define

Zbc =Xbc − iXbc′ for 1 � b�m and 1� c� r.

We shall make use of the effect of root vectors for positive roots on these elemen
root vectors we can take

E′
e′a−e′b = (

E′
ab −E′

ba

) + i
(
E′
ab′ −E′

b′a
) + i

(
E′
ba′ −E′

a′b
) + (

E′
a′b′ −E′

b′a′
)

if a < b,

E′
e′a+e′b = (

E′
ab −E′

ba

) − i
(
E′
ab′ −E′

b′a
) + i

(
E′
ba′ −E′

a′b
) − (

E′
a′b′ −E′

b′a′
)

if a < b,

E′
e′a = (

E′
a∞ −E′∞a

) − i
(
E′
a′∞ −E′

∞a′
)
.

A little computation then gives

E′
e′a−e′b (Zcd)= 2δbdZca if a < b,

E′
e′a+e′b (Zcd)= 0 if a < b,

E′
e′a (Zcd)= 0. (1.7)

Lemma 1.1. Let f :Cp → C be a polynomial function, and letE be a derivation ofSmn.
If A1, . . . ,Ap are inSmn, then

E
(
f (A1, . . . ,Ap)

) =
p∑
j=1

(
∂f

∂xj
(A1, . . . ,Ap)

)
E(Aj).

Proof. Direct calculation shows that the two sides match whenf is a monomial function
f (x1, . . . , xp) = x

q1
1 · · ·xqpp . By linearity the two sides match for a general polynom

functionf . ✷
Lemma 1.2. Let xij , for 1 � i � p and 1 � j � p, be independent complex variable
and letx be thep-by-p matrix {xij }. Write x̂ab for the matrixx with theath row andbth
column deleted. Then

∂(detx)

∂xab
= (−1)a+b detx̂ab.
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Proof. By linearity of det in theath row, we have

det
({xij + hδaiδbj }

) = detx + det


x11 · · · x1b · · · x1p
...

. . .
...

...

0 · · · h · · · 0
...

...
. . .

...

xp1 · · · xpb · · · xpp

 ,

the exceptional row of the right-hand determinant being theath. The partial derivative in
question is the derivative with respect toh at h= 0 of the left side. Expanding the righ
hand determinant by cofactors about theath row and differentiating the right side wit
respect toh, we obtain the result of the lemma.✷
Proposition 1.3. If 1 � p �m, then the element

det
(
{Zab}1�a�p

1�b�p

)
ofSmn has weight(e1+· · ·+ep, e′1+· · ·+e′p) undergl(m,C)⊕so(n,C) and is a nonzero
highest weight vector.

Remarks. The method of proof will be needed again later. Thus we provide details
time and in the future will be able to say that the method is the same as for the pr
Proposition 1.3. This kind of result and proof is not at all new; see Procesi [Pr], espe
Section 5.2, and also [DeP]. Similar remarks apply to Proposition 1.4.

Proof. WriteZ for the matrix{Zij }, and letẐab be the matrixZ with theath row andbth
column deleted. The expansion of detZ involves the product

∏p

a=1Xaa , which cancels no
other term of the determinant; therefore detZ is not 0.

For any derivationE of Smn, Lemmas 1.1 and 1.2 give

E(detZ)=
∑
a,b

(−1)a+b
(
detẐab

)
E(Zab). (1.8)

First takeE in (1.8) to be application of a diagonal matrixH in gl(m,C). Then (1.1) and
the expansion-by-cofactors formula show that the right side is

=
∑
a

∑
b

(−1)a+bea(H)Zab
(
detẐab

) =
∑
a

ea(H)
∑
b

(−1)a+bZab
(
detẐab

)
=

∑
a

ea(H)detZ = (e1 + · · · + ep)(H)detZ.

This establishes the weight of detZ under the action bygl(m,C). A similar computation—
takingE to be application of a member of the Cartan subalgebra ofso(n,C), using (1.6),
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and summing overa andb in the reverse order—establishes the weight of detZ under the
action ofso(n,C).

To see that detZ is a highest weight vector forgl(m,C) andso(n,C), we takeE in
(1.8) to be application of a root vector for a positive root. In the case ofgl(m,C), the root
vector isEij for i < j . We haveEij (Zab)= δjaZib by (1.2), and thus (1.8) is

=
∑
a

δja
∑
b

(−1)a+bZib
(
detẐab

)
.

This is 0 if j is not one of the indicesa between 1 andp. Otherwise it is

=
∑
b

(−1)j+bZib
(
detẐjb

)
,

i.e., the determinant of the matrixZ except that thej th row has been replaced by th
contents of theith row. Sincei < j , the new determinant now has itsith andj th rows
equal. It is therefore 0. A similar computation—using (1.7) and summing overa andb in
the reverse order—shows that the root vectors for the positive roots ofso(n,C) act by 0.
Therefore detZ is a highest weight vector.✷
Proposition 1.4. If ν = ∑m

a=1 νaea is nonnegative dominant integral forgl(m,C), so that
(1.5)allows it to be reinterpreted as a highest weightν = ∑m

a=1 νae
′
a for so(n,C), then the

representationτν ⊗̂ σν occurs with multiplicity one inSmn, and the highest weight vecto
for it are the multiples of

Z(ν)=
m∏
p=1

det
(
{Zab}1�a�p

1�b�p

)νp−νp+1

if νm+1 is interpreted as0.

Proof. We apply Proposition 1.3 to each determinant factor. The product of highest w
vectors inSmn is a highest weight vector, and the weights add. ThereforeZ(ν) is a highest
weight vector, and the representation that it generates is of typeτν ⊗̂ σν .

For a proof that the multiplicity is one, an easy argument is to quote Littlewo
theorem: the only allowableµ is µ = 0, and the relevant sum of Littlewood–Richards
coefficients reduces tocν0ν = 1. For a more elementary argument, one can use form
(1.3)–(1.5) to see that the highest weight ofτν ⊗̂ σν arises fromτmν ⊗̂ (τnν )c by restriction
in only one way. ✷

2. Some linear independence

Let Sdmn be the subspace ofSmn of elements homogeneous of degreed . This finite-
dimensional subspace is stable under the actions byU(m) andSO(n). It is therefore the
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direct sum of its weight spaces. In view of (1.1), the weight spaces that contributeSd

are those with any weight

m∑
i=1

aiei +
r∑
j=1

bj e
′
j for which

m∑
i=1

ai = d. (2.1)

LetXa be the formal “row vector” with then entriesXak, 1� k � n, and define thedot
productof two of these to be the element inS2

mn given by

Xa ·Xb =
∑
k

XakXbk =
r∑
c=1

XacXbc +
r∑
c=1

Xac′Xbc′ +Xa∞Xb∞.

