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PREFACE TO THE SECOND EDITION

The publication of a second edition is an opportunity to underscore that
the subject of Lie groups is important both for its general theory and for its
examples. To this end I have added material at both the beginning and the
end of the first edition.

At the beginning is now an Introduction, directly developing some of
the elementary theory just for matrix groups, so that the reader at once
has a large stock of concrete and useful examples. In addition, the part
of Chapter I summarizing the full elementary theory of Lie groups has
been expanded to provide greater flexibility where one begins to study
the subject. The goal has been to include a long enough summary of the
elementary theory so that a reader can proceed in the subject confidently
with or without prior knowledge of the detailed foundations of Lie theory.

At the end are two new chapters, IX and X. Partly these explore specific
examples and carry the theory closer to some of its applications, especially
infinite-dimensional representation theory. Chapter IX is largely about
branching theorems, which have applications also to mathematical physics
and which relate compact groups to the structure theory of noncompact
groups. Chapter X is largely about actions of compact Lie groups on
polynomial algebras. It points toward invariant theory and some routes to
infinite-dimensional representation theory.

The reader’s attention is drawn to the Historical Notes near the end of the
book. These notes often put the content of the text in a wider perspective,
they supply certain details that have been omitted in the text, and they try
to anticipate and answer questions that the reader might ask.

Here is more detail about how the second edition differs from the first,
apart from minor changes: The Introduction is all new, expanding upon two
pages from §I.10 of the first edition. The main change within Chapter I
is that the discussion of the elementary theory of Lie groups in §10 has
been expanded into four sections, providing more detail about the theory
itself and adding material about covering groups, complex structures and
complex Lie groups, and the real analytic structure of Lie groups. Results
about the largest nilpotent ideal in a Lie algebra have been added to §6,
and the section on classical semisimple Lie groups has been adjusted to be
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xii Preface to the Second Edition

compatible with the new Introduction. In addition, some of the problems
at the end of the chapter have been replaced or adjusted.

In Chapters II through VIII, the text contains only a few significant
additions. A new Proposition 2.13 improves on the first edition’s Corollary
2.13 by enabling one to recognize subalgebras of a complex semisimple
Lie algebra that can be extended to Cartan subalgebras. To §III.3 has been
added the left Noetherian property of universal enveloping algebras. A
paragraph has been added at the beginning of §IV.3 to smooth the transition
to the new Chapter IX. In Chapter VII, Sections 1 and 9 make use of new
material from Chapter I concerning complex structures. In Chapter VIII, a
misleading and incorrect example in §5 has been excised, and Lemma 8.57
represents a tightening of the proof of Theorem 8.60. Most chapters from
II through VIII contain additional problems, either just before the blocks
of related problems begin or at the very end. One block of problems in
Chapter V has been postponed to Chapter IX.

Chapters IX and X are new to the second edition. Appendix A contains a
new section on left Noetherian rings, and Appendix B contains new sections
that state and prove Ado’s Theorem and the Campbell–Baker–Hausdorff
Formula. The Historical Notes and the References have been expanded to
take the new material into account.

The only chapter in which sections have been renumbered is Chapter I,
and the only places in which results have been renumbered are in Chapters I
and III and in Appendix A.

In writing the second edition, I was greatly assisted by Paul Friedman,
who read and criticized several drafts, spending a great deal of time helping
to get the exposition right. I could not have finished the project successfully
without him and am extremely grateful for his assistance. I was helped also
by P. Batra, R. Donley, and D. Vogan, who told me of the errors that they
had found in the first edition, and I thank them for their efforts.

Much of the second edition was prepared while I was a visitor at the
Institute for Advanced Study, and I appreciate the Institute’s hospitality.
As was the case with the first edition, the typesetting was byAMS-TEX,
and the figures were drawn with Mathematica�.

June 2002



PREFACE TO THE FIRST EDITION

Fifty years ago Claude Chevalley revolutionized Lie theory by publish-
ing his classicTheory of Lie Groups I. Before his book Lie theory was a
mixture of local and global results. As Chevalley put it, “This limitation
was probably necessary as long as general topology was not yet sufficiently
well elaborated to provide a solid base for a theory in the large. These days
are now passed.”

Indeed, they are passed because Chevalley’s book changed matters.
Chevalley made global Lie groups into the primary objects of study. In
his third and fourth chapters he introduced the global notion of analytic
subgroup, so that Lie subalgebras corresponded exactly to analytic sub-
groups. This correspondence is now taken as absolutely standard, and any
introduction to general Lie groups has to have it at its core. Nowadays
“local Lie groups” are a thing of the past; they arise only at one point in
the development, and only until Chevalley’s results have been stated and
have eliminated the need for the local theory.

But where does the theory go from this point? Fifty years after Cheval-
ley’s book, there are clear topics:É. Cartan’s completion of W. Killing’s
work on classifying complex semisimple Lie algebras, the treatment of
finite-dimensional representations of complex semisimple Lie algebras and
compact Lie groups by Cartan and H. Weyl, the structure theory begun by
Cartan for real semisimple Lie algebras and Lie groups, and harmonic
analysis in the setting of semisimple groups as begun by Cartan and Weyl.

Since the development of these topics, an infinite-dimensional represen-
tation theory that began with the work of Weyl, von Neumann, and Wigner
has grown tremendously from contributions by Gelfand, Harish-Chandra,
and many other people. In addition, the theory of Lie algebras has gone in
new directions, and an extensive theory of algebraic groups has developed.
All of these later advances build on the structure theory, representation
theory, and analysis begun by Cartan and Weyl.

With one exception all books before this one that go beyond the level
of an introduction to Lie theory stick to Lie algebras, or else go in the
direction of algebraic groups, or else begin beyond the fundamental “Car-
tan decomposition” of real semisimple Lie algebras. The one exception
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xiv Preface to the First Edition

is the book Helgason [1962],* with its later edition Helgason [1978].
Helgason’s books follow Cartan’s differential-geometry approach,
developing geometry and Lie groups at the same time by geometric
methods.

The present book uses Lie-theoretic methods to continue Lie theory
beyond the introductory level, bridging the gap between the theory of
complex semisimple Lie algebras and the theory of global real semisimple
Lie groups and providing a solid foundation for representation theory. The
goal is to understand Lie groups, and Lie algebras are regarded throughout
as a tool for understanding Lie groups.

The flavor of the book is both algebraic and analytic. As I said in a
preface written in 1984, “Beginning with Cartan and Weyl and lasting
even beyond 1960, there was a continual argument among experts about
whether the subject should be approached through analysis or through
algebra. Some today still take one side or the other. It is clear from history,
though, that it is best to use both analysis and algebra; insight comes from
each.” That statement remains true.

Examples play a key role in this subject. Experts tend to think extensively
in terms of examples, using them as a guide to seeing where the theory is
headed and to finding theorems. Thus examples properly play a key role
in this book. A feature of the presentation is that the point of view—about
examples and about the theory—has to evolve as the theory develops. At the
beginning one may think about a Lie group of matrices and its Lie algebra
in terms of matrix entries, or in terms of conditions on matrices. But soon it
should no longer be necessary to work with the actual matrices. By the time
one gets to Chapters VII and VIII, the point of view is completely different.
One has a large stock of examples, but particular features of them are what
stand out. These features may be properties of an underlying root system,
or relationships among subgroups, or patterns among different groups, but
they are far from properties of concrete matrices.

A reader who wants only a limited understanding of the examples and
the evolving point of view can just read the text. But a better under-
standing comes from doing problems, and each chapter contains some in
its last section. Some of these are really theorems, some are examples
that show the degree to which hypotheses can be stretched, and some are
exercises. Hints for solutions, and in many cases complete solutions, appear
in a section near the end of the book. The theory in the text never relies on

*A name followed by a bracketed year points to the list of references at the end of the
book.



Preface to the First Edition xv

a problem from an earlier chapter, and proofs of theorems in the text are
never left as problems at the end of the current chapter.

A section called Historical Notes near the end of the book provides his-
torical commentary, gives bibliographical citations, tells about additional
results, and serves as a guide to further reading.

The main prerequisite for reading this book is a familiarity with elemen-
tary Lie theory, as in Chapter IV of Chevalley [1946] or other sources listed
at the end of the Notes for Chapter I. This theory itself requires a modest
amount of linear algebra and group theory, some point-set topology, the
theory of covering spaces, the theory of smooth manifolds, and some easy
facts about topological groups. Except in the case of the theory of involutive
distributions, the treatments of this other material in many recent books are
more consistent with the present book than is Chevalley’s treatment. A
little Lebesgue integration plays a role in Chapter IV. In addition, existence
and uniqueness of Haar measure on compact Lie groups are needed for
Chapter IV; one can take these results on faith or one can know them from
differential geometry or from integration theory. Differential forms and
more extensive integration theory are used in Chapter VIII. Occasionally
some other isolated result from algebra or analysis is needed; references
are given in such cases.

Individual chapters in the book usually depend on only some of the
earlier chapters. Details of this dependence are given on page xvii.

