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ABSTRACT The intertwining operators that have
been constructed for all the series of unitary representa-
tions appearing in the Plancherel formula of a connected
real semisimple Lie group of matrices are given a new
normalization and then applied in two ways. The first is to
obtain dimension formulas for the commuting algebras
of the unitary representations in question. The second is
to establish the existence of complementary series. These
bear the same relationship to the unitary representations
under study that the complementary series found earlier
bear to the principal series.

This announcement continues the applications of the
theory developed in ref. 1 of intertwining operators for
all the series of unitary representations appearing in the
Plancherel formula of a connected real semisimple Lie
group of matrices. For economy of presentation we
retain the notation of ref. 1 and shall not repeat it here.
Our interest in this note is with questions of irreduc-

ibility of the unitary continuous series and existence of
complementary series. The main result concerning ir-
reducibility is that the dimension formula for the
commuting algebra of a continuous series representation
takes the same form as for the principal series (refs. 2
and 3). If the linear functional X on a is not purely
imaginary, we say the representation UpQX, *) belongs
to the complementary series if it is possible to redefine
the inner product on the K-finite vectors for UpQX, *)
so that UpX,-) is infinitesimally unitary. We shall
obtain, by the methods of ref. 4, sufficient conditions on
the discrete series representation t of III for the existence
of values of X such that UpX, *) is in the complemen-
tary series.
The methods used in obtaining the results below in-

volve one additional tweist beyond what was already
announced in ref. 1. Recall from ref. 1 that the un-
normalized intertwining operator A (P1 P: t: X) was
proved to exist and have an analytic continuation by
using an imbedding of the discrete series t in a non-
unitary principal series representation of Al correspond-
ing to some parameters (,XM) The procedure was to
relate the operator to the intertwining operator for
the nonunitary principal series representation of G
with parameters (uX+XM); ultimately the operator
A (P1: P: X:A) is shown not to depend on the imbedding
of t. However, we used the imbedding also to obtain a
normalizing factor for A (P1:P: : X), and this factor did
depend on the imbedding. These normalizing factors
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led us to some identities for the Plancherel measure, two
of which were listed at the end of ref. 1. These normaliz-
ing factors were satisfactory for problems involving a
single i, but when more than one discrete series t was
involved, we made the assumption that the imbeddings
of the discrete series representations satisfied a com-
patibility condition.
The additional twist is that questions of irreducibility

and complementary series involve using a second normal-
izing factor. This new normalizing factor provides an
analytic tool for handling the problems of the present
note, but it does not suggest the identities for the
Plancherel measure obtained in ref. 1. Thus the full
theory of intertwining operators seems to require using
both normalizing factors. We have not been able to
determine whether the two factors can always be taken
identical.

1. Normalization of intertwining operators

We begin by describing this new normalization of
intertwining operators. First suppose that the parabolic
subgroup P = MAN has dim A = 1. Using the earlier
normalization and letting P be the opposite parabolic
subgroup, we find that

A(P:P:t:X)A(P:P:t:X) = r/(P:P:t:X)I
for a meromorphic scalar-valued function v7 of the one
complex variable X. Because of the last corollary of ref.
1, this function is even, is real on the real axis, and is
> 0 on the imaginary axis. We can therefore construct
a normalizing factor ey(P:P: t:X) for A (P: P: t:X) by the
technique of section 13 of ref. 4.

In the case for general dim A, we are to normalize
A(P2:P1*: X). For any Pi-positive reduced root a of a
(see ref. 5 for definitions) let N(a) be the analytic sub-
group corresponding to the sum of the root spaces for
the positive multiples of a, and let V(a) be the opposite
group. By a construction given in ref. 5, one can select
parabolic groups p(c),... ,P(k) such that P(1) = PI,
P(k) = P2, and V(i) n N(i+l) = V(al) for some Pi-
positive root a, of a. According to (ii) of Theorem 2 of
ref. 1, we obtain a product decomposition

A(P2:P1:t:X) = A(P(k):P(k-1): :X) ...A(P(2) P(I) AX).

Each of the operators on the right side can be identified



2460 Mathematics: Knapp and Stein

with an operator of the kind described in the previous
paragraph and so has a natural choice for normalizing
factor. We take the normalizing factor 'y(P2: P1: t: X) for
A(P2:P1:*:X) to be the product of these normalizing
factors. The normalized operator is a = ey-A.

THEOREM 1. The intertwining operators normalized
with the new normalizing factor satisfy

(i) (P2:Po: :X) = (P:PI: :X)a(PI:PO:t:X)
(ii) (P2:PI::X)* = t(PI:P2:t:-X) if the adjoint

is taken K-space by K-space.
(iii) a(P2: P1: t: X) is unitary for X imaginary.
(iv) If w in K represents a member of the Weyl group

W(a), then

a(P2:P1 : t: X) = R(w- )d(wP2w-' : wPIw-' :w :wX)R(w).

With the old normalizing factors, (i) was valid, but
we could not prove (ii) and hence (iii). Conclusion (iv)
for the old normalization used the assumption about
compatibility of imbeddings.
For w in K representing a member of W(a), let

ap(w,t,X) = R(w)(i(w-'Pw:P:*:X).
From (i) and (iv) we obtain the cocycle relation

(iP(1v2,tX) = (iP(w1,w2tw2X)tP (w2,jX).
From (ii) we find that

ap(wt'X)* = Ep(w-',wX,--wX)
and hence that (ip(w,t,X) is unitary for X imaginary.
We shall use the operators 6tp(w,t,X) in dealing with
irreducibility and complementary series.