Such a dot product is in the subalgebra(Smn)SO of SO(n) invariants inSmn and hence is
in (S2

mn)
SO= S2

mn ∩ (Smn)SO. Dot product is of course symmetric. Formula (1.2) and
definitions show that the action ofgl(m,C) on the left is given by

Epq(Xa ·Xb)= δqa(Xp ·Xb)+ δqb(Xa ·Xp). (2.2)

In particular,

Xa ·Xb is a weight vector undergl(m,C) of weightea + eb. (2.3)

We are going to prove that the monomials in them(m+1)/2 dot productsXa ·Xb, a � b,
are linearly independent. We shall obtain this result as a corollary of a stronger resu
will be needed also. We begin with a precise notation for monomials. LetD = {Dab}a�b
be a tuple ofm(m + 1)/2 nonnegative integers and put‖D‖ = ∑

a�b Dab. Define the
monomialP(D) of dot products by

P(D)=
∏
a�b
(Xa ·Xb)Dab . (2.4)

By (2.1) and (2.3),

P(D) lies inSd with d = 2‖D‖. (2.5)

The proof of the linear independence will take us outside the realm of polynomi
dot products. Define a linear mappingϕ :Mmn →Mmn by its values on a basis:

ϕ(Xab)=
{
Xab if a � b,
0 if a > b,

ϕ(Xab′)=
{
Xab′ if a = b,
0 if a �= b, ϕ(Xa∞)= 0. (2.6)

Then extendϕ, without changing its name, to an algebra endomorphism ofSmn sending 1
to 1. Sinceϕ sends each monomial into itself or into 0,ϕ carriesSdmn into itself for eachd .
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ϕ(Zab)= ϕ(Xab)− iϕ(Xab′)=
{
Zab if a = b,
Xab if a < b,
0 if a > b.

(2.7)

If p �m, then the determinant of Proposition 1.3 satisfies

ϕ
(
det

(
{Zab}1�a�p

1�b�p

))
=

∑
π∈Sp

(sgnπ)
p∏
a=1

ϕ(Zaπ(a))=
p∏
a=1

Zaa,

whereSp is the symmetric group on{1, . . . , p}, since each nontrivial permutationπ has
a > π(a) for somea. Therefore the elementZ(ν) of Proposition 1.4 satisfies

ϕ
(
Z(ν)

) =
m∏
p=1

p∏
a=1

Z
νp−νp+1
aa =

m∏
p=1

(Zpp)
νp . (2.8)

We define

Q(D)= ϕ(
P(D)

)
. (2.9)

Theorem 2.1. The membersQ(D) of Smn are linearly independent.

Proof. It is enough to restrict attention to thoseD’s with 2‖D‖ equal to a particula
degreed , since suchD’s haveQ(D) in Sdmn and the spacesSdmn are linearly independen
asd varies. We shall prove by induction ond that theQ(D)’s with 2‖D‖ = d are linearly
independent. The base case is thatd = 0. Then the onlyQ(D) is 1, corresponding to
havingDab = 0 for all a � b. The set{1} is linearly independent, and this disposes of
cased = 0.

Assume the linear independence forS0
mn, . . . , S

d−1
mn with d now > 0. We shall do an

induction on an indexp with 1 � p �m. The assertion to be proved by induction onp is
that whenever ∑

2‖D‖=d
aDQ(D)= 0, (2.10)

thenaD = 0 for allD = {Dab}a�b with Dab �= 0 for some pair(a, b) with a � b < p. This
assertion is empty whenp = 1. We shall prove that an identity (2.10) implies thataD = 0
wheneverD hasDab �= 0 for some pair(a, b) with a � b < p + 1, i.e.,a � b � p. At
the end of this inner induction, we shall have proved concerning any identity (2.10
aD = 0 wheneverD hasDab �= 0 for some pair(a, b) with a � b �m; sinced > 0, each
D with 2‖D‖ = d has such a pair(a, b), and thereforeaD = 0 for allD.

With the assertion aboutp assumed by induction, the new thing that we have to pr
about an identity (2.10) is thataD = 0 if Dab �= 0 for some pair(a, b) with a � b = p, i.e.,
with (a, b) equal to(1,p), . . . , (p− 1,p), or (p,p).
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First we consider thea’s with 1 � a < p. Fix such ana. If D hasDap �= 0, then
ϕ(Xa ·Xp) is a factor ofQ(D). Since

ϕ(Xa ·Xp)= ϕ(Xa1Xp1 + · · · +XarXpr +Xa1′Xp1′ + · · · +Xar ′Xpr ′ +Xa∞Xp∞)

=XapXpp + · · · +XarXpr ,

Xap has to occur in the expansion ofQ(D). Conversely, consider allD’s such thatXap
occurs in the expansion ofQ(D), and suppose thataD �= 0. ForXap to occur in theDth
term, it must occur in a termϕ(XapXcp) of ϕ(Xa ·Xc) for somec, and we must havec� p
by (2.6). If a � c, this meansDac > 0; if a > c, it meansDca > 0. In either case, ifc < p
thena andc are< p, and our inductive hypothesis says thataD = 0, contradiction; so
c� p, and we concludec= p. Thus theD’s in (2.10) for whichaD �= 0 and the expansio
of Q(D) containsXap are exactly those withDap > 0. Reviewing this argument, we se
that theD’s in (2.10) for whichaD �= 0 and the expansion ofQ(D) contains thelth power
of Xap but no higher power are exactly those withDap = l and thatQ(D)/(ϕ(Xa ·Xp))l
does not haveXap in its expansion. Consequently, we can rewrite (2.10) as

L∑
l=0

(
ϕ(Xa ·Xp)

)l ∑
D with
Dap=l

aD
Q(D)