My own introduction to this subject came from courses by B. Kostant
and S. Helgason at M.I.T. in 1965–67, and parts of those courses have
heavily influenced parts of the book. Most of the book is based on various
courses I taught at Cornell University or SUNY Stony Brook between 1971
and 1995. I am indebted to R. Donley, J. J. Duistermaat, S. Greenleaf,
S. Helgason, D. Vogan, and A. Weinstein for help with various aspects of
the book and to the Institut Mittag-Leffler for its hospitality during the last
period in which the book was written. The typesetting was byAMS-TEX,
and the figures were drawn with Mathematica�.

May 1996
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PREREQUISITES BY CHAPTER

This book assumes knowledge of a modest amount of linear algebra and
group theory, some point-set topology, the theory of covering spaces, the
theory of smooth manifolds, and some easy facts about topological groups.
The main prerequisite is some degree of familiarity with elementary Lie
theory, as in Chapter IV of Chevalley [1946]. The dependences of chap-
ters on earlier chapters, as well as additional prerequisites for particular
chapters, are listed here.

INTRODUCTION. No additional prerequisites.
CHAPTER I. Tensor products of vector spaces (cf. §1 of Appendix A).

In §12 Proposition 1.110 makes use of Ado’s Theorem from Appendix B;
however, the proposition is used in this book only for matrix groups, and
for matrix groups Ado’s Theorem is not needed in the proof of Proposition
1.110. The material in §13 is an aside and makes use of Ado’s Theorem.

CHAPTER II. Chapter I. Starting in §9: The proof of Proposition 2.96 is
deferred to Chapter III, where the result is restated and proved as Proposi-
tion 3.31. Starting in §11: Tensor algebra as in §1 of Appendix A.

CHAPTER III. Chapter I, all of Appendix A.
CHAPTER IV. Chapter I, tensor and exterior algebras as in §§1–3 of

Appendix A, a small amount of Lebesgue integration, existence of Haar
measure for compact groups. The proof of Theorem 4.20 uses the Hilbert–
Schmidt Theorem from functional analysis. Starting in §5: Chapter II.

CHAPTER V. Chapters II, III, and IV. The proof of Theorem 5.62 uses
the Hilbert Nullstellensatz.

CHAPTER VI. Chapters II and IV. Problems 28–35 use §V.7.
CHAPTER VII. Chapter VI. Starting in §5: Chapter V.
CHAPTER VIII. Chapter VII, differential forms, additional Lebesgue

integration.
CHAPTER IX. Chapters IV and V. Starting in §4: Chapters VI and VII.

Starting in §6: Chapter VIII.
CHAPTER X. Chapter IX.
APPENDIXB. Chapter I and Theorem 5.29. Starting in §3: Chapter III.
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STANDARD NOTATION

Item Meaning

#S or |S| number of elements inS
∅ empty set
Ec complement of set, contragredient module
δi j 1 if i = j , 0 if i �= j
n positive n > 0
Z, Q, R, C integers, rationals, reals, complex numbers
[x ] greatest integer≤ x if x is real
Rez, Im z real and imaginary parts ofz
z̄ complex conjugate ofz
1 multiplicative identity
1 or I identity matrix or operator
dim V dimension of vector space
V ∗ dual of vector space
Rn, Cn spaces of column vectors
Tr A trace ofA
detA determinant ofA
At transpose ofA
A∗ conjugate transpose ofA
A diagonable A has a basis of eigenvectors with

eigenvalues in the given field
diag(a1, . . . , an) diagonal matrix
EndV linear maps ofV into itself
GL(V ) invertible linear maps ofV into itself
[ A : B] index or multiplicity of B in A⊕

Vi direct sum of theVi

span(S) linear span ofS∼= is isomorphic to, is equivalent with
G0 identity component of groupG
Z A(B) centralizer ofB in A
NA(B) normalizer ofB in A
C∞ infinitely differentiable

Notation introduced in Appendix A and used throughout the book is
generally defined at its first occurrence and appears in the Index of
Notation at the end of the book.

xviii



INTRODUCTION

Closed Linear Groups

Abstract. A closed linear groupG is a group of real or complex matrices that is
topologically closed in a complex general linear group. Rotation groups, unitary groups,
and special linear groups provide familiar examples. The linear Lie algebrag of G is the
set of derivatives at 0 of all smooth curvesc(t) of matrices that lie inG for all t and are
equal to the identity att = 0. The set of matricesg is indeed a Lie algebra overR.

The exponential of a square matrix is defined by the familiar power series of the ex-
ponential function. The exponential map enables one to compute explicitly the linear Lie
algebra of each of the familiar examples. It turns out that the exponential map carriesg into
G. From this fact one deduces the main result of the Introduction, that any closed linear
group has a natural structure as a smooth manifold that makes the group into a Lie group.

A homomorphismπ between two closed linear groupsG andH carries smooth curves
through the identity inG to smooth curves through the identity inH . The map on the
derivatives at 0 of such curves is well defined as a Lie algebra homomorphismdπ between
the linear Lie algebras ofG and H . The homomorphismsπ anddπ are related by the
important identityπ ◦ exp = exp◦ dπ . This identity is a quantitative version of the
statement that the infinitesimal behavior of a homomorphism at the identity determines the
homomorphism in a neighborhood of the identity.

1. Linear Lie Algebra of a Closed Linear Group

Many readers of this book will already know a certain amount of the
elementary theory of Lie groups. Yet it may be helpful to review some of
that theory in a special case, namely for groups of matrices that are topo-
logically closed. The reason is that the techniques that come into play for
these groups are more like the techniques used for all Lie groups in the more
advanced parts of Lie theory. Thus the review in this introductory chapter
is intended to establish the spirit in which many results and examples will
be approached later in the book.

We denote byGL(n, R) the realgeneral linear group consisting of
all nonsingularn-by-n real matrices with matrix multiplication as group
operation. SimilarlyGL(n, C) denotes the group of nonsingularn-by-n
complex matrices. The groupsGL(n, R) andGL(n, C) have topologies

1



2 Introduction: Closed Linear Groups

if we identify them with subsets ofRn2
andR2n2

, respectively; in fact, each
of these groups is an open subset in its Euclidean space, being the subset
where the polynomial function det is not zero. Multiplication and inversion
are continuous because they are given by polynomials in the entries and
by division by the polynomial det, and thusGL(n, R) andGL(n, C) are
topological groups.

We shall refer to any closed subgroup of someGL(n, C) as aclosed
linear group. The groupsGL(n, R) andGL(n, C) are themselves closed
linear groups. Any closed linear group inherits a topology fromGL(n, R)

or GL(n, C) and becomes a topological group. A few more examples of
closed linear groups are the following:

(0.1)

SO(n) = {x ∈ GL(n, R) | xxt = 1 and detx = 1}
U (n) = {x ∈ GL(n, C) | xx∗ = 1}

SU (n) = {x ∈ U (n) | detx = 1}
SL(n, R) = {x ∈ GL(n, R) | detx = 1}
SL(n, C) = {x ∈ GL(n, C) | detx = 1}.

The first three are therotation group, theunitary group, and thespecial
unitary group; the last two are thespecial linear groups over R and
C. The reason that these subgroups are closed is that they are defined by
polynomial equations. The polynomials in question are the entry-by-entry
relations in the real and imaginary parts of the matrix entries that amount
to the defining equations for the groups. Further examples of closed linear
groups will be given in Chapter I.

The study of closed linear groups as Lie groups begins from the fact that
a kind of differentiation is available in any closed linear group. For any
such groupG, we can speak ofsmooth curves in G, namelyC∞ curves
c(t) into the underlying matrix space whose image is inG for eacht . We
are especially interested in smooth curves inG with the property thatc(0)

is the identity 1. An example is the curve

c(t) =
( cost sint 0

− sint cost 0
0 0 1

)
in the groupG = SO(3). For any such curve we can formc′(0), which
will be some 3-by-3 matrix. Withc as in this example,

c′(t) =
( − sint cost 0

− cost − sint 0
0 0 0

)
and c′(0) =

( 0 1 0
−1 0 0

0 0 0

)
.



1. Linear Lie Algebra of a Closed Linear Group 3

Herec′(0) tells us the direction inG in which the curve extends from 1.
We may think of it as telling how a parameter describingc is to start out
from the identity. Let

(0.2) g =
{

c′(0)

∣∣∣ c : R → G is a curve withc(0) = 1 that
is smooth as a function into matrices

}
.

Theng is a subset of matrices of the same size as the underlying general
linear group; the members ofg are not necessarily invertible.

The setg in (0.2) has a certain amount of structure. First,g is a real
vector space. To see closure under addition, letc′(0) andb′(0) be in g.
Formingc(t)b(t), we have

d

dt

[
c(t)b(t)

] = c(t)b′(t) + c′(t)b(t)

d

dt

[
c(t)b(t)

]∣∣∣
t=0

= c(0)b′(0) + c′(0)b(0) = b′(0) + c′(0).

Thusg is closed under addition. To see closure under scalar multiplication,
let c′(0) be ing and letk be inR. Formingc(kt), we have

d

dt

[
c(kt)

] = c′(kt)k and
d

dt

[
c(kt)

]∣∣∣
t=0

= kc′(0).

