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The elementary theory of Lie1 groups has something in common with precalculus:
One wants to get past it in order to get on with the beautiful and powerful theory that
follows, as well as the applications. With precalculus the theory that follows is built
around calculus and its fundamental theorem, extending into calculus of several vari-
ables and having profound applications through the subject of differential equations.
With Lie groups the theory that follows is due to Élie Cartan (1869–1951) and Her-
mann Weyl (1885–1955) and concerns compact Lie groups and their representations,
as well as real and complex semisimple Lie algebras and Lie groups; the Cartan–Weyl
theory introduces one to the exceptional Lie algebras and their remarkable manifesta-
tions throughout mathematics, it extends via the work of Harish-Chandra (1923–1983)
and others into representation theory and harmonic analysis, and it has applications in
many branches of mathematics.

Another thing in common for precalculus and elementary Lie theory is that the
beautiful and powerful mathematics that follows—calculus in the first case and
Cartan–Weyl theory in the second case—brings together several branches of math-
ematics, serving as a reminder that mathematics is a unifying force rather than a
springboard to greater and greater specialization. In fact, because of its great beauty,
its wide applicability, and its unifying effect, Cartan–Weyl theory is on my own
personal list of What Every Young Mathematician Should Know.

If Cartan–Weyl theory is to be accessible to every young mathematician, one has to
include it earlier in the curriculum than is done at present in the United States, where it
might occur as an elective for second-year graduate students. In turn, some provision
has to be made to teach elementary Lie theory earlier and more rapidly than now,
with fewer prerequisites. A number of people who share my sentiments have given
considerable thought to how this miracle might be accomplished, and the two books
under review are the authors’ contributions to this effort. Both books purport to be for
“undergraduates,” and we return to them in a moment.

There is another difficulty with teaching elementary Lie theory at its current normal
pace. For a point of reference, consider the effect of lingering too long over precal-
culus. We know what happens. Large numbers of students end up with a feeling of

1Pronounced “Lee.”
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having seen a jumble of unrelated topics that are going nowhere. Many who once vi-
sualized that they would be taking calculus shortly afterward instead make precalculus
into their final mathematics course. And potentially they carry a bad attitude toward
mathematics with them throughout their lives.

I have the sense that, in a similar way but on a smaller scale, lingering too long over
the elementary theory of Lie groups can dampen the spirit and prevent people from
ever getting to the beautiful and powerful Cartan–Weyl theory that comes afterward.

1. ELEMENTARY LIE THEORY. Let us understand, then, what elementary Lie
theory is. The subject has evolved considerably since the days of Sophus Lie (1842–
1899), but its basic shape stabilized for the most part upon the publication in 1946 of
the pioneering book [4] of Claude Chevalley (1909–1984). A short 1930 book [3] by
Cartan, equally pioneering, had paved the way. If we are willing to ignore a number of
details, the subject has two ingredients and three correspondences. The two ingredients
are Lie groups and Lie algebras.

A Lie group is first of all a group, and in addition it has the structure of a smooth
manifold; these two structures are related in that multiplication and inversion are re-
quired to be smooth mappings. To understand this definition fully, one needs to know
something about abstract groups, point-set topology (at least for metric spaces), topo-
logical groups, and smooth manifolds and maps (including the use of the Inverse and
Implicit Function Theorems). There are some easily accessible examples, such as Eu-
clidean space under addition and the real general linear group of a particular size,
i.e., the space of nonsingular real square matrices with matrix multiplication as group
operation. But these are not so illuminating, and the construction of illuminating ex-
amples requires hard work. To a student it may seem that meaningful examples are
being withheld for what feels like too long a time.

The Lie algebras of interest are finite-dimensional real vector spaces with a multi-
plication law that satisfies certain properties. A simple but important example is the
vector space of all square matrices of a particular size with multiplication law given by
[A, B] = AB − B A. Moreover, any vector subspace that is closed under the product
operation is again a Lie algebra; for instance the subspace of skew-symmetric square
matrices of a particular size has this closure property. To understand this definition
fully requires only a little linear algebra, including acquaintance with linear transfor-
mations. Examples abound.