(ϕ(Xa ·Xp))l = 0, (2.11)

and noXap occurs in the expansion of anyQ(D)/(ϕ(Xa ·Xp))l havingaD �= 0. Equating
the coefficients of(Xap)L on the two sides of (2.11), we obtain

∑
D with
Dap=L

aD
Q(D)

(ϕ(Xa ·Xp))L = 0. (2.12)

If L > 0, then (2.12) is a relation like (2.10) but withd replaced byd − 2L. Thus the
outer induction shows that all the coefficientsaD in (2.12) are 0, and the term of (2.1
with Dap = L can be dropped. Arguing similarly forl equal toL − 1,L− 2, . . . ,1, we
see that all the coefficientsaD are 0 except possibly some of the ones in thel = 0 term of
(2.11). We are thus reduced to an identity

∑
D with Dap=0 aDQ(D) = 0. That is, we have

succeeded in showing thatDap = 0 for all coefficients in (2.10) for whichaD �= 0. Since
a is arbitrary with 1� a < p, we obtainD1p =D2p = · · · = Dp−1,p = 0 in all terms of
(2.10) withaD �= 0.

Now we consider the casea = p. If D hasDpp �= 0, thenϕ(Xp · Xp) is a factor of
Q(D). Since

ϕ(Xp ·Xp)=XppXpp + · · · +XprXpr +Xpp′Xpp′,

Xpp has to occur in the expansion ofQ(D). Conversely consider allD’s such thatXpp
occurs in the expansion ofQ(D), and suppose thataD �= 0. ForXpp to occur in theDth
term, it must occur in a termϕ(XppXcp) of ϕ(Xp ·Xc) for somec, and we must havec� p
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by (2.6). If c < p, this meansDcp > 0; by what we have just shown,aD must be 0. Thus
if aD �= 0, thenXpp occurs in the expansion ofQ(D) if and only ifDpp > 0. Reviewing
this argument, we see that theD’s in (2.10) for whichaD �= 0 and the expansion ofQ(D)
contains thelth power ofXpp but no higher power have the properties thatl is even,
Dpp = l/2, andQ(D)/(ϕ(Xp ·Xp))l/2 does not haveXpp in its expansion. Consequent
we can rewrite (2.10) as

L∑
l=0

(
ϕ(Xp ·Xp)

)l ∑
D with
Dpp=l

aD
Q(D)

(ϕ(Xp ·Xp))l = 0, (2.13)

and noXpp occurs in the expansion of anyQ(D)/(ϕ(Xp ·Xp))l havingaD �= 0. Equating
the coefficients of(Xpp)2L on the two sides of (2.13), we obtain

∑
D with
Dpp=L

aD
Q(D)

(ϕ(Xp ·Xp))L = 0. (2.14)

If L > 0, then (2.14) is a relation like (2.10) but withd replaced byd − 2L. Thus the
outer induction shows that all the coefficientsaD in (2.14) are 0, and the term of (2.1
with Dpp = L can be dropped. Arguing similarly forl equal toL− 1,L − 2, . . . ,1, we
see that all the coefficientsaD are 0 except possibly some of the ones in thel = 0 term of
(2.13). We are thus reduced to an identity

∑
D with Dpp=0 aDQ(D) = 0. That is, we have

succeeded in showing thatDpp = 0 for all coefficients in (2.10) for whichaD �= 0. This
completes the induction onp, the induction ond , and the proof of the theorem.✷
Corollary 2.2. The membersP(D) of (Smn)SO are linearly independent.

Remark. This result was known already. See [DeP, Theorem 5.1]. For our applica
however, we need the stronger result listed above as Theorem 2.1.

Proof. It is enough to consider the finite set ofD’s with 2‖D‖ equal to a fixedd . If∑
D aDP(D)= 0, then application ofϕ gives

∑
D aDQ(D)= 0, and Theorem 2.1 show

that all theaD are 0. ✷

3. Structure of V µ,0

In this section we shall identify the highest weight vectors inV µ,0 and examine how al
the members ofV µ,0 are propagated from the highest weight vectors.

Proposition 3.1. If 1 � p �m, then the element

det
(
{Xa ·Xb}1�a�p

)

1�b�p



A.W. Knapp / Journal of Algebra 270 (2003) 728–754 741

t

efore

anded

le the

t

eight
ated

of a
0] to
m.
uces

0 if
.
e

r

of Smn has weight(2e1 + · · ·+ 2ep,0) undergl(m,C)⊕ so(n,C) and is a nonzero highes
weight vector.

Proof. The determinant in question is a polynomial in dot products and is ther
invariant underso(n,C). One of the terms from the determinant is

∏p
a=1Xa · Xa , and

Corollary 2.2 shows that this term does not fully cancel when the determinant is exp
out; therefore the determinant is not 0.

It is consequently enough to prove the statements about the action bygl(m,C). For that
purpose, we argue as in the proof of Proposition 1.3, using (2.2) and (2.3) to hand
termsE(Aj ) in Lemma 1.1. ✷
Proposition 3.2. If µ= ∑m

a=1µaea is nonnegative dominant integral forgl(m,C) and is
even, then the representationτµ ⊗̂ 1 occurs with multiplicity one inSmn, and the highes
weight vectors for it are the multiples of

m∏
p=1

(
det

(
{Xa ·Xb}1�a�p

1�b�p

)(µp−µp+1)/2
)

if µm+1 is interpreted as0.

Proof. We apply Proposition 3.1 to each determinant factor. The product of highest w
vectors inSmn is a highest weight vector, and the weights add. Therefore the indic
product is a highest weight vector, and the representation that it generates is of typeτµ ⊗̂1.
For the limitation on multiplicities, it is not hard to give a direct proof by means
theorem of Cartan and Helgason in [He, Section III.3] (or apply [Kn1, Theorem 9.7
the compact symmetric spaceU(n)/SO(n)), but it is easier to quote Littlewood’s theore
Here(λ, ν) is (µ,0), and the relevant sum of Littlewood–Richardson coefficients red
to cµµ0 = 1. ✷

For 1� p �m, let us use the notation

[a1, . . . , ap;b1, . . . , bp] (3.1)

to denote the determinant of thep-by-p matrix whose(i, j)th entry isXai · Xbj . These
determinants are members ofSmn invariant under the action ofSO(n) on the right, and we
need to know the effect of theU(m) action on the left. Such a determinant is of course
the lista1, . . . , ap contains any repetitions or if the listb1, . . . , bp contains any repetitions
The determinant is sent into its negative if two of thea’s are interchanged or if two of th
b’s are interchanged. It is unchanged if thea’s are exchanged with theb’s.