Thusg is closed under scalar multiplication.
Second,G is closed under group conjugationx �→ gxg−1. Thus ifc(t)

is a smooth curve inG passing through 1 att = 0, then so isgc(t)g−1.
Differentiating att = 0, we see thatgc′(0)g−1 is in g. Thusg is closed
under the linear maps Ad(g), for g ∈ G, that are given by

(0.3) Ad(g)X = gXg−1.

Third, let X be ing and letc(t) be a smooth curve inG with c(0) = 1.
Thent �→ Ad(c(t))X is a smooth function intog, as we see by substituting
g = c(t) into (0.3) and writing matters out. By definition we have

(0.4)
d

dt
Ad(c(t))X

∣∣∣
t=0

= lim
t→0

1

t

[
Ad(c(t))X − X

]
,

and we know that the left side exists. The right side involves vector space
operations and a passage to the limit, all on members ofg. Sinceg, as a
real vector subspace of matrix space, is closed topologically, the limit is in
g. Let us calculate this limit.



4 Introduction: Closed Linear Groups

We need a preliminary formula, namely

(0.5)
d

dt
c(t)−1 = −c(t)−1c′(t)c(t)−1.

To see this, we differentiatec(t)c(t)−1 = 1 by the product rule, being
careful about the order in which we write down products. We obtain

c′(t)c(t)−1 + c(t)
[ d

dt
c(t)−1

] = 0,

and (0.5) follows.
Therefore

d

dt
Ad(c(t))X = d

dt

[
c(t)Xc(t)−1

]
= c′(t)Xc(t)−1 + c(t)X

[ d

dt
c(t)−1

]
= c′(t)Xc(t)−1 − c(t)Xc(t)−1c′(t)c(t)−1.

Puttingt = 0 and taking (0.4) into account, we see that

c′(0)X − Xc′(0)

is in g. We conclude thatg is closed under theLie bracket operation

(0.6) [X, Y ] = XY − Y X.

The Lie bracket operation in (0.6) is linear in each variable and has the
properties that

(a) [X, X ] = 0 for all X ∈ g (and hence [X, Y ] = −[Y, X ]) and
(b) theJacobi identity holds:

[[ X, Y ], Z ] + [[Y, Z ], X ] + [[ Z , X ], Y ] = 0.

Property (a) is clear, and property (b) follows from the calculation

[[ X, Y ], Z ] + [[Y, Z ], X ] + [[ Z , X ], Y ]

= [ XY − Y X, Z ] + [Y Z − ZY, X ] + [Z X − X Z , Y ]

= (XY Z − Y X Z) − (Z XY − ZY X) + (Y Z X − ZY X)

− (XY Z − X ZY ) + (Z XY − X ZY ) − (Y Z X − Y X Z)

= 0.

A real vector space with an operation [X, Y ] that is linear in each variable
and satisfies (a) and (b) is called a realLie algebra. Accordingly we call
g in (0.2) thelinear Lie algebra of the closed linear groupG.
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Let gl(n, R) andgl(n, C) be the spaces of all real and complexn-by-n
matrices. These are the linear Lie algebras ofGL(n, R) andGL(n, C), re-
spectively. For some particular other closed linear groups we can compute
the linear Lie algebra explicitly.

For example, withG = SO(3), we have already used a curve involving

cosines and sines to see that the matrix

(
0 1 0

−1 0 0

0 0 0

)
is one member of the

linear Lie algebrag of SO(3). Using different curves involving cosines

and sines, we can see that the matrices

(
0 0 1

0 0 0

−1 0 0

)
and

(
0 0 0

0 0 1

0 −1 0

)
lie in g also.

Taking into account the vector space operations, we see that

g ⊇
{( 0 a b

−a 0 c
−b −c 0

)}
= {skew-symmetric real 3-by-3 matrices}.

Actually equality holds in this inclusion. In fact, ifc(t)c(t)t = 1, then

(0.7)

c′(t)c(t)t + c(t)c′(t)t = 0

c′(0)1t + 1c′(0)t = 0

c′(0) + c′(0)t = 0,

andc′(0) is skew symmetric. Thus the linear Lie algebra ofSO(3) is

so(3) = {skew-symmetric real 3-by-3 matrices}
= {X ∈ gl(3, R) | X + Xt = 0}.

For the five examples in (0.1), we define

(0.8)

so(n) = {X ∈ gl(n, R) | X + Xt = 0}
u(n) = {X ∈ gl(n, C) | X + X ∗ = 0}

su(n) = {X ∈ gl(n, C) | X + X ∗ = 0 and TrX = 0}
sl(n, R) = {X ∈ gl(n, R) | Tr X = 0}
sl(n, C) = {X ∈ gl(n, C) | Tr X = 0}.

Shortly we shall see that these are the respective linear Lie algebras of the
closed linear groups in (0.1). ForSO(n), the argument is the same as for
SO(3) above. ForU (n), the kind of argument in (0.7) shows that the linear
Lie algebra ofU (n) satisfies

(0.9a) g ⊆ u(n).
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At this stage we can see also by the technique of (0.7) that the linear Lie
algebrasg of SU (n), SL(n, R), andSL(n, C) respectively satisfy

g ⊆ su(n)(0.9b)

g ⊆ sl(n, R)(0.9c)

g ⊆ sl(n, C)(0.9d)

once we bring to bear a differentiation formula involving determinants: If
c(t) is a smooth curve of matrices withc(0) = 1, then

(0.10)
[ d

dt
detc(t)

]∣∣∣
t=0

= Tr c′(0).

To verify this formula, we regard the expression in brackets on the left side
as the derivative of a sum ofn-fold products, and we apply the product rule
to eachn-fold product. If the matrices are of sizen-by-n, the derivative of
the determinant is in effect the sum ofn determinants; in each of thesen
determinants, one row ofc(t) has been differentiated, and the others have
been left alone. Evaluation att = 0 of one of these determinants results in
the determinant of a matrix that equals the identity in all but one row; hence
the evaluated term yields a diagonal entry ofc′(0). Then (0.10) follows.

Actually equality holds in each case of (0.9), but a proof of equality will
have to await the derivation in §2 of properties of the exponential mapping
for matrices.

Although we can identify the linear Lie algebrag completely in all these
particular cases once we have the exponential mapping in hand, we cannot
say much else aboutg in general even with that much extra information.
For example, we cannot decide whetherg is 0. Later tools will enable us
to see thatg cannot be 0 unlessG is a discrete group.

2. Exponential of a Matrix

It is possible also to go backwards fromg to G in §1. The tool for doing
so is theexponential of a matrix.

If A is ann-by-n complex matrix, then we define

expA = eA =
∞∑

n=0

1

N !
AN .

This definition makes sense, according to the following proposition.
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Proposition 0.11. For anyn-by-n complex matrixA, eA is given by a
convergent series (entry by entry). Moreover

(a) eX eY = eX+Y if X andY commute,
(b) eX is nonsingular,
(c) t �→ et X is a smooth curve intoGL(n, C) that is 1 att = 0,
(d) d

dt
(et X) = Xet X ,

(e) deteX = eTr(X),
(f) X �→ eX is aC∞ mapping from matrix space (= R2n2

) into itself.

PROOF. For anyn-by-n matrix M , put

‖M‖ = sup
|x |≤1

|Mx |,

where|x | and|Mx | refer to the Euclidean norm. Then

∥∥∥ N2∑
N=N1

1

N !
AN

∥∥∥ ≤
N2∑

N=N1

1

N !
‖AN‖ ≤

N2∑
N=N1

1

N !
‖A‖N ,

and the right side tends to 0 asN1 and N2 tend to infinity. Hence the
series foreA is Cauchy, entry by entry, and it must be convergent. This
convergence is good enough to justify the manipulations in the remainder
of the proof. For (a) we have

eX eY =
( ∞∑

r=0

1

r !
Xr

)( ∞∑
s=0

1

s!
Y s

)
=

∑
r,s

1

r !s!
Xr Y s

=
∞∑

N=0

N∑
k=0

XkY N−k

k!(N − k)!
=

∞∑
N=0

1

N !

N∑
k=0

(
N

k

)
XkY N−k

=
∞∑

N=0

1

N !
(X + Y )N = eX+Y .

Conclusion (b) follows by takingY = −X in (a) and usinge0 = 1. For (c)
and (d) we have

d

dt

(
et X

) = d

dt

∞∑
N=0

1

N !
(t X)N =

∞∑
N=0

d

dt

[ 1

N !
(t X)N

]
=

∞∑
N=0

N

N !
t N−1X N = X

∞∑
N=0

1

(N − 1)!
(t X)N−1 = Xet X .
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In (e) if X is upper triangular, then so iseX . Moreover deteX depends only
on the diagonal entries ofeX , which depend only on the diagonal entries
of X . Thus deteX = eTr X in this case. A general complex matrix is of the
form gXg−1 with X upper triangular, and then we have

detegXg−1 = det(geX g−1) = deteX = eTr X = eTr gXg−1

.

Conclusion (f) follows from standard facts about term-by-term differenti-
ation of series of functions. This completes the proof.

Let us return to the problem of identifying the linear Lie algebras for
the examples in (0.1), i.e., of verifying that equality holds in each line of
(0.9). The point in each case is that ifX is in the right side of a line of
(0.9), then a computation shows thatet X lies in the corresponding groupG.
Since, according to (c) and (d) in the proposition,et X is a smooth curve of
matrices that is 1 att = 0 and has derivativeX at t = 0, we conclude that
X is in the Lie algebrag. Thus equality must hold in each line of (0.9).