For each of the three correspondences, there is a direct part and an inverse part.
The first direct correspondence is that to each Lie group corresponds a Lie algebra,
specifically by passage to “left-invariant vector fields.” To understand this notion fully
requires understanding tangent spaces, computing with vector fields, and working with
bracket products of vector fields. Examples of the first correspondence are limited by
how many examples one knows of Lie groups. One can at least see that the Lie algebra
of the general linear group of a particular size can be identified with the vector space
of all square matrices of that size with bracket product [A, B] = AB − B A.

The second direct correspondence is that to each subgroup of a certain kind corre-
sponds a Lie subalgebra. The subgroups in question are themselves Lie groups, and one
is again hindered in giving examples by not knowing many specific Lie groups. How-
ever, one can construct one-parameter subgroups with less than full-strength pain, and
these provide examples; what is needed for their construction is the standard existence-
uniqueness theorem for systems of ordinary differential equations. Once this work has
been done, a little more effort will allow one to prove that a closed subgroup of a Lie
group is a Lie group; this is a theorem of John von Neumann (1903–1957) for sub-
groups of general linear groups and is due to Cartan [3] for arbitrary Lie groups. At
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this stage one has an extensive supply of examples—rotation groups, for example, and
many others.

The third direct correspondence is that to each smooth homomorphism of Lie
groups, there corresponds a homomorphism of Lie algebras. To understand this def-
inition fully requires only a knowledge of abstract homomorphisms, the notion of
smoothness of a map, and the notion of the differential of a map at a point; these are
likely to be learned at the same time as abstract groups, smooth manifolds, and tangent
spaces. Examples are not too hard to come by if the theorem of von Neumann and Car-
tan is known; one can readily construct many examples of interesting homomorphisms
between Lie groups of matrices.

The inverse part for each correspondence tells the extent to which the direct part is
one-to-one and is onto something easy to describe. The identity component of a Lie
group is always an open set, as well as a subgroup, and the Lie algebra cannot dis-
tinguish between the whole group and the identity component. Thus connectivity of
the group or subgroup always has to be assumed in discussing the inverse correspon-
dences.

For the first correspondence two connected Lie groups with isomorphic Lie algebras
are not necessarily isomorphic, but they must have covering groups that are isomor-
phic. To understand this statement fully, one has to know something about covering
groups or covering spaces. The statement that the correspondence is onto something
easy to describe asserts that every (finite-dimensional real) Lie algebra is isomorphic
to the Lie algebra of some Lie group; since 1930 this result has been known as Lie’s
Third Theorem, and its proof is beyond the scope of elementary Lie theory.

The second correspondence is the key one, and this is the big new result in Cheval-
ley’s book. The theorem of von Neumann and Cartan shows that connected closed
subgroups of a given Lie group correspond to subalgebras of the Lie algebra, and they
do so in one-to-one fashion. But the well-known example of a two-dimensional torus
shows that one should consider a wider class of connected subgroups than the closed
ones. The torus can be regarded as the set of pairs (eiθ1, eiθ2) with θ1 and θ2 real. The
group operation is multiplication in each coordinate, which can be viewed as addition
modulo 2π of the exponent in each coordinate. The Lie algebra as a vector space can
be identified with the tangent space at the identity element of the group. The tangent
space at the identity for the torus can be identified in turn with the set of all pairs
(θ1, θ2), and the bracket operation is identically 0. The closed one-dimensional sub-
groups of the torus are given by the sets where θ1 = 0 and where θ2 = rθ1, r being
any rational number. These correspond to the lines {(0, θ)} and {(θ, rθ)}, i.e., the lines
with rational slope. To get a good correspondence, one wants to realize lines of ar-
bitrary slope in the tangent space as in the image, and this means that one needs to
consider the set with θ2 = rθ1, r being irrational, as an allowable subgroup. This sub-
group is dense and not closed. So the “right” definition of allowable subgroup has to
include certain nonclosed subgroups as well as the closed ones. Chevalley found the
right definition. The connected subgroups that he worked with were called “analytic
subgroups”; their definition will not concern us. With the definition in hand, Chevalley
proved that the correspondence of analytic subgroups to subalgebras of the Lie algebra
is one-to-one and onto. This is a difficult theorem. It has a local part involving partial
differential equations that comes down to a theorem of Frobenius, and it has a global
part involving tricky point-set topology.