Proposition 3.3. If a1, . . . , ap are distinct andb1, . . . , bp are distinct, then the membe
Euv of gl(m,C) acts by

Euv
([a1, . . . , ap;b1, . . . , bp]

) = [a1, . . . , ai−1, u, ai+1, . . . , ap;b1, . . . , bp]
+ [a1, . . . , ap;b1, . . . , bj−1, u, bj+1, . . . , bp]
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if ai = v and bj = v. If no bj equalsv, the second term on the right is absent. If noai
equalsv, the first term on the right is absent. If noai = v and nobj equalsv, the right
side is0.

Proof. Suppose thata1, . . . , ap are distinct and thatb1, . . . , bp are distinct. Suppose als
thatai = v andbj = v. LetA be the matrix whose determinant is[a1, . . . , ap;b1, . . . , bp],
and letÂst be the matrixA with the sth row andt th column deleted. Then Lemmas 1
and 1.2, in combination with (2.2), give

Euv(detA)=
∑
s,t

(−1)s+t
(
detÂst

)
Euv(Xas ·Xbt )

=
∑
s,t

(−1)s+t
(
detÂst

)
Euv(Xas ) ·Xbt +

∑
s,t

(−1)s+t
(
detÂst

)
Xas ·Euv(Xbt )

= δaiv
∑
t

(−1)i+t
(
detÂit

)
Xu ·Xbt + δvbj

∑
s

(−1)s+j
(
detÂsj

)
Xas ·Xu

= δaiv[a1, . . . , ai−1, u, ai+1, . . . , ap;b1, . . . , bp]
+ δvbj [a1, . . . , ap;b1, . . . , bj−1, u, bj+1, . . . , bp].

The other cases are handled similarly.✷
Proposition 3.4. If d is odd, the space(Sdmn)

SOof SO(n) invariants homogeneous of degr
d is 0. If d is even, the following three spaces coincide:

(a) the space(Sdmn)
SO,

(b) the linear span of theP(D) with ‖D‖ = d/2,
(c) the direct sum of the spacesV µ,0 for evenµ nonnegative dominant integral wit

‖µ‖ = d , these spaces being of multiplicity one.

Remark. Cf. [GoW, Section 4.2].

Proof. The highest weight vectors of each spaceV µ,0 in (c) are in the space (b) b
Proposition 3.2, and it follows from Proposition 3.3 that each whole spaceV µ,0 is in the
space (b). It is clear that the space (b) is contained in the space (a).

For any d , odd or even,(Sdmn)
SO is the direct sum of irreducible subspaces un

U(m)×SO(n), and the highest weights have to be of the form(µ,0) for some nonnegativ
dominant integral formµ for U(m). The theorem of Cartan and Helgason mentione
the proof of Proposition 3.2 shows thatµ has to be even and the multiplicity is at most
This completes the proof.✷
Corollary 3.5. TheP(D) form a basis of(Smn)SO.

Proof. The linear independence is given by Corollary 2.2. The spanning is immediate
the equivalence of (a) and (c) in Proposition 3.4 sinceSmn is the direct sum of theSdmn. ✷
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For 1� p �m, let Vp = V µ,0 for µ equal to 2e1 + · · · + 2ep , and letUp be the linear
span of allp-by-p minors of det({Xa ·Xb}1�a�m,1�b�m). Proposition 3.1 shows that th
highest weight vector ofVp lies inUp, and Proposition 3.3 shows thatUp is an invariant
subspace. ConsequentlyVp ⊆Up .

The reverse inclusion is more subtle. A look at Proposition 3.3 shows that applic
of members ofgl(m,C) to the highest weight vector ofVp in Proposition 3.1 quickly
results in sums of minors rather than individual minors, and there is no apparent w
obtaining the individual minors. One may then suspect that the inclusion ofVp in Up
is sometimes proper. The following example indicates complications: let us say tha
nonzerop-by-pminors as in (3.1) are “really different” if the one cannot be converted
the other by permuting thea indices, permuting theb indices, and possibly exchanging t
a indices with theb indices. The number of really different 2-by-2 minors can be seen(
m
2

)((
m
2

) +1
)
/2, which is 21 in the case thatm= 4. On the other hand, the dimension ofV2

for m= 4 is 20, by the Weyl Dimension Formula. If, under the influence of Corollary
one expects that the really different minors are linearly independent, one is led to
that the inclusion ofV2 in U2 for m = 4 is indeed proper. However, the really differe
minors are not linearly independent, as the identity

det

(
X1 ·X3 X1 ·X4
X2 ·X3 X2 ·X4

)
+ det

(
X1 ·X2 X1 ·X3
X4 ·X2 X4 ·X3

)
= det

(
X1 ·X2 X1 ·X4
X3 ·X2 X3 ·X4

)

shows.

Corollary 3.6. For 1 � p �m, the spaceVp equals the linear span of allp-by-p minors
of det({Xa ·Xb}1�a�m,1�b�m).

Proof. LetUp be the linear span of thep-by-pminors. Arguing by contradiction, suppo
that Vp is a proper subspace ofUp . Then an invariant complement ofVp in Up is
a nonzero invariant subspace of the space (b) of Proposition 3.4 withd = 2p. By (c)
in the proposition,Up contains someV µ,0 for an even nonnegative dominant integ
µ= ∑m

a=1µaea with ‖µ‖ = 2p but withµ �= 2e1 + · · · + 2ep. Thisµ must haveµp = 0
and thereforeµ1 � 4. The spaceUp must contain a nonzero highest weight vector forV µ,0,
and this has to be of the form given in Proposition 3.2. Expanding out this expressio
linear combination ofP(D)’s, we obtain coefficient 1 for

P(D)= (X1 ·X1)
µ1/2(X2 ·X2)

µ2/2 · · · (Xp ·Xp)µp/2.