For example, considerG = U (n) andu(n). If X satisfiesX + X ∗ = 0,
then

(et X)(et X)∗ = et X et X∗ = et X e−t X = e0 = 1.

Henceet X is in U (n) andX must be in the Lie algebra ofU (n). In view of
(0.9a), the linear Lie algebra ofU (n) equalsu(n).

For another example, considerG = SL(n, R). If X satisfies TrX = 0,
then Proposition 0.11e says that detet X = 1. Henceet X is in SL(n, R) and
X must be in the Lie algebra ofSL(n, R). In view of (0.9c), the linear Lie
algebra ofSL(n, R) equalssl(n, R).

The conclusion is that the linear Lie algebras of the five closed linear
groups in (0.1) are the five Lie algebras defined in (0.8).

The above arguments used thatet X hasX as derivative att = 0. Con-
sequently for anyX in any of the linear Lie algebrasg above, there is a
“best” smooth curve inG that is 1 att = 0 and has derivativeX at t = 0,
namelyet X . Moreover asX varies, this family of curves varies smoothly,
according to Proposition 0.11f.

We shall see in §3 that these conclusions extend to all linear Lie groups.
What needs proof is that the exponential map carriesg into G. This fact
was fairly easy to show for each of our examples, but it requires a nontrivial
proof in general.

Qualitatively the decisive property of the exponential map ofg toG is that
X �→ eX recaptures a number of properties ofG in a whole neighborhood



3. Closed Linear Groups 9

of the identity even thoughg depends only on infinitesimal data near the
identity.

3. Closed Linear Groups

For a closed linear groupG, the linear Lie algebrag consists of the set
of matricesX = c′(0) for smooth curvesc(t) in G that pass through 1 at
t = 0. As with the examples in §§1–2, it will turn out that there is a “best”
such curve, namelyet X . Proposition 0.11 shows thatet X is a smooth curve
with the correct derivative att = 0, but we need to see thatet X lies in G.
We saw that this was so for our five examples, and we establish it in general
in Proposition 0.14 below.

Lemma 0.12. There exist an open cubeU about 0 ingl(n, C) and an
open neighborhoodV of 1 in GL(n, C) such that exp :U → V is smooth
(= C∞) and one-one onto, with a smooth inverse.

PROOF. Proposition 0.11f says that exp is smooth. By the Inverse
Function Theorem, it is enough to prove that the derivative matrix atX = 0
of X �→ expX is nonsingular. Let{Ei} be the standard 2n2-member basis
overR of gl(n, C), and letxi be the corresponding coordinate or coordinate
function. Then

∂(xi(X �→ eX))

∂xj

∣∣∣∣
X=0

= d
dt

xi(e
t Ej )

∣∣
t=0

= xi(Ej e
t Ej )

∣∣
t=0

sincexi( · ) is R linear

= xi(Ej)

= δi j .

Thus the derivative matrix is the identity, and the lemma follows.

Lemma 0.13. If c(t) is a smooth curve inGL(n, C) with c(0) = 1 and
c′(0) = X , then

lim
k→+∞

c
( t

k

)k

= expt X

for all t in the domain ofc.

REMARK. This lemma has a familiar prototype: We identify the additive
reals with a closed linear group of 1-by-1 matrices byt �→ (et). One curve
in this group isc(t) = (1 + t), and we havec(t/k)k = (1 + t/k)k , which
is well known to converge to(et).
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PROOF. ChooseU andV as in Lemma 0.12, and chooseδ > 0 so that
c(t) is in V for all t with |t | < 2δ. Using Lemma 0.12, we can form a
smooth curve

Z(t) = exp−1c(t) for |t | < 2δ.

This curve hasZ(0) = 0, and the Chain Rule gives

Z ′(0) = (exp′(0))−1c′(0) = X.

Thus Taylor’s formula gives

Z(t) = t X + O(t2),

whereO(t2) is a term that is bounded for|t | < δ and remains bounded
neart = 0 when divided byt2. Replacingt by t/k and regardingt as fixed
gives

Z
( t

k

)
= t

k
X + O

( t2

k2

)
= t

k
X + O

( 1

k2

)
and thus

k Z
( t

k

)
= t X + O

(1

k

)
for any|t | < δ.

Therefore

c
( t

k

)k

=
(

expZ
( t

k

))k

= expk Z
( t

k

)
= exp

(
t X + O

(1

k

))
.

Letting k tend to infinity and using the continuity of exp, we obtain the
conclusion of the lemma for|t | < δ.

For some othert in the domain ofc, let us modify the above argument.
First we choose and fix a positive integerN with |t/N | < δ. The above
estimates apply tot/N . Instead of replacingt by t/k, we replacet/N by
t/(Nk + l) with 0 ≤ l ≤ N − 1. Again regardingt as fixed, we obtain

Z
( t

Nk + l

)
= t

Nk + l
+ O

( t2

(Nk + l)2

)
= t

Nk + l
X + O

( 1

k2

)
and thus

(Nk + l)Z
( t

Nk + l

)
= t X + O

(1

k

)
.

Therefore

c
( t

Nk + l

)Nk+l

=
(

expZ
( t

Nk + l

))Nk+l

= exp
(
(Nk + l)Z

( t

Nk + l

))
= exp

(
t X + O

(1

k

))
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for 0 ≤ l ≤ N − 1. Lettingk tend to infinity, we obtain the conclusion of
the lemma for this value oft .

Proposition 0.14. If G is a closed linear group andX is in its linear Lie
algebrag, then expX is in G. Consequently

g = {X ∈ gl(n, C) | expt X is in G for all realt}.

PROOF. Let X be ing, and letc(t) be a smooth curve inG with c(0) = 1
andc′(0) = X . Thenc(t/n)n is in G for n ≥ 1, and so is the limit onn
(sinceG is a closed set) if the limit exists. Lemma 0.13 says that the limit
does exist for allt in the domain ofc and is equal to expt X . Thus expt X
is in G for |t | small, and it follows by raising to powers that expt X is in
G for all real t . This proves the containment⊆. The containment⊇ is
immediate from Proposition 0.11, parts (c) and (d).

Actually exp mapsgonto a neighborhood of 1 inG, and this fact indicates
a strong connection betweeng andG. To get at this fact, however, requires
a digression.

4. Closed Linear Groups as Lie Groups

The main result of this section is that a closed linear groupG can be made
into a smooth manifold in a canonical way such thatG becomes a Lie group.
The terms “smooth manifold” and “Lie group” have a variety of meanings
in books and papers, and we begin by pinning down the definitions of these
notions as we shall use them in this book.

The terms “smooth” and “C∞” will be used interchangeably throughout.
For us the underlying topological space of a smooth manifold is assumed
to be aseparable metric space, not necessarily connected. The separability
will be quite important for us. A metric will ordinarily not be specified,
but a topological space can be recognized as admitting the structure of
a separable metric space if it is regular and Hausdorff and it possesses a
countable base for its topology.

Let M be such a topological space. We shall wantM to have a well
defined dimension, and the possible disconnectedness means that we have
to specify the dimension in advance. Letn be specified. The manifold
structure consists of a system ofcharts (U, ϕ) with U an open subset of
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M andϕ a homeomorphism ofU onto an open subsetϕ(U ) of Rn. These
charts are to have the following two properties:

(a) each pair of charts(U1, ϕ1) and(U2, ϕ2) is smoothly compatible
in the sense thatϕ2 ◦ ϕ−1

1 from the open setϕ1(U1 ∩ U2) of Rn to
ϕ2(U1 ∩ U2) is smooth and has a smooth inverse, and

(b) the system of compatible charts(U, ϕ) is aC∞ atlas in the sense
that the setsU together coverM .

The topological spaceM , together with theC∞ atlas as above, is said
to be asmooth manifold of dimension n. We can then speak ofsmooth
functions f : E → R on an open subsetE of M as functions that areC∞

when referred back to functions on open subsets ofRn. There is a small
technical point here: A differentC∞ atlas that leads to the same smooth
functions on open sets is to yield the same smooth manifold. To handle
this matter, one can observe that the set of all charts smoothly compatible
with a particularC∞ atlas is a maximalC∞ atlas. TwoC∞ atlases lead to
the same smooth functions exactly if their corresponding maximal atlases
are the same. So, technically,M is a smooth manifold when it is endowed
with a maximalC∞ atlas.

Now we come to the definition of “Lie group” as the term is to be used
in this book. A topological group whose underlying topology is that of a
separable metric space will be called aseparable topological group. A
Lie group G is a separable topological group with the additional structure
of a smooth manifold compatible with the given topology in such a way that
multiplication and inversion are smooth. Here multiplication is a mapping
from G × G into G, and we understandG × G to be a smooth manifold
whose charts are products of charts in the factors.

The termanalytic group is used for a connected Lie group. In a Lie
groupG, the identity componentG0, which is necessarily open, is an open
closed normal subgroup and is an analytic group.

Here is the theorem that we mentioned at the beginning of this section.