The third correspondence associates homomorphisms of Lie algebras to homomor-
phisms of Lie groups, and it does so in a one-to-one fashion if the domain group is
connected. The “onto” statement is more subtle: a homomorphism of Lie algebras lifts
to a homomorphism of Lie groups provided the domain is connected and simply con-
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nected. A clever idea in [4] largely reduces this theorem to the result that attaches an
analytic subgroup to a Lie subalgebra. Namely, let G and H be the given groups. The
Lie algebra of G × H is the direct sum of the Lie algebras of G and H , and one forms
in it the graph of the given homomorphism; this is a Lie subalgebra. Let G̃ be the cor-
responding analytic subgroup of G × H . The projection of G̃ to the first coordinate of
G × H is shown to be a covering map and has to be an isomorphism since G is simply
connected. Thus G maps into G̃; the composition of this map with the projection of G̃
to the second coordinate of G × H is the desired homomorphism of groups.

The preceding description of the content of elementary Lie theory makes clear that
the subject involves extensive prerequisites from a variety of areas. On the one hand,
students who learn elementary Lie theory in this traditional way get to see relationships
among diverse areas of mathematics. On the other hand, it takes them a long time, and
they may get discouraged in the process. In that case they may never get to the beautiful
mathematics that follows.

2. CARTAN–WEYL THEORY. The purpose of trying to move elementary Lie the-
ory to an earlier place in the curriculum is to make room for Cartan–Weyl theory,
which is on that list of What Every Young Mathematician Should Know.

To understand a little about Cartan–Weyl theory, it is helpful to have some back-
ground. We continue to insist that our Lie algebras are finite-dimensional, but we shall
now allow them to have real or complex scalars. In either case an ideal in a Lie algebra
is a Lie subalgebra such that [X, Y ] is in the ideal if X is in the ideal and Y is in the
whole Lie algebra. A simple Lie algebra is a nonzero Lie algebra whose only ideals
are 0 and the whole Lie algebra, except that, by convention, a one-dimensional Lie al-
gebra is not considered to be simple. In the study of Lie algebras one’s attention soon
focuses on the simple ones and their direct sums, which are called semisimple.

In his 1894 thesis, Cartan, correcting and improving earlier work of Wilhelm Killing
(1847–1923), classified the simple Lie algebras when the scalars are complex. Among
them, there are some infinite classes: the complex square matrices of trace 0 of each
size ≥ 2, the complex skew-symmetric square matrices of each size ≥ 3 except 4, and
the complex square matrices X of size 2n satisfying X tr J + J X = 0, where J is the
2n-by-2n matrix given in block form by

J =
(

0 1
−1 0

)

and where n ≥ 2. These were all known to Lie. The subject of Lie groups would be
comparatively easy but for the existence of five exceptional simple Lie algebras, of
respective dimensions 14, 52, 78, 133, and 248. These five Lie algebras keep popping
up in unexpected places in mathematics and have intrigued people ever since Cartan
first constructed them.

A representation of a Lie algebra is a homomorphism ϕ into the Lie algebra of all
linear transformations on a complex vector space V , the bracket rule being [A, B] =
AB − B A. The representation is irreducible if it is not zero and there is no nontrivial
subspace of V left invariant by all the transformations ϕ(X) for X in the Lie algebra.
There is a natural definition of isomorphism. In a 1913 paper Cartan classified, up to
isomorphism, the irreducible representations of any complex semisimple Lie algebra.
The relevant theorem is known as the Theorem of the Highest Weight. As might be
expected, the tools were completely algebraic.

In view of the correspondence between Lie groups and Lie algebras, it is natural
to define a representation of a Lie group to be a smooth homomorphism of the group

May 2003] REVIEWS 449



into the Lie group of all invertible linear transformations on a complex vector space.
Oddly, however, representations of (infinite) Lie groups were not considered by anyone
until the 1920s. Issai Schur (1875–1941) began the study of representations of the
rotation and unitary groups, and in short order, Weyl classified, up to isomorphism,
the irreducible representations of all compact connected Lie groups. His methods were
direct and analytic, and the relevant theorem is a version of the Theorem of the Highest
Weight. Weyl went on to establish a character formula and a dimension formula for
his representations.