On the other hand, nop-by-p minor, when expanded as a linear combination ofP(D′)’s,
can containX1 ·X1 to a power greater than 1. By Corollary 2.2 the highest weight ve
in question cannot be inUp, and we have a contradiction.✷
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4. Proof that M is one–one

Now we are ready to start the proof of Theorem 0.1. In this section we shall prov
M is one–one, and in the next section we shall prove a dimensional equality that im
the map is ontoV λ,ν .

Theorem 4.1. Any nonzero highest weight vector of type(λ, ν) in the tensor produc
V ν,ν ⊗ ⊕

µ V
µ,0 is of the form

φλ,ν =Z(ν)⊗
∑
D with

‖D‖= 1
2(‖λ‖−‖ν‖)

aDP(D)+
∑
γ

(
Zγ (ν)⊗

∑
D with

‖D‖= 1
2(‖λ‖−‖ν‖)

bγ,DP (D)

)
,

whereZ(ν) is the highest weight vector ofV ν,ν given in Proposition1.4,
∑
aDP(D)

is not 0, γ ranges over nonzero sums of positive roots ofgl(m,C) (the sums possibl
being repeated), and eachZγ (ν) is a member ofV ν,ν of weightν − γ . If φλ,ν lies in
V ν,ν⊗⊕

µ∈F V µ,0 for a subsetF ofµ’s, then
∑
D aDP(D) lies in

⊕
µ∈F V µ,0. Moreover,

if ϕ is the homomorphism defined in(2.6)and ifQ(D) is defined asϕ(P (D)), then

ϕ
(
M(φλ,ν)

) =
(

m∏
p=1

(Zpp)
νp

)(∑
D

aDQ(D)

)
,

whereM denotes multiplication.

Proof. By abstract character theory the multiplicity ofτλ ⊗̂σν in the tensor produc
V ν,ν ⊗ ⊕

µ V
µ,0 is the sum overµ of the multiplicity in eachV ν,ν ⊗ V µ,0. Thus we

may compute the highest weight vectors of type(λ, ν) by computing them within eac
V ν,ν ⊗ V µ,0 and then taking sums.

Fix µ. It is known for any compact connected Lie group that any nonzero highest w
vector of typeω in a tensor product of the formτξ ⊗ τη is of the form

vξ ⊗ vω−ξ +
∑
γ

vξ−γ ⊗ vω−ξ+γ ,

where each vector has the indicated weight in the space forτξ or τη as appropriate
vξ ⊗ vω−ξ is not 0, and theγ ’s are nonzero sums of positive roots, the sums poss
repeated. (See [Kn1, second edition, Proposition 9.72 and its proof].1) If we fix µ, we can
apply this fact to the groupU(m) × SO(n) with ω = (λ, ν), ξ = (ν, ν), andη = (µ,0).
Since Proposition 1.4 showsZ(ν) to be a nonzero highest weight vector ofV ν,ν and since
Proposition 3.4 shows every element ofV µ,0 to be a linear combination of theP(D),
the formula follows forφλ,ν in the case of a singleµ, provided we interpretγ as a

1 In the first edition, see instead Problem 16, p. 285, and its solution on p. 554.
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nonzero sum of positive roots forgl(m,C) ⊕ so(n,C). We need to see that the positi
roots of so(n,C) are not involved. For fixedγ , the vector

∑
D bγ,DP (D) is a weight

vector ofτµ,0 ⊗̂ 1, and its weight is therefore of the form(µ′,0). The weight of the term
Zγ (ν)⊗∑

D bγ,DP (D) is then(ν, ν)−γ + (µ′,0), and this must match(λ, ν). Therefore
γ hasso(n,C) component 0 and is a sum of positive roots fromgl(m,C) alone. We shal
write γ = ∑m

a=1γaea ; at least one componentγa of γ is nonzero, and the first nonze
component is positive.

Taking sums in the case thatφλ,ν lies inV ν,ν ⊗ ⊕
µ∈F V µ,0 for a subsetF of µ’s, we

see that
∑
D aDP(D) lies in

⊕
µ∈F V µ,0. We still have to see that

∑
D aDP(D) is not 0.

If the first term in the expansion for each singleµ isZ(ν)⊗ ∑
D aD,µP (D), then the first

term in the expansion for allµ can be writtenZ(ν)⊗ ∑
D aDP(D) with aD = ∑

µ aD,µ.
Here the various terms

∑
D aD,µP (D) are nonzero members of their respective spa

V µ,0, and their sum cannot be 0 since the spacesV µ,0 are independent.
To complete the proof, we have to verify the formula forϕ(M(φλ,ν)). Application of

M to φλ,ν is accomplished by replacing the tensor-product signs by multiplication s
We then apply the homomorphismϕ of (2.6) to the result and use (2.8) to obtain

ϕ
(
M(φλ,ν)

) =
m∏
p=1

(Zpp)
νp

∑
D

aDQ(D)+
∑
γ

(
ϕ

(
Zγ (ν)

) ∑
D

bγ,DQ(D)

)
.

We shall show thatϕ(Zγ (ν))= 0 for everyγ , and then our expression reduces to

ϕ
(
M(φλ,ν)

) =
m∏
p=1

(Zpp)
νp

∑
D

aDQ(D),

as required.
To begin the proof thatϕ(Zγ (ν))= 0 for everyγ , we examine properties of monomia

in theZab’s. By (1.1) and (1.6) the weight of
∏
a,b Z

pa,b
ab is

∑
a,b pab(ea + e′b). Meanwhile

from (1.2) it follows that every root vector forgl(m,C) carries monomials in theZab’s to
multiples of monomials in theZab’s.