Theorem 0.15. If G is a closed linear group, thenG with its relative
topology becomes a Lie group in a unique way such that

(a) the restrictions fromGL(n, C) to G of the real and imaginary parts
of each entry function are smooth and

(b) whenever� : M → GL(n, C) is a smooth function on a smooth
manifold M such that�(M) ⊆ G, then� : M → G is smooth.

Moreover, the dimension of the linear Lie algebrag equals the dimension
of the manifoldG. In addition, there exist open neighborhoodsU of 0 in
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g andV of 1 in G such that exp :U → V is a homeomorphism onto and
such that(V, exp−1) is a compatible chart.

REMARK. Part (b) explains why it was enough in §1 for our definition of
smooth curve to assume smoothness into the total underlying matrix space.

Lemma 0.16. Leta andb be real subspaces ofgl(n, C) with gl(n, C) =
a ⊕ b. Then there exist open ballsU1 about 0 ina andU2 about 0 inb, as
well as an open neighborhoodV of 1 in GL(n, C), such that

(a, b) �→ expa expb

is a diffeomorphism ofU1 × U2 ontoV .

PROOF. Let X1, . . . , Xr andY1, . . . , Ys be bases ofa andb, and consider
the map

(0.17)
(u1, . . . , ur , v1, . . . , vs) �→ exp−1

{(
exp

∑
ui Xi

)(
exp

∑
vj Yj

)}
defined in an open neighborhood of 0, with the result written out as a
linear combination ofX1, . . . , Xr , Y1, . . . Ys with coefficients depending
on u1, . . . , ur , v1, . . . , vs . We shall apply the Inverse Function Theorem
to see that this map is locally invertible. Since exp is locally invertible by
Lemma 0.12, the lemma will follow.

Thus we are to compute the derivative matrix at 0 of (0.17). In computing
the partial derivatives, we can set all variables but one equal to 0 before
differentiating, and then we see that the expression to be differentiated is
linear. The derivative matrix is thus seen to be the identity, the Inverse
Function Theorem applies, and the proof is complete.

PROOF OF UNIQUENESS INTHEOREM 0.15. Suppose thatG andG ′ are
two versions ofG as a smooth manifold. Letι : G → G ′ be the identity
function. The functionι : G → GL(n, C) is smooth because smoothness
of this map is detected by smoothness of each real or imaginary part of an
entry function, which is known from (a). By (b),ι : G → G ′ is smooth.
By the same argument,ι−1 : G ′ → G is smooth.

PROOF OF EXISTENCE INTHEOREM0.15. Choose a real vector subspace
s of gl(n, C) such thatgl(n, C) = g ⊕ s, and apply Lemma 0.16 to this
decomposition, obtaining ballsU1 andU2 about 0 ing ands and an open
neighborhoodV of 1 in GL(n, C) such that(X, Y ) �→ expX expY is a
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diffeomorphism fromU1 × U2 onto V . Let 2ε be the radius ofU2. For
each integerk ≥ 1, form the set(k + 1)−1U2. The claim is that for large
k, expX expY cannot be inG if X is in U1 andY is in (k + 1)−1U2 unless
Y = 0.

Assume the contrary. Then for everyk ≥ 1 we can findXk in U1 andYk

in (k + 1)−1U2 with Yk �= 0 and with expXk expYk in G. By Proposition
0.14, expXk is in G. Thus expYk is in G for all k. SinceYk �= 0, we can
choose an integernk such thatε/2 ≤ nk|Yk| ≤ 2ε. Passing to a subsequence
if necessary, we may assume thatnkYk converges, say toY . ThenY is in s

andY �= 0. Since expnkYk = (expYk)
nk is in G andG is closed, expY is

in G.
Let us show that expp

q
Y is in G for all integersp andq with q > 0.

Write nk p = mkq +rk with 0 ≤ rk ≤ q −1. Thenrk

q
Yk → 0 sinceYk → 0.

Also nk p
q

Yk → p
q

Y , so that

(expmkYk)(exp rk

q
Yk) = exp nk p

q
Yk → exp p

q
Y.

Since exprk

q
Yk → 1, limk expmkYk exists and equals expp

q
Y . However,

expmkYk = (expYk)
mk is in G andG is closed, and thus expp

q
Y is in G.

In other words, exptY is in G for all rationalt . SinceG is closed and
exp is continuous, exptY is in G for all real t . By Proposition 0.14,Y is
in g. ThusY is a nonzero member ofg ∩ s, and this fact contradicts the
directness of the sumg ⊕ s. We conclude that for largek, expX expY
cannot be inG if X is in U1 andY is in (k + 1)−1U2 unlessY = 0.

Changing notation, we have found open ballsU1 andU2 about 0 ing

ands and an open neighborhoodV of 1 in GL(n, C) such thate(X, Y ) =
expX expY carriesU1 × U2 diffeomorphically ontoV ande(X, Y ) is in
G only if Y = 0. In view of Proposition 0.14,V ∩ G is an open set inG
such that exp is a homeomorphism fromU1 ontoV ∩ G.

We take(Lg(V ∩ G), exp−1 ◦ L−1
g ) as a chart about the elementg of G,

whereLg is left translation byg: Lg(x) = gx . The image of this chart in
Euclidean space is exp−1(V ∩ G) = U1 ⊆ g, and we are identifyingU1

with the subsetU1 × {1} of U1 × U2 ⊆ g ⊕ s = gl(n, C). These charts
cover G. Let us show that they are smoothly compatible. Take two of
the charts(Lg(V ∩ G), exp−1 ◦ L−1

g ) and(Lh(V ∩ G), exp−1 ◦ L−1
h ) that

overlap, and let

W = Lg(V ∩ G) ∩ Lh(V ∩ G) and W # = Lg(V ) ∩ Lh(V ).

Let U andU ′ be the images ofW in the real vector spaceg,

U = exp−1 ◦ L−1
g (W ) and U ′ = exp−1 ◦ L−1

h (W ),
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and letU # andU ′# be the images ofW # in the real vector spacegl(n, C),

U # = e−1 ◦ L−1
g (W #) and U ′# = e−1 ◦ L−1

h (W #).

The setsU andU ′ are open subsets ofU1 ⊆ g, and the setsU # andU ′# are
open subsets ofU1 × U2 ⊆ gl(n, C). We are to check that

(0.18) (exp−1 ◦ L−1
h ) ◦ (exp−1 ◦ L−1

g )−1

is smooth as a map ofU ontoU ′, i.e., as a map ofU × {1} ontoU ′ × {1}.
SinceU ⊆ U #, the map (0.18) is the restriction to an open subset of a
lower-dimensional Euclidean space of the map (0.18) fromU # ontoU ′#,
and the latter map is known to be smooth. Thus the map ofU ontoU ′ is
smooth, and we conclude thatG is a smooth manifold.

The same reasoning shows that multiplication and inversion are smooth.
For example, near the identity, what needs checking in order to see that
multiplication is smooth is that, for a small open neighborhoodU about 0
in g,

(X, X ′) ∈ U × U �→ exp−1(expX expX ′)

is smooth intog. But this map is a restriction of the same map on a suitable
U # × U #, where we know it to be smooth.

In addition, this reasoning readily proves (a) and (b). SinceG as a
manifold has open subsets ofg as charts, we have dimG = dimg. Thus
the theorem is completely proved.

Corollary 0.19. If G is a closed linear group andf : G → M is a
function into a smooth manifold that is the restriction of a smooth map
F : U → M , whereU is open in someGL(n, R) or GL(n, C) and where
G ⊆ U , thenF : G → M is smooth.

PROOF. We can write f = F ◦ ι, whereι is the inclusion ofG into
GL(n, R) or GL(n, C). Thenι is smooth by Theorem 0.15a, and hencef
is a composition of smooth maps.

Corollary 0.20. If G is a closed linear group andg is its linear Lie
algebra, then expg generates the identity componentG0.

PROOF. By continuity, expg is a connected subset ofG. Thus expg ⊆
G0. Theorem 0.15 says that expg contains a neighborhood of 1 inG0. The
smallest subgroup ofG0 containing a nonempty open set inG0 is all of G0.
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Corollary 0.21. If G and G ′ are closed linear groups with the same
linear Lie algebra as sets of matrices, then the identity components ofG
andG ′ coincide.

PROOF. We apply Corollary 0.20.

5. Homomorphisms

Suppose thatG andH are closed linear groups. Letg andh be the linear
Lie algebras ofG andH , and suppose thatπ is a smooth homomorphism
of G into H . Our objective is to associate toπ a mapdπ : g → h.

Before proceeding, let us comment on the case thatG or H is the Lie
groupR. We can always regardR as a closed linear group, say as the set
{(et)} of 1-by-1 matrices. We use this convention throughout the remainder
of this section.

EXAMPLES.

1) If H is any closed linear group andX is in h, thent �→ expt X is a
smooth homomorphism ofR into H . As a homomorphism between groups
of matrices, this map is(et) �→ expt X .

2) The circle groupS1 = {
z ∈ C

∣∣ |z| = 1
}

is a closed linear group
within GL(1, C), andt �→ eit is a smooth homomorphism ofR into S1.

3) The triangular group of real matrices of the form

(
1 x z

0 1 y

0 0 1

)
is a closed

linear group, and the map that sends the indicated matrix intox is a smooth
homomorphism ofG into R.