2. Irreducibility

Let t be a discrete series representation of PIl, and let
UpQX, *) be the corresponding continuous series
representations of G. Our problem is that of determining
the algebra C(p,X) of operators that commute with the
representation Up(tX,.).

Let [f] denote the equivalence class of the discrete
series representation t of M, and let Wz,x be the sub-
group of elements s in W(a) such that s[f] = [f] and
sX = X. If w is a representative in K of an s in W(a)
and if wt and t are equivalent, then one can define t(w)
in such a way that t extends to a representation of the
smallest group containing M and w; the definition of
t(w) is unique up to a scalar factor equal to a root of
unity. Then t(w)ap(w,t,X) is independent of the rep-
resentative tv and intertwines Up, * ) with Up( ,wX, * ).
The solution of our problem now involves two elements:
first, the use of Harish-Chandra's theory of c-functions,
together with their relation to the intertwining opera-
tors as given in Theorem 3' of ref. 1; and second, the
following lemma.

LEMMA. The set of those operators t(s)ap(s,t,X) with s
in Wt,x whose normalizing factors are holomorphic at X is

To proceed further, we shall describe below a de-
composition of WE, as a semi-direct product We,>. =

W' aRt ,;, where Rt, normalizes W't, and where
W'E,x is itself a Weyl group.

THEOREM 2. (i) For s in WEx, t(s)a,(s,t,X) is scalar
if and only if s is in W'E,,.

(ii) The operators t(r)ap(r,t,X) for r in
RE, are linearly independent and span the commuting
algebra Cp(t,X).

(iii) Consequently, dim ep(%,X) = jRtx|.
To give the formula for the dimension of ep(,X) in

terms of Plancherel measures, we write ,1s(2,X) =

H,4t, (X), where the lu,,o are the Plancherel measures of
ref. 5 and the product defining ,A' is taken over all
reduced > 0 such that sf3 < 0.

COROLLARY. dim ep( ,X) = I{s e WEIs(jX) 0} I.

Incidentally it follows from Theorem 3 and Corollary
2 of ref. 1 that A' is also given by

JA X) = ctppW(X + XM),
where t is imbedded at (AXM) and w is the element of
shortest length in W(a,) whose restriction to a is s;

pats is the principal series Plancherel factor in ref. 2, p.

265, and the constant cz depends on t and the imbedding.
We come now to the description of W' , and Rz,.

Simple examples show that the roots of a, which are

nonzero restrictions to a of roots of a, = a + aM, do not
form a root system. There is a conjugation defined on

linear functionals on a, as the identity on the a part and
minus the identity on the aM part. It follows from the
fact that M has a discrete series that the conjugate a
of an a,-root a is again an a,-root. A root of a will be
called useful if it is the restriction to a of some a,-root a

with 2 (a,&)/|a|2 # 1. We quote the main theorem of
ref. 6.

THEOREM 3. The useful roots of a form a (possibly
nonreduced) root system Ao in a subspace of a. A reflection
pa of a root of a is in W(a) if and only if t/3 is useful for
some t > 0, if and only if itself is useful in case g has
no split G2 factors. Moreover, W(a) coincides with the
Weyl group of AO.
As in our work (ref. 3) in the case of minimal para-

bolics, we fix P and define for X imaginary

A' = {roots of alps E WE A and 4t,(AX) = 0}

Rt,),= {p E We, pIP > Ofor every > 0 in A'}.

One can show that A' is the set of a-roots such that
t(p,)ap(pS,tX) is scalar. Then Theorem 3 above and
Theorem 2 of ref. 1 imply that A' is a root system. Let

W'Z,x be its Weyl group. Rt,x is a group that normalizes

W'Z,;, and Wt,, = W't,x RE,.
3. Complementary series

Let Xo be imaginary on a, and consider the question
linearly independent.
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whether there are complementary series representations
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near the point (Q,X0). Aside from an obvious symmetry
condition, the obstruction to this possibility is the de-
gree of reducibility of the representation Up(Q,Xo, .); or,
put another way, matters depend on the subgroup
W'tx, discussed above. However, since it is not hard to
see that W'E,).O C W'to, the whole question is subsumed
by the case Xo = 0. Recall that W'Eo is a Weyl group,
and hence as soon as it is nontrivial it contains elements
of order 2.

THEOREM 4. Let t be a discrete series representation of
M, and suppose W'Z,o is not the one-element group. If s
is any element of order 2 in W't,oy then every complex X
that is not purely imaginary and satisfies

(i) sX= -X

(ii) Re (( ' < 1/4 for every root a of a
(a,a)

is such that UpQ,X,* is in the complementary series.
TAeorem 4 is proved by the technique of section 19 of

ref. 4 after an investigation of the poles of the operators
A(P:P: :X) and the zeros and poles of r(P:P: :X) for
the case of P = MAN with dim A = 1. The constant
1/4 can be replaced by 1/2 for the case that P is a

minimal parabolic; in the minimal case this is the best
possible universal constant. For earlier results in the
direction of Theorem 4, see ref. 7, Theorem 8 of ref. 4,
and Theorem 13 of ref. 5.
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