The expressionZ(ν) is a linear combination of monomials
∏
a,b Z

pa,b
ab of weight∑

a νa(ea + e′a). SinceZγ (ν) can be obtainedZ(ν) by applying a linear combination o
products of root vectors of negative roots forgl(m,C), we may assume thatZγ (ν) is a
linear combination of monomials in theZab’s of weight

∑
a(νa − γa)ea + ∑

a νae
′
a . To

prove thatϕ(Zγ (ν)) = 0, it is enough to prove that each monomial
∏
a,b Z

pa,b
ab of this

weight is annihilated byϕ.
Assume the contrary. By (2.7) eachpa,b must be 0 whena > b. Thus we have a

monomial of the form
∏
a�b Z

pa,b
ab with

∑
pab

(
ea + e′b

) =
∑
a

(νa − γa)ea +
∑
a

νae
′
a. (4.1)
a�b
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Here someγa is nonzero, and the first nonzero one is positive. Rewriting (4.1), we ob

∑
a

(
−νa + γa +

∑
b�a

pab

)
ea +

∑
a

(
−νa +

∑
b�a

pba

)
e′a = 0.

Each coefficient ofea or e′a must be 0, and thus

−νa + γa +
∑
b�a

pab = 0, −νa +
∑
b�a

pba = 0

for all a. Subtracting these equations yields

γa +
∑
b�a

pab =
∑
b�a

pba for all a.

The diagonal terms in the sums on the two sides cancel, and the result is

γa +
∑
b>a

pab =
∑
b<a

pba for all a. (4.2)

Let us prove by induction on 0� i �m that

γ1 = · · · = γi = 0 if i > 0, and pab = 0 whenever 1� a � i anda < b. (4.3)

The base case of the induction isi = 0, and there is nothing to prove. Assume (4.3)
i− 1 with i > 0. We use (4.2) witha = i. Sinceγ1 = · · · = γi−1 = 0, we must haveγi � 0.
Thus (4.2) shows that ∑

b>i

pib �
∑
b<i

pbi (4.4)

with equality only if γi = 0. Each term on the right side of (4.4) is 0 by induct
assumption (4.3) (in whichi is to be replaced byi−1). Since eachpib is � 0, we conclude
from (4.4) that eachpib is 0 forb > i and that equality holds in (4.4). Since equality hol
γi = 0; this proves the first half of (4.3) at the inductive step. The new assertion a
inductive step in the second half of (4.3) is thatpab = 0 for a = i whena < b, and we have
just proved that as well. This completes the induction.

Since (4.3) is now known to hold fori =m, we see thatγ = 0. But this contradicts th
assumption throughout thatγ is a nonzero sum of positive roots. The conclusion is
ϕ(Zγ (ν))= 0, and therefore the proof of the theorem is complete.✷
Corollary 4.2. The mappingM of Theorem0.1 is one–one.

Proof. SinceM is equivariant for the action ofU(m)× SO(n), it is enough to check tha
M is one–one on the highest weight vectors of type(λ, ν) in V ν,ν ⊗ ⊕

µ V
µ,0. A nonzero
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such vector is of the formφλ,ν in Theorem 4.1. Arguing by contradiction, suppose t
M(φλ,ν)= 0. FollowingM with the homomorphismϕ of (2.6) yields

0 = ϕ(
M(φλ,ν)

) =
(

m∏
p=1

(Zpp)
νp

)(∑
D

aDQ(D)

)
,

by Theorem 4.1. Since
∏m
p=1 (Zpp)

νp is manifestly not zero and since
∑
D aDP(D)

nonzero implies
∑
D aDQ(D) nonzero by Theorem 2.1, we obtain 0 as a produc

nonzero elements ofSmn, and we have obtained a contradiction.✷

5. Dimensional equality

The final step in the proof of Theorem 0.1 is to show that the domain and range
the same dimension. Since Corollary 4.2 has shownM to be one–one, it then follows th
M is onto, and the proof is complete. Actually the dimensional equality, which is giv
Proposition 5.1, makes use of Corollary 4.2 and therefore does not stand on its own

Proposition 5.1. Letλ andν be nonnegative dominant integral forms withdepthν �m�
n/2 anddepthλ�m� n/2. Then

dim

(
V ν,ν ⊗

⊕
µ dominant integral
µ even nonnegative
depthµ�depthλ
‖µ‖=‖λ‖−‖ν‖

V µ,0

)λ
= dimV λ,ν.

Proof. Fix ν and letL = ‖λ‖ for such aλ. SinceM is known from Corollary 4.2 to be
one–one, we have

dim

(
V ν,ν ⊗

⊕
µ

V µ,0
)λ

� dimV λ,ν (5.1)

with µ restricted as in the statement of the proposition.
We make the following computation, in whichν is fixed and(λ,µ) is understood to

range over all ordered pairs of nonnegative dominant integral forms of depth�m such that
‖λ‖ = L, ‖µ‖ + ‖ν‖ = L, andµ is even. We shall justify the steps after the computa
is complete:

∑
λ

dim

(
V ν,ν ⊗

⊕
µ

V µ,0
)λ

=
∑
µ

(dimV ν,ν)
(
dimV µ,0

)
(5.2a)

=
∑(

dimτmν ⊗̂ σν
)(

dimτmµ
)

(5.2b)

µ
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=
∑
µ

(
dimτmµ ⊗ τmν

)
(dimσν) (5.2c)

=
∑
µ,λ

[
τmµ ⊗ τmν : τmλ

]
U(m)

(
dimτmλ

)
(dimσν) (5.2d)

=
∑
λ

(
dimτmλ ⊗̂ σν

) ∑
µ

cλµν (5.2e)

=
∑
λ

(
dimτmλ ⊗̂ σν

)[
τnλ |SO(n) : σν

]
SO(n) (5.2f)

=
∑
λ

(
dimτmλ ⊗̂ σν

)[
Smn : τmλ ⊗̂ σν

]
U(m)×SO(n) (5.2g)

=
∑
λ

dimV λ,ν. (5.2h)

Step (5.2a) represents Fourier analysis in theλ variable; the contribution of theλ term
to the left side is automatically 0 unlessλ is nonnegative with‖λ‖ = L. Step (b) substitute
the irreducible representations that are involved, taking into account the multiplicit
results given in Propositions 1.4 and 3.2. Step (c) is just a regrouping. Step (d) rep
Fourier analysis in theλ variable again, and again there is no contribution from theλ term
unlessλ is nonnegative with‖λ‖ = L. Step (e) substitutes the definition of the Littlewoo
Richardson coefficientcλµν , and step (f) follows by application of Littlewood’s theore
Step (g) is an application of (0.2), and step (h) uses the fact that the dimension of an is
subspace is the product of the multiplicity and the dimension of the relevant irredu
representation.