We return to the general setting of smooth homomorphismsπ between
closed linear groupsG and H . If X ∈ g is given, letc(t) be a smooth
curve in G with c(0) = 1 andc′(0) = X . (For example, we can take
c(t) = expt X .) Then the compositiont �→ π(c(t)) is a smooth curve in
H with π(c(0)) = 1, and we define

dπ(X) = (π ◦ c)′(0).

Let us see that this definition is independent of the choice ofc. If c1(t)
andc2(t) both have starting value 1 inG and starting derivativeX in g,
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then we compute

(π ◦ c2)
′(0) = d

dt
π(c2(t))

∣∣∣
t=0

= d

dt
π(c2(t)c1(t)

−1 · c1(t))
∣∣∣

t=0

= d

dt
π(c2(t)c1(t)

−1)π(c1(t)
∣∣∣

t=0
sinceπ is a homomorphism

= d

dt
π(c2(t)c1(t)

−1)

∣∣∣
t=0

· π(c1(0))

+ π(c2(0)c1(0)−1) · d

dt
π(c1(t))

∣∣∣
t=0

= d

dt
π(c2(t)c1(t)

−1)

∣∣∣
t=0

+ (π ◦ c1)
′(0).

Thus it is enough to prove that the curvec(t) = c2(t)c1(t)−1, which has
c(0) = 1 andc′(0) = 0, has(π ◦ c)′(0) = 0. We now refer matters to
local coordinates, using the exponential map, taking advantage of Theorem
0.15. The local expression forπ ◦ c is exp−1 ◦ π ◦ c, which we write as

exp−1 ◦ π ◦ c = (exp−1 ◦ π ◦ exp) ◦ (exp−1 ◦ c).

Here the two factors on the right side are the local expressions forπ andc.
However, the second factor is a curve ing, and it has(exp−1 ◦ c)′(0) = 0
by the Chain Rule, sincec′(0) = 0. Thus(exp−1 ◦ π ◦ c)′(0) = 0 by the
Chain Rule. Applying the exponential map and using the Chain Rule once
more, we see that(π ◦ c)′(0) = 0. Thus our definition is independent of
the choice ofc.

Now we can imitate some of the development earlier of the properties
of linear Lie algebras. First of all,dπ : g → h is linear. In fact, letc1(t)
andc2(t) correspond toX andY , and letk be inR. Then

dπ(k X) = d

dt
π(c1(kt))

∣∣∣
t=0

= d

ds
π(c1(s))

∣∣∣
s=0

· d

dt
(kt)

∣∣∣
t=0

= k dπ(X)

and

dπ(X + Y ) = d

dt
π(c1(t)c2(t))

∣∣∣
t=0

= d

dt
π(c1(t))π(c2(t))

∣∣∣
t=0

= dπ(X) + dπ(Y )

by the product rule for derivatives.
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Now letg be inG, and letc(t) in G havec(0) = 1 andc′(0) = X . Then
gc(t)g−1 has derivative Ad(g)X at t = 0. Hence

dπ(Ad(g)X) = d

dt
π(gc(t)g−1)

∣∣∣
t=0

= d

dt
π(g)π(c(t))π(g)−1

∣∣∣
t=0

= π(g)
d

dt
π(c(t))

∣∣∣
t=0

π(g)−1 = π(g)dπ(X)π(g)−1.

If also Y is in g, then this formula says that

dπ(Ad(c(t))Y ) = π(c(t))dπ(Y )π(c(t))−1.

Differentiating att = 0 and using (0.5) and the fact thatdπ is linear, we
obtain

(0.22) dπ [ X, Y ] = dπ(X)dπ(Y ) − dπ(Y )dπ(X).

The right side of (0.22) is the definition of [dπ(X), dπ(Y )]. Thus (0.22),
in the presence of the linearity ofdπ , says thatdπ is a Lie algebra homo-
morphism. Thus our smooth homomorphismπ : G → H leads to a Lie
algebra homomorphismdπ : g → h.

EXAMPLES, CONTINUED.
1) If π((et)) = expt X , thendπ((1)) = X . To see this, we use the

curvec(t) = (et), which hasc′(0) = (1), and we compute(π ◦ c)′(0) from
Proposition 0.11d.

2) If π((et)) = (eit), thendπ((1)) = (i) as a 1-by-1 matrix.

3) If π

(
1 x z

0 1 y

0 0 1

)
= (ex), thendπ

(
0 a c

0 0 b

0 0 0

)
= (a).

The fundamental relation for dealing with homomorphisms is the for-
mula that relatesπ , dπ , and the exponential map.

Theorem 0.23. If π : G → H is a smooth homomorphism between
closed linear groups, thenπ ◦ exp= exp◦ dπ .

PROOF. Fix X in the linear Lie algebra ofG, and letc1(t) andc2(t) be
the smooth curves of matrices inH given by

c1(t) = exp(t dπ(X)) and c2(t) = π(expt X).

Thenc1(0) = c2(0) = 1 and

d

dt
c1(t) = dπ(X) exp(t dπ(X)) = dπ(X)c1(t)

by Proposition 0.11d. Also
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d

dt
c2(t) = d

dh
π(exp(t + h)X)

∣∣∣
h=0

= d

dh
π(exph X)π(expt X)

∣∣∣
h=0

= d

dh
π(exph X)

∣∣∣
h=0

π(expt X) = dπ(X)c2(t)

by definition ofdπ(X). Since thej th columns of bothc1(t) andc2(t) solve
the initial-value problem for the linear system of differential equations

dy

dt
= dπ(X)y with y(0) = ( j th column of 1),

the uniqueness theorem for systems of ordinary differential equations says
thatc1(t) = c2(t) for all t . The theorem follows by takingt = 1.

Corollary 0.24. Let π : G → H be a smooth homomorphism between
closed linear groups, and letg andh be the linear Lie algebras. If the
map x �→ π(x) nearx = 1 is referred to local coordinates relative to
the exponential maps ofG andH , then the corresponding map is exactly
dπ : g → h, which is linear. Hencedπ is also the derivative ofπ at the
identity whenπ is referred to local coordinates by the exponential maps.

PROOF. The map in local coordinates isY = exp−1(π(exp(X))nearX =
0, and Theorem 0.23 says that this is the same asY = exp−1(expdπ(X)) =
dπ(X), which is linear. A linear map is its own derivative, and the corollary
follows.

Corollary 0.25. If π1 andπ2 are smooth homomorphisms between two
closed linear groupsG andH such thatdπ1 = dπ2, thenπ1 = π2 on G0.

PROOF. For X in g, Theorem 0.23 gives

π1(expX) = expdπ1(X) = expdπ2(X) = π2(expX).

By Corollary 0.20,π1 = π2 on G0.

Corollary 0.26. Let π : G → H be a smooth homomorphism between
two closed linear groups, and letdπ : g → h be the corresponding
homomorphism of linear Lie algebras. Then

(a) dπ onto impliesπ is onto at leastH0,
(b) dπ one-one impliesπ is one-one in a neighborhood of 1 inG,
(c) dπ one-one onto impliesπ is a local isomorphism onG0.

PROOF. Parts (a) and (b) are immediate from Corollary 0.20 and Theo-
rems 0.23 and 0.15. Part (c) carries with it a statement about smoothness of
π−1, which follows from Corollary 0.24 and the Inverse Function Theorem.
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6. Problems

1. Prove that exp carriesgl(n, C) ontoGL(n, C) but does not carrygl(2, R) onto
GL(2, R).

2. Identify the linear Lie algebra of

G =
{(

a z
0 a−1

) ∣∣∣∣ a > 0, z ∈ C
}

.

3. Let G1 andG2 be separable topological groups whose topologies are locally
compact, and letπ : G1 → G2 be a continuous one-one homomorphism
onto. Taking for granted that the Baire Category Theorem is valid for locally
compact Hausdorff spaces, prove thatπ is a homeomorphism.

4. Let T be the 2-torus group, realized as diagonal matrices{diag(eiθ1, eiθ2)},
and letS be the subgroup{diag(eit , eit

√
2 ) | −∞ < t < ∞}.

(a) Use Problem 3 to show that the closureS cannot be 1-dimensional.
(b) Deduce thatS is dense inT .

Problems 5–6 deal with the standard manifold structure on spheres.

5. The unit sphereSn in Rn+1 can be made into a smooth manifold of dimension
n by using two charts based on stereographic projection. One is

ϕ1(x1, . . . , xn+1) =
( x1

1 − xn+1
, . . . ,

xn

1 − xn+1

)
defined onU1 = Sn − {(0, . . . , 0, 1)}, and the other is

ϕ2(x1, . . . , xn+1) =
( x1

1 + xn+1
, . . . ,

xn

1 + xn+1

)
defined onU2 = Sn − {(0, . . . , 0, −1)}. Verify that these two charts are
smoothly compatible.

6. The closed linear groupSU (2) can be identified with the sphereS3 in R4

because

SU (2) =
{(

α β

−β̄ ᾱ

) ∣∣∣∣ α ∈ C, β ∈ C, |α|2 + |β|2 = 1

}
.

Thus SU (2) ostensibly has two structures as a smooth manifold, one from
Problem 5 because of this identification withS3 and one by Theorem 0.15.
Prove that these two structures as smooth manifolds are the same.