Cartan discovered the relationship between the two versions of the Theorem of the
Highest Weight. Here it is, in part: Any compact connected Lie group is the commut-
ing product of the commutator subgroup and the identity component of the center. The
commutator subgroup is compact and connected, and its Lie algebra is semisimple
(with real scalars). The identity component of the center has only a minor effect on
matters, and so one might as well assume that the given compact connected Lie group
coincides with its commutator subgroup and therefore is semisimple in the sense of
having a semisimple Lie algebra. The complexification of this semisimple Lie algebra
will be one to which the Cartan theorem applies, and then the two versions of the the-
orem come to roughly the same thing if one takes into account the Lie correspondence
between homomorphisms of groups and homomorphisms of their Lie algebras. Con-
versely, for any complex semisimple Lie algebra V of complex dimension n, there is
a real subspace U of real dimension n such that V = U + iU and U is the Lie algebra
of some compact connected semisimple Lie group. Thus Weyl’s theorem applies, and
again the two versions of the theorem come roughly to the same thing. To get a pre-
cise match, one invokes a further theorem of Weyl—that if U is a compact connected
semisimple Lie group, then any connected Lie group having an isomorphic Lie algebra
is itself compact; otherwise said, the universal covering group of a compact connected
semisimple group is compact. For a simply connected compact connected Lie group,
the irreducible representations correspond exactly, via the Lie correspondence, to the
irreducible representations of the complexified Lie algebra.

This is the essence of Cartan–Weyl theory. It has applications in real and complex
analysis, algebraic number theory, algebraic geometry, topology, differential geometry,
differential equations, and mathematical physics.

3. BOOKS INTRODUCING LIE THEORY VIA LINEAR GROUPS. A way to
get into elementary Lie theory more quickly with fewer prerequisites is to concentrate
on linear groups, by which is meant groups of nonsingular real or complex square
matrices. Or at least one can introduce linear groups first and continue with more
general Lie groups later.

Most authors who follow this approach work with closed linear groups, which we
know are going to be Lie groups because of von Neumann’s theorem. If G is such a
group, the Lie algebra of G can be defined immediately and concretely as the set g
of all matrices c′(0), where t �→ c(t) is a smooth curve of matrices with c(t) in G for
all t and with c(0) equal to the identity. It is fairly easy to see that g is a Lie algebra,
and in special cases such as when G is a rotation group, one can readily compute g.
For any square matrix X , if eX denotes the usual power series for the exponential
function, eX = ∑∞

n=0 X n/n ! , then t �→ et X is a smooth curve whose value at t = 0 is
the identity matrix and whose derivative at t = 0 is equal to X . From the fact that G
is closed, it takes only a page to see that if X is in g, then et X is in G for all real t .
Consequently g may also be defined as

{X | et X is in G for all real t}.
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In turn, it is then not very hard, using only sophomore mathematics and the definition
of smooth manifold, to prove von Neumann’s theorem that G is indeed a Lie group.
Godement [7] and Howe [9] give proofs along these lines, and a shorter proof, worked
out with D. A. Vogan, appears in Chapter I of [11]. An improved version of the latter
proof appears in the Introduction of the second edition of [12]. At any rate, once one
has this theorem, many examples of Lie groups are at hand, and it is easy to establish
the direct parts of the Lie correspondence to the extent that they apply to closed linear
groups.

At least twenty-five books on elementary Lie theory have been written since Cheval-
ley’s in 1946, and many of them treat some or all of Cartan–Weyl theory; in addition,
there are a number of other books that skip elementary Lie theory and begin with
Cartan–Weyl theory. Some of the twenty-five—including ones by Freudenthal and de
Vries [7], M. L. Curtis [5], Godement [8], Sattinger and Weaver [13], and Ise and
Takeuchi [10]—treat closed linear groups before (if ever) defining general Lie groups.
The books by Baker and Rossmann under review are in this category.