Comparing the sum of (5.1) overλ with the result of (5.2), we see that equality mu
hold in (5.1). This completes the proof of Proposition 5.1.✷

6. Littlewood’s other branching theorem

The other Littlewood branching theorem concerns restriction from the unitary g
U(2r) to the groupSp(r) of r-by-r unitary matrices over the quaternions. The latter gr
is to be realized as the intersection ofU(2r) with

Sp(r,C)= {
g ∈ SL(2r,C)

∣∣ gtrJg = J }
,

J being the 2r-by-2r matrix given in block form asJ = ( 0 1
−1 0

)
. The statement is formall

rather similar to Littlewood’s theorem concerning branching fromU(n) to SO(n) except
that the evenness condition on theµ’s is changed. A dominant integral formµ will be said
to havepaired entriesif µ1 = µ2, µ3 = µ4, etc. For the statement in the case ofU(2r)
andSp(r), let λ andν be nonnegative dominant integral forms of depth� r, let σν be an
irreducible representation ofSp(r) with highest weightν, and again letτλ be an irreducible
representation ofU(2r) with highest weightλ. The theorem is that the multiplicity ofσν in
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τλ|Sp(r) equals the sum of the Littlewood–Richardson coefficientscλµν over all nonnegative
dominant integralµ of depth� r such that‖µ‖ = ‖λ‖ − ‖ν‖ andµ has paired entries.

Let n = 2r, and letm be a positive integer withm � r. The geometric setting aga
concernsMmn =Mmn(C) and its symmetric algebraSmn. The groupsU(m) andSp(r) act
onMmn with U(m) acting by left multiplication andSp(r) acting by right multiplication
by inverse elements. These actions extend toSmn. Suppose that both the above linear for
λ andν have depth�m, which is� r. By the same kind of argument as in (0.2), we ha[

Smn : τmλ ⊗̂ σν
]
U(m)×Sp(r) =

[
τnλ : σν

]
Sp(r). (6.1)

Let M be the multiplication mapping fromSmn ⊗ Smn to Smn. With λ andν as above
suppose thatµ is nonnegative dominant integral, has depth� r, and has paired entrie
We defineV λ,ν , V ν,ν , andV µ,0 as invariant subspaces ofSmn in analogous fashion to th
rotation case: the first superscript in each case refers to the transformation law underU(m),
and the second superscript refers to the transformation law underSp(r).

Theorem 6.1. Letλ andν be nonnegative dominant integral forms withdepthν �m� n/2
anddepthλ�m� n/2. Then the multiplication map

M :

(
V ν,ν ⊗

⊕
µ dominant integral
µ nonnegative

µ with paired entries
‖µ‖=‖λ‖−‖ν‖

V µ,0

)λ
→ V λ,ν

within the algebraSmn of symmetric tensors is one–one and onto.

The rest of this section is devoted to a sketch of how Sections 1–5 need to be a
to prove Theorem 6.1. There are only a few serious adjustments.

Throughout this section we assume thatm � r = n/2. The complexified Lie algebr
of Sp(r) is sp(r,C)= {x ∈ sl(n,C) | x trJ + Jx = 0}. We index the rows ofX ∈Mmn by
{1, . . . ,m} and the columns by{1, . . . , r,1′, . . . , r ′}.

The action ofgl(m,C) onMmn is unchanged from Section 1. Thus the weight spa
are still given by (1.1), and the root vectors act onMmn as in (1.2).

We take as Cartan subalgebra forsp(r,C) the set of all diagonal matrices given in blo
form by

(
H −0
0 −H

)
. Evaluation of thepth diagonal entry ofH is denotede′p , 1� p � r. The

roots forsp(r,C) are all±e′a ± e′b with a �= b and all±2ea ; herea andb range from 1
to r. We take alle′a ± e′b with a < b and all 2e′a as the positive roots. Taking into accou
the minus sign built into the action on the right ofMmn, we can compute the effect o
E′
aa −E′

a′a′ on eachXbc andXbc′ whena andc extend from 1 tor andb extends from 1
tom. We find that

Xbc has weight− e′c, Xbc′ has weight+ e′c. (6.2)

Formulas for root vectors may be found in [Kn1, Example 3 of Section II.1]. A l
computation then gives
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E′
e′a−e′b (Xcd ′)= δbdXca′ if a �= b,
E′
e′a+e′b (Xcd ′)= 0 if a �= b,
E′

2e′a (Xcd
′)= 0 for all a. (6.3)

The same arguments as for Propositions 1.3 and 1.4 establish two propositions
highest weight vectors forV ν,ν :

Proposition 6.2. If 1 � p �m, then the element

det
(
{Xab′}1�a�p

1�b�p

)
ofSmn has weight(e1 +· · ·+ ep, e′1 +· · ·+ e′p) undergl(m,C)⊕sp(r,C) and is a nonzero
highest weight vector.

Proposition 6.3. If ν = ∑m
a=1 νaea is nonnegative dominant integral forgl(m,C) and

is reinterpreted as a highest weightν = ∑m
a=1 νae

′
a for sp(r,C), then the representatio

τmν ⊗̂ σν occurs with multiplicity one inSmn, and the highest weight vectors for it are t
multiples of

X(ν)=
m∏
p=1

det
(
{Xab′ }1�a�p

1�b�p

)νp−νp+1

if νm+1 is interpreted as0.

Dealing withV µ,0 involves some changes. With rowsXa of X defined as in Section 2
define thealternating productof two rows to be the element inS2

mn given by

〈Xa,Xb〉 =XaJXtr
b =

r∑
c=1

XacXbc′ −
r∑
c=1

Xac′Xbc.