6. Problems 21

Problems 7–9 explicitly construct a smooth homomorphism fromSU (2) to SO(3)

and compute the corresponding homomorphism of linear Lie algebras.

7. Problem 5 gives particular charts to make spheres into manifolds; if we spe-
cialize to the case ofS2 and use complex variables in the notation, then the
statement is that

z = x1 + i x2

1 − x3

maps the subsetS2 of R3 one-one onto the extended complex planeC ∪ {∞}.
MeanwhileSU (2) acts onC ∪ {∞} by

w = g(z) = αz + β

−β̄z + ᾱ
for g =

(
α β

−β̄ ᾱ

)
∈ SU (2).

The above identification ofS2 with the extended complex plane relatesw to
a point(y1, y2, y3) of S2 by

w = y1 + iy2

1 − y3
.

(a) Invert the formula forw in terms of(y1, y2, y3), obtaining

y1 = w + w̄

1 + |w|2 , y2 = w − w̄

i(1 + |w|2) , y3 = |w|2 − 1

|w|2 + 1
.

(b) Substitute in the result of (a) to obtain the following formula for
(y1, y2, y3) in terms of(x1, x2, x3):( y1

y2

y3

)
=

( Re(α2 − β2) −Im(α2 + β2) −2 Reαβ

Im(α2 − β2) Re(α2 + β2) −2 Imαβ

2 Reαβ̄ −2 Imαβ̄ |α|2 − |β|2

) ( x1

x2

x3

)

8. Interpreting the 3-by-3 matrix in Problem 7b as�

(
α β

−β̄ ᾱ

)
, computed�

on thesu(2) basis(
i 0
0 −i

)
,

(
0 1

−1 0

)
,

(
0 i
i 0

)
by differentiating�(expt X) at t = 0 for each of these 2-by-2 matricesX .

9. (a) Verify thatd� mapssu(2) one-one ontoso(3) in Problem 8.
(b) Use Corollary 0.26 to prove that� mapsSU (2) onto SO(3) and is a

diffeomorphism in a neighborhood of the identity.
(c) Verify that the kernel of� consists of plus and minus the identity.





CHAPTER I

Lie Algebras and Lie Groups

Abstract. The first part of this chapter treats Lie algebras, beginning with definitions
and many examples. The notions of solvable, nilpotent, radical, semisimple, and simple
are introduced, and these notions are followed by a discussion of the effect of a change of
the underlying field.

The idea of a semidirect product begins the development of the main structural theorems
for real Lie algebras—the iterated construction of all solvable Lie algebras from derivations
and semidirect products, Lie’s Theorem for solvable Lie algebras, Engel’s Theorem in con-
nection with nilpotent Lie algebras, and Cartan’s criteria for solvability and semisimplicity
in terms of the Killing form. From Cartan’s Criterion for Semisimplicity, it follows that
semisimple Lie algebras are direct sums of simple Lie algebras.

Cartan’s Criterion for Semisimplicity is used also to provide a long list of classical
examples of semisimple Lie algebras. Some of these examples are defined in terms of
quaternion matrices. Quaternion matrices of sizen-by-n may be related to complex matrices
of size 2n-by-2n.

The treatment of Lie algebras concludes with a study of the finite-dimensional complex-
linear representations ofsl(2, C). There is a classification theorem for the irreducible
representations of this kind, and the general representations are direct sums of irreducible
ones.

Sections 10 through 13 contain a summary of the elementary theory of Lie groups and
their Lie algebras. The abstract theory is presented, and the correspondence is made with
the concrete theory of closed linear groups as in the Introduction. In addition these sections
discuss the adjoint representation, covering groups, complex structures and holomorphic
functions, and complex Lie groups.

The remainder of the chapter explores some aspects of the connection between Lie
groups and Lie algebras. One aspect is the relationship between automorphisms and
derivations. The derivations of a semisimple Lie algebra are inner, and consequently the
identity component of the group of automorphisms of a semisimple Lie algebra consists of
inner automorphisms. In addition, simply connected solvable Lie groups may be built one
dimension at a time as semidirect products withR1, and consequently they are diffeomorphic
to Euclidean space. For simply connected nilpotent groups the exponential map is itself a
diffeomorphism. The earlier long list of classical semisimple Lie algebras corresponds to
a list of the classical semisimple Lie groups. An issue that needs attention for these groups
is their connectedness, and this is proved by using the polar decomposition of matrices.

23
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1. Definitions and Examples

Let k be a field. Analgebra g (not necessarily associative) is a vector
space overk with a product [X, Y ] that is linear in each variable. The
algebra is aLie algebra if the product satisfies also

(a) [X, X ] = 0 for all X ∈ g (and hence [X, Y ] = −[Y, X ]) and
(b) theJacobi identity

[[ X, Y ], Z ] + [[Y, Z ], X ] + [[ Z , X ], Y ] = 0.

For any algebrag we get a linear map ad :g → Endk g given by

(adX)(Y ) = [ X, Y ].

The fact that the image is in Endk g follows from the linearity of the bracket
in the second variable, and the fact that ad is linear follows from the linearity
of bracket in the first variable. Whenever there is a possible ambiguity in
what the underlying vector space is, we write adg X in place of adX .

Suppose (a) holds in the definition of Lie algebra. Then (b) holds if and
only if

[Z , [ X, Y ]] = [ X, [Z , Y ]] + [[ Z , X ], Y ],

which holds if and only if

(1.1) (adZ)[ X, Y ] = [ X, (adZ)Y ] + [(adZ)X, Y ].

Any D in Endk g for which

(1.2) D[ X, Y ] = [ X, DY ] + [DX, Y ]

is a derivation. We have just seen that in a Lie algebra, every adX is
a derivation. Conversely if (a) holds and if every adX for X ∈ g is a
derivation, theng is a Lie algebra.

Now let us make some definitions concerning a Lie algebrag. A homo-
morphism is a linear mapϕ : g → h such that

ϕ([ X, Y ]) = [ϕ(X), ϕ(Y )] for all X andY.

An isomorphism is a one-one homormorphism onto. Ifa andb are subsets
of g, we write

[a, b] = span{[ X, Y ] | X ∈ a, Y ∈ b}.
A subalgebraorLie subalgebrah of g is a subspace satisfying [h, h] ⊆ h;
thenh is itself a Lie algebra. Anideal h in g is a subspace satisfying
[h, g] ⊆ h; an ideal is automatically a subalgebra. The Lie algebrag is
said to beabelian if [ g, g] = 0; a vector space with all brackets defined to
be 0 is automatically an abelian Lie algebra.
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EXAMPLES.

1) Let U be any open set inRn. A smooth vector fieldon U is any

operator on smooth functions onU of the form X = ∑n
i=1 ai(x)

∂

∂xi
with all ai(x) in C∞(U ). The real vector spaceg of all smooth vector
fields onU becomes a Lie algebra if the bracket is defined by [X, Y ] =
XY − Y X . The skew-symmetry and the Jacobi identity follow from the
next example applied to the associative algebra of all operators generated
(under composition and linear combinations) by all smooth vector fields.

2) Letg be an associative algebra. Theng becomes a Lie algebra under
[ X, Y ] = XY − Y X . Certainly [X, X ] = 0. For the Jacobi identity we
have

[[ X,Y ], Z ] + [[Y, Z ], X ] + [[ Z , X ], Y ]

= [ X, Y ]Z − Z [ X, Y ] + [Y, Z ] X − X [Y, Z ] + [Z , X ]Y − Y [Z , X ]

= XY Z − Y X Z − Z XY + ZY X + Y Z X − ZY X

− XY Z + X ZY + Z XY − X ZY − Y Z X + Y X Z

= 0.

3) Letg = gl(n, k) denote the associative algebra of alln-by-n matrices
with entries in the fieldk, and define a bracket product by [X, Y ] =
XY − Y X . Theng becomes a Lie algebra. This is a special case of
Example 2. More generally, letg = Endk V denote the associative algebra
of all k linear maps fromV to V, whereV is a vector space overk, and
define a bracket product by [X, Y ] = XY − Y X . Theng becomes a Lie
algebra. The special case ofgl(n, k) arises whenV is the vector spacekn

of all n-dimensional column vectors overk.

4) Example 1 generalizes to any smooth manifoldM . The vector space
of all smooth vector fields onM becomes a real Lie algebra if the bracket
is defined by [X, Y ] = XY − Y X .

5) (Review of theLie algebra of a Lie group) Let G be a Lie group.
If f : G → R is a smooth function and ifg is in G, let fg be the left
translatefg(x) = f (gx). A smooth vector fieldX on G is left invariant
if (X f )g = X ( fg) for all f andg. The left-invariant smooth vector fields
form a subalgebrag of the Lie algebra of all smooth vector fields, and
this is just the Lie algebra ofG. We can regard a smooth vector fieldX
as a (smoothly varying) family of tangent vectorsXg, one for everyg in
G. Then the mapX �→ X1 is a vector-space isomorphism ofg onto the
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tangent space at the identity ofG. Carrying the definition of bracket to the
tangent space by this isomorphism, we may identify the tangent space at
the identity ofG with the Lie algebra ofG. The elementary theory of Lie
groups will be reviewed in more detail in §10.