The competitors all have disadvantages from the point of view of the present review:
Freudenthal–de Vries [7] is too hard, and its notation is difficult to absorb. Curtis
[5] is too easy, written more as a book to exercise one’s undergraduate skills than to
teach elementary Lie theory. Godement [8] is nice and is thorough, but one has to
go through two lengthy chapters of prerequisites before coming to von Neumann’s
theorem; in addition, American undergraduates may be less than pleased that it is in
French. Sattinger–Weaver [13] is written with physicists in mind, and its standards of
precision probably will not please mathematicians. Part I of Ise–Takeuchi [10] contains
material about elementary Lie theory, some parts of Cartan–Weyl theory, and some
material beyond those topics, but it is only about a hundred pages total and is not
sufficiently self contained.

The advertising for the books under review suggests that the books are at a level
suitable for advanced undergraduates, but “undergraduates” is to be understood in the
British or Canadian sense. For students in the United States, the level is more at the
first-year graduate level.

4. BAKER’S BOOK. Baker is a topologist, and the preface indicates that his book
is an outgrowth of a course he taught while on leave one semester. He says that the
beginning of the book is influenced by Curtis [5], and it appears that some later mate-
rial is influenced by the wonderful book [1] by the late topologist J. F. Adams. These
influences are noticeable but not large.

Baker’s preface mentions three chains of chapters running through the text. The
main one from the point of view of this review consists of Chapters 1, 2, 3, and 7 and
is the elementary course in Lie theory. Closed linear groups (called “matrix groups”
in the text) are defined in Chapter 1, the exponential of a matrix is in Chapter 2,
and the direct parts of the three Lie correspondences are in Chapter 3. Largely, how-
ever, the first three chapters are reviewing prerequisite material and providing exercises
for the reader in working with matrices. The proof of the von Neumann theorem fol-
lowing Howe [9] appears in Chapter 7 shortly after the definitions of manifolds and
Lie groups. The direct parts of the three Lie correspondences for Lie groups and their
closed subgroups are in Chapter 7 as well. The chapter contains one particularly nice
example, namely, the quotient of the group of real matrices of the form

1 x z
0 1 y
0 0 1
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by the discrete subgroup in which x = y = 0 and z is any integer, and Baker proves
that this Lie group is not isomorphic to a group of matrices.

Elementary Lie theory has a trap for topologists who like to define submanifolds to
be closed, and Baker fell into the trap. In his definition of continuous homomorphism
between closed linear groups, he insists that such a homomorphism have closed image,
and therefore the inclusion into the torus of one of the lines of irrational slope is not
for him a continuous homomorphism. He will end up with trouble when he confronts
analytic subgroups. Adams did not fall into this trap.

The best of the three chains of chapters is the middle one, consisting of Chapters 4,
5, 6, 8, and 9. For the most part these chapters do computations with specific examples,
establishing canonical forms and other structure theorems for certain classes of groups.
They also introduce certain important homogeneous spaces, such as Grassmannians.
Chapter 6, which is about Lorentz groups, is marred by the fact that its canonical-form
theorem about Lorentz groups is false. If the theorem were valid, a Lorentz group
could contain no matrix other than the identity whose only eigenvalue is 1. However,
Lor(2, 1) contains the element


 1 1 −1

−1 1/2 1/2
−1 −1/2 3/2


 ,

which has 1 as its only eigenvalue.
The other chain of chapters is 10, 11, 12 and concerns a part of Cartan–Weyl theory.

The writing in these chapters appears to be a sketchy summary of part of Adams [1],
and I think that a person would be better off by reading this material in [1].

I do not like Baker’s book. A serious problem is that there is no mention at all of the
inverse Lie correspondences. A lecturer could not readily fix this problem by adding
supplementary material because continuous homomorphisms have been defined too
narrowly.

There are other nonstandard definitions as well, such as for “inner product,” and
one cannot expect to remember some of the nonstandard multiple-letter symbols for
groups. A blunder occurs on page 182 when Baker wants to define separability of
a topological space as referring to a countable base but instead says, “A topological
space X is separable if it has a countable open covering.”