The alternating product is skew symmetric. Elements ofgl(m,C) act on the left by

Epq
(〈Xa,Xb〉) = δqa〈Xp,Xb〉 + δqb〈Xa,Xp〉. (6.4)

In particular,

〈Xa,Xb〉 is a weight vector undergl(m,C) of weightea + eb. (6.5)

Since〈Xa,Xa〉 = 0, the number of basic alternating products ism(m−1)/2 rather than
m(m+ 1)/2. LetD = {Dab}a<b be a tuple ofm(m− 1)/2 nonnegative integers and p
‖D‖ = ∑

a<b Dab. Define a monomial of alternating products to be

R(D)=
∏

〈Xa,Xb〉Dab . (6.6)

a<b
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This lies inSd with d = 2‖D‖. In place ofϕ, we define a linear mappingψ :Mmn →Mmn
by

ψ(Xab′)=
{
Xab′ if a � b,
0 if a > b,

ψ(Xab)=
{
Xab if a = b,
0 if a �= b. (6.7)

This is to be extended to an endomorphism ofSmn sending 1 to 1. Just as with (2.8), w
work out that

ψ
(
X(ν)

) =
m∏
p=1

(Xpp′)νp . (6.8)

As an endomorphism ofSmn, ψ takes a surprisingly simple form on alternati
products, namely

ψ
(〈Xa,Xb〉) = −Xab′Xbb if a < b.

We obtain

ψ
(
R(D)

) = (−1)‖D‖ ∏
a<b

X
Dab
ab′ X

Dab
bb ,

and the analog of Theorem 2.1 now follows by inspection:

Theorem 6.4. The membersψ(R(D)) of Smn are linearly independent.

Remark. As a consequence the membersR(D) of Smn are linearly independent. Th
consequence was already known; see [DeP, Section 6].

The tools are all in place to prove an analog of Proposition 3.1.

Proposition 6.5. If 1 � 2p�m, then the element

det
({〈Xa,Xb〉

}
1�a�2p
1�b�2p

)
of Smn has weight(2e1 +· · ·+2e2p,0) undergl(m,C)⊕ sp(r,C) and is a nonzero highes
weight vector.

This is not a good enough result for handling theµ’s with paired entries becaus
Littlewood’s theorem says that(e1 + · · · + e2p,0) should be a highest weight. Taking
cue from linear algebra, we define a kind of size-2p Pfaffian Pff(Xa1, . . . ,Xa2p ) to be

=
∑
π∈S

(sgnπ)
〈
Xaπ(1) ,Xaπ(2)

〉〈
Xaπ(3),Xaπ(4)

〉 · · · 〈Xaπ(2p−1),Xaπ(2p)
〉
,

2p



752 A.W. Knapp / Journal of Algebra 270 (2003) 728–754

f

ds to
m of
upon

t

whereS2p is the symmetric group on{1, . . . ,2p}. This is not 0 since theR(D)’s are
linearly independent, and it has the desired weight(e1 + · · · + e2p,0). A simple change o
variables in the sum overS2p shows that Pff has the key property

Pff
(
Xaω(1) , . . . ,Xaω(2p)

) = (sgnω)Pff
(
Xa1, . . . ,Xa2p

)
for any memberω of S2p, and it follows that

Pff is 0 if two of its arguments are equal. (6.9)

In the reverse direction the second conclusion of Theorem 6.4 shows that

Pff is nonzero if its arguments are distinct. (6.10)

The analog of Proposition 3.3 is

Proposition 6.6. The root vectorEcaj acts on Pfaffians by

Ecaj
(
Pff

(
Xa1, . . . ,Xa2p

)) = Pff
(
Xa1, . . . ,Xaj−1,Xc,Xaj+1, . . . ,Xa2p

)
.

This result is an improvement over Proposition 3.3 because a Pfaffian lea
another Pfaffian, while in Proposition 3.3 a determinant led possibly to the su
two determinants. Use of (6.9), (6.10), and Proposition 6.6 allows us to improve
Proposition 6.5:

Proposition 6.7. If 1 � 2p�m, then the element

Pff(X1, . . . ,X2p)

of Smn has weight(e1 + · · · + e2p,0) undergl(m,C)⊕ sp(r,C) and is a nonzero highes
weight vector.

Corollary 6.8. If µ= ∑2[m/2]
a=1 µaea is nonnegative dominant integral forgl(m,C) and has

paired entries, then the representationτµ ⊗̂ 1 occurs with multiplicity one inSmn, and the
highest weight vectors for it are the multiples of

[m/2]∏
p=1

(
Pff(X1, . . . ,X2p)

µ2p−µ2p+1
)

if µ2[m/2]+1 is interpreted as0.
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Comparison of Corollary 6.8 and Proposition 6.5 yields

Corollary 6.9. If 1� 2p �m, then the square ofPff(X1, . . . ,X2p) equals

det
({〈Xa,Xb〉} 1�a�2p

1�b�2p

)
,

apart from a nonzero multiplicative constant.

For 1� 2p �m, let us redefineV2p to beV µ,0 for µ= e1 + · · ·+ e2p. Propositions 6.6
and 6.7 combine immediately to give

Corollary 6.10. For 1 � 2p � m, the spaceV2p equals the linear span of all Pfaffian
Pff(Xa1, . . . ,Xa2p ). Here the indicesa1, . . . , a2p are between1 andm.

There is also an analog of Proposition 3.4:

Proposition 6.11. If d is odd, the space(Sdmn)
Sp of Sp(r) invariants homogeneous of degr

d is 0. If d is even, the following three spaces coincide:

(a) the space(Sdmn)
Sp,

(b) the linear span of theR(D) with ‖D‖ = d/2,
(c) the direct sum of the spacesV µ,0 for µ nonnegative dominant integral with‖µ‖ = d

and with paired entries, these spaces being of multiplicity one.

Remark. Cf. [GoW, Section 4.2].

With these tools in place, it is a simple matter to prove analogs of Theorem
Corollary 4.2, and Proposition 5.1; then Theorem 6.1 follows. For the analo
Theorem 4.1, any nonzero highest weight vector inV ν,ν ⊗ ⊕

µ V
µ,0 is of the form

φλ,ν =X(ν)⊗
∑
D with

‖D‖= 1
2 (‖λ‖−‖ν‖)

aDR(D)+
∑
γ

(
Xγ (ν)⊗

∑
D with

‖D‖= 1
2 (‖λ‖−‖ν‖)

bγ,DR(D)

)
,

and the effect ofψ is given by

ψ
(
M(φλ,ν)

) =
(

m∏
p=1

(Xpp′)νp

)(∑
D

aDψ
(
R(D)

))
.

To convert the proof of Proposition 5.1 into a proof in the current setting, only m
notational changes are needed.
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