The prerequisite material at the beginning is uneven, unclear, and occasionally
sloppy. For example, after defining “compact” in a Euclidean space as closed and
bounded, he transfers this statement to matrix space in Proposition 1.19 but precedes it
with the comment, “Our next result is standard for metric spaces.” What he apparently
means is that the equivalence of closed and bounded with the properties in Proposition
1.19 extends to all metric spaces; one is not to infer anything about general compact-
ness, which is defined a few lines later. He refers to a particular situation on page 19
as a group action but does not define group action until page 37. He defines “curve”
but not “path” and uses both. His definition of “hyperplane reflection” on page 23 is
internally inconsistent unless he means something unusual by “represents.” And so
on.

The book has enough errors, misleading statements, and typographical errors that it
would be really hard to read the book for independent study. Even a lecturer using the
book would not have an easy time. It is an important job for mathematicians to make
Lie theory more widely accessible, and Baker is to be applauded for trying. But this
book does not represent progress toward that goal.
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5. ROSSMANN’S BOOK. Rossmann’s book is a gem. The book, as he says in the
preface, results from a “trail of lecture notes” left from teaching elementary Lie theory
a number of times. These notes were combined and edited, and they eventually became
the book. For the students he was teaching, he was quite interested in reducing the
list of prerequisites considerably, and working with linear groups enabled him to get
by with only linear algebra, advanced calculus, and the rudiments of group theory.
He adds, “a desire to shorten the list of prerequisites is not the only reason for the
point of view taken; the restriction to linear groups seems desirable to me, even if
the prerequisites are available; for it puts into focus from the beginning the essential
aspects of the theory, free of technicalities.”

Rossmann’s treatment of elementary Lie theory for linear groups occupies the first
two chapters and takes ninety pages. In those chapters he establishes, within the con-
text of linear groups, all the Lie correspondences and their inverses except for Lie’s
Third Theorem. Only after those ninety pages does he introduce the general definition
of Lie group. His development has some elements that are new to me, and I regard
those elements as a breakthrough in making elementary Lie theory more widely ac-
cessible.

Chapter 1 is about thirty pages long. It works at length with the exponential for ma-
trices, giving examples, and then computes the derivative for all t of exp X (t) for an
arbitrary curve X (t) of matrices. Armed with this, Rossmann derives the Campbell-
Baker-Hausdorff formula, following the argument in [6]; this formula expresses a ma-
trix Z in terms of iterated brackets of X and Y when X , Y , and Z are small and
eZ = eX eY .

In Chapter 2 Rossmann works with absolutely arbitrary linear groups G, with no
restriction on the topology. He defines the Lie algebra g of G, as was done earlier in
this review, to be the set of derivatives at t = 0 of smooth curves of matrices that take
values in G for all t and that are the identity at t = 0. As always, g is indeed a Lie
algebra. On page 46 comes the remarkable result that eX is in G whenever X is in g,
without any topological assumption on G.

The proof of this result is correct, but this is one of two places in the book where
there are undefined terms and confusing misprints. Because of the importance of this
result to Rossmann’s approach, I shall list the corrections: In the second paragraph of
the proof, ak(τ ) is a smooth curve with ak(0) = 1 and a′

k(0) = Xk , and a recurring
notation of the form “h : s · · · → M” indicates what would usually be written as “h :
s → M .” In the line after the display, insert “and” before “dg0 X = X .” In the next
line, insert “to” after “complementary.” In the next-to-last line on the page, change
“defined on” to “defined and.” On line 4 of page 47, change “is a neighborhood” to “in
a neighborhood.”

Next Rossmann introduces an intrinsic topology on G, often finer than the rela-
tive topology. The identity component will be open, and there may be uncountably
many components. A neighborhood basis of a in G is defined to consist of the sets
{aeX | X ∈ g and ‖X‖ < ε} as ε varies. Using this definition, he introduces a notion
of coordinates and does everything with them except call them a manifold.

The “analytic subgroups” in the sense of Chevalley will be the subgroups that are
connected in their intrinsic topology. The reader has a few specific examples at this
stage because Rossmann has shown that the image of the exponential map generates
the whole group for some particular linear groups. The von Neumann theorem would
show that any closed subgroup that is connected in its ordinary topology is connected
in its intrinsic topology. That theorem could well be proved now, in order to provide
further examples, and I would have preferred that; but it does not appear until twenty-
five pages later.
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The final step of this construction is to prove the direct and inverse part of the sec-
ond Lie correspondence, and the argument is beautiful. The way that the assumption
of closure under brackets enters for g is through the Campbell-Baker-Hausdorff for-
mula, and the main analytic tool is the Baire Category Theorem; the latter is proved
in the text after the proof of the second correspondence. The proof as a whole of the
correspondence is correct, but this is the other of the two places in the book where
misprints cloud what is happening.

Most of the misprints involve missing auxiliary symbols. On page 68 in the display
before (1), change the left side to “(exp Ū )k .” In (2), change exp Ū to exp U . Insert a
tilde over “U” on the right side of the display after (2) and in the definition on the next
line, also on the ε that occurs twice on that line. Insert a tilde once on the left side on
(3), twice on the line of text afterward, and once on the left side of (4). At this point the
Campbell-Baker-Hausdorff formula on the ambient group can be invoked to conclude
(5) but with “X̃” on the right side in place of “X .” Insert tildes twice on “X” in the
next-to-last line of page 68 and once on the left side of the bottom display, as well as
on the left side of the first two displays on page 69. In the last line of the proof, change
“U” to “Ũ .”

In treating the third Lie correspondence, Rossmann follows Chevalley [4] in avoid-
ing the introduction of the fundamental group and the construction of covering spaces,
but Rossmann’s argument for the rest is tidier. A covering G̃ → G, in the context of
Lie groups, is for Rossmann a smooth homomorphism of G̃ onto G with discrete ker-
nel. To pass to a homomorphism between analytic groups G and H when a homomor-
phism is given between their Lie algebras, Rossmann begins with the clever idea from
[4] that was mentioned earlier in this review: he forms a subgroup G̃ of G × H and
obtains, by restricting the projection maps on G × H to G̃, smooth homomorphisms
G̃ → G and G̃ → H . The first of these projection maps exhibits G̃ as a covering of
G, and the second is the required smooth homomorphism of groups. The group G̃ is a
linear group, being a subgroup of the linear group G × H .

In response to an inquiry, Rossmann explained how he discovered all this. He was
reading deep inside the Bourbaki treatment of Lie groups and came upon a result 2 that
seemed to provide him with new structure that he had not seen before. He wondered
what the structure would be like if specialized to linear groups and was led to the
foregoing approach.

Chapter 3 is about the classical complex semisimple Lie groups and does the Cartan
part of some of Cartan–Weyl theory for them; the reader gets to see a full-fledged def-
inition of fundamental group at this point, together with computations of fundamental
groups.

Chapter 4 is about manifolds, homogeneous spaces, and general Lie groups. The
general exponential map is constructed from integral curves in a standard way, and
Rossmann shows how the general Campbell-Baker-Hausdorff formula and similar re-
sults can be proved by easy adaptations of his arguments for linear groups.

The last hundred pages do the Weyl part of the Cartan–Weyl theory for unitary
groups, developing all the necessary additional tools. Toward the end, the book proves
the Borel–Weil theorem for unitary groups, providing a concrete realization of each of
the irreducible representations.

Rossmann’s book is a pioneering treatment of elementary Lie theory, in the same
sense as the books of Cartan and Chevalley. It takes a big step toward making elemen-
tary Lie theory widely accessible to mathematicians.

2Proposition 9 of [2, chap. III, sec. 4, no. 5]. The result in Rossmann’s book that is closest to this is
Proposition 1 on page 55.
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Reviewed by Marion Cohen

When I was in my early teens, fresh from my first course in algebra, and newly and
madly in love with mathematics, I could not bring myself to leave anything out. A
proof, that is, had to be the proof, the whole proof, and nothing but the proof—with
the emphasis on “whole.” I checked every computation, retraced every step, and rein-
vented every wheel. Forty years later, I am more willing to believe what I read. This is
partly because I am often satisfied with a general impression, partly because I’d rather
concentrate my efforts on the essence, and partly, perhaps, because I’m just plain lazy
and sometimes allow myself to succumb to the myth that mathematics is a younger
person’s game. If an author says she’s gone through the lengthy calculations, I trust
her and move on to the next theorem.

That’s why I was able to relax without guilt and enjoy the luxuries of Mathematical
Treks, a collection of expository articles that Ivars Peterson wrote for Science News.
They aim to convey the main points of some interesting pieces of mathematics in a
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