6) (Review of thelinear Lie algebra of a closed linear group, as
discussed in the Introduction) LetG be a closed subgroup of nonsingular
real or complex matrices. Consider smooth curvesc(t) of matrices with
c(0) = 1 andc(t) ∈ G for eacht . Theng = {c′(0)} is a real vector space
of matrices closed under the bracket operation [X, Y ] = XY − Y X in
Example 3. Up to canonical isomorphism,g is the Lie algebra ofG in the
sense of Example 5. The relationship between Examples 5 and 6 will be
discussed in more detail in §10, but briefly the isomorphism betweeng and
the Lie algebra ofG is given as follows: Letei j(g)denote the(i, j)th entry of
the matrixg. Then Reei j and Imei j are smooth functions onG to which we
can apply smooth vector fields. IfX is a left-invariant smooth vector field
onG, then the associated matrix has(i, j)th entryX1(Reei j)+ i X1(Im ei j).
The special case of the general linear group is worth mentioning. Under
the above identification we may identify the Lie algebra of the general
linear groupGL(n, R) with gl(n, R) and the Lie algebra ofGL(n, C) with
gl(n, C). In a similar fashion ifV is a finite-dimensional vector space over
R orC, we may identify the Lie algebra of the general linear groupGL(V )

with EndV .

7) The space ofn-by-n skew-symmetric matrices over the fieldk, given
by

g = {X ∈ gl(n, k) | X + X t = 0} = so(n, k),

is a Lie subalgebra of the Lie algebragl(n, k) given in Example 3. To see
closure under brackets, we compute that

[ X, Y ] t = (XY − Y X)t = Y t X t − Xt Y t = Y X − XY = −[ X, Y ].

Whenk is R or C, this example arises as the Lie algebra in the sense of
Example 6 of the orthogonal group overR or C. The orthogonal group
will be discussed in more detail in §17.

8) Fix ann-by-n matrix J overk, and let

g = {X ∈ gl(n, k) | J X + X t J = 0}.
This g is a Lie subalgebra ofgl(n, k) that generalizes Example 7. To see
closure under brackets, we compute that

[ X,Y ] t J = (XY−Y X)t J = Y t X t J−Xt Y t J = JY X−J XY = −J [ X,Y ].
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In the special case thatk is R or C andn is even andJ is of the block

form J =
(

0 1

−1 0

)
, this example arises as the Lie algebra in the sense of

Example 6 of the symplectic group overR or C. The symplectic group
will be discussed in more detail in §17.

9) Let
g = {X ∈ gl(n, k) | Tr(X) = 0} = sl(n, k).

Thisg is a Lie subalgebra ofgl(n, k) because Tr[X, Y ] = Tr XY −Tr Y X =
0 for any two matricesX andY . This example arises as the Lie algebra in
the sense of Example 6 of thespecial linear group(the group of matrices
of determinant 1) overR or C. The special linear group will be discussed
in more detail in §17.

10) Examples in dimension 1. A 1-dimensional Lie algebrag over k
must have [X, X ] = 0 if {X} is a basis. Thusg must be abelian and is
unique up to isomorphism.

11) Examples in dimension 2. Let{U, V } be a basis of the Lie algebra
g. The expansion of [U, V ] in terms of U and V determines the Lie
algebra up to isomorphism. If [U, V ] = 0, theng is abelian. Otherwise let
[U, V ] = αU + βV . We shall produce a basis{X, Y } with [X, Y ] = Y .
We have

X = aU + bV
Y = cU + dV

with det

(
a b
c d

)
�= 0,

and we want [X, Y ] = Y , i.e.,

[aU + bV, cU + dV ]
?= cU + dV .

The left side is

= (ad − bc)[U, V ] = (ad − bc)(αU + βV ).

Choosea andb so thataβ − bα = 1 and putc = α andd = β. Then
ad − bc = 1, and so(ad − bc)α = c and(ad − bc)β = d. With these
definitions, [X, Y ] = Y . We conclude that the only possible 2-dimensional
Lie algebrasg over the fieldk, up to isomorphism, are

(a) g abelian,
(b) g with a basis{X, Y } such that [X, Y ] = Y .

Whenk = R, the second example arises as the Lie algebra of the ma-

trix group G =
{(

x y
0 1

)}
, which is isomorphic to the group of affine

transformationst �→ xt + y of the line.
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12) Some examples in dimension 3 withk = R. We give five examples;
in each the variables are allowed to range arbitrarily throughR.

(a) The Lie algebra of all matrices( 0 a c
0 0 b
0 0 0

)
is an example of what will be called a “nilpotent” Lie algebra. This
Lie algebra is called theHeisenberg Lie algebra. This name is
used even when the field is notR.

(b) The Lie algebra of all matrices( t 0 x
0 t y
0 0 0

)
is an example of what will be called a “split-solvable” Lie algebra.
It is isomorphic with the Lie algebra of the group of translations
and dilations of the plane.

(c) The Lie algebra of all matrices( 0 θ x
−θ 0 y

0 0 0

)
is an example of a “solvable” Lie algebra that is not split solvable.
It is isomorphic with the Lie algebra of the group of translations
and rotations of the plane.

(d) The vector product Lie algebra has a basisi, j , k with bracket
relations

(1.3a) [i, j ] = k, [j , k] = i, [k, i] = j .

It is an example of what will be called a “simple” Lie algebra, and
it is isomorphic to the Lie algebraso(3) of the (compact) group of
rotations inR3, via the isomorphism

(1.3b) i �→
(

0 0 0

0 0 1

0 −1 0

)
, j �→

(
0 0 1

0 0 0

−1 0 0

)
, k �→

(
0 1 0

−1 0 0

0 0 0

)
.

(e) The Lie algebrasu(2) of the (compact) special unitary groupSU (2)

is another example of a simple Lie algebra. It is isomorphic to the
vector product Lie algebra andso(3) via the correspondence

(1.4) 1
2

(
i 0

0 −i

)
�→ i, 1

2

(
0 1

−1 0

)
�→ j , 1

2

(
0 i

i 0

)
�→ k.
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(f) Finally

sl(2, R) =
{(

a b
c −a

)}
is another example of a simple Lie algebra. It is the Lie algebra of
the group of 2-by-2 real matrices of determinant one, and it is not
isomorphic to the Lie algebra of a compact group. In particular, it
is not isomorphic to the previous example. We shall make use of
its distinguished basis

(1.5) h =
(

1 0

0 −1

)
, e =

(
0 1

0 0

)
, f =

(
0 0

1 0

)
.

In this basis the bracket relations are

(1.6) [h, e] = 2e, [h, f ] = −2 f, [e, f ] = h.

More generally ifk is any field, thensl(2, k) has (1.5) as basis, and
the bracket relations are given by (1.6).

13) Centralizers. Ifg is a Lie algebra ands is a subset ofg, then

Zg(s) = {X ∈ g | [ X, Y ] = 0 for all Y ∈ s}

is thecentralizer of s in g. This is a Lie subalgebra ofg. If s consists of
one elementS, we often writeZg(S) in place ofZg({S}).

14) Normalizers. Ifg is a Lie algebra ands is a Lie subalgebra ofg,
then

Ng(s) = {X ∈ g | [ X, Y ] ∈ s for all Y ∈ s}
is thenormalizer of s in g. This is a Lie subalgebra ofg.

2. Ideals

We shall now study ideals in a Lie algebra more closely. In the course of
the study, we shall define the notions “nilpotent,” “solvable,” “simple,”
“semisimple,” and “radical.” The underlying field for our Lie algebras
remains an arbitrary fieldk. Our computations are made easier by using
the following proposition.
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Proposition 1.7. If a andb are ideals in a Lie algebra, then so area+b,
a ∩ b, and [a, b].

PROOF. The conclusions fora + b anda ∩ b are obvious. In the case of
[a, b], we have

[g, [a, b]] ⊆ [[g, a], b] + [a, [g, b]] by (1.1)

⊆ [a, b] + [a, b]

⊆ [a, b].

EXAMPLES OF IDEALS.

1) Zg = centerof g = {X | [ X, Y ] = 0 for all Y ∈ g}. This is the
centralizer ofg in g.

2) [g, g] = commutator ideal. This is an ideal by Proposition 1.7.

3) kerπ wheneverπ : g → h is a homomorphism of Lie algebras.

Let g be a Lie algebra. Each adX for X ∈ g is a member of Endk g, and
these members satisfy

(1.8) ad[X, Y ] = adX adY − adY adX

as a consequence of the Jacobi identity. In view of the definition of bracket
in EndkV given in Example 3 of §1, we see from (1.8) that ad :g → Endk g

is a homomorphism of Lie algebras. The kernel of this homomorphism
is the centerZg. The image can be written simply as adg or adg g, and
Example 3 above notes that adg is a Lie subalgebra of Endk g.

Let a be an ideal in the Lie algebrag. Theng/a as a vector space
becomes a Lie algebra under the definition [X + a, Y + a] = [ X, Y ] + a

and is called thequotient algebra of g anda. Checking that this bracket
operation is independent of the choices uses thata is an ideal, and then
the defining properties of the bracket operation of a Lie algbera follow
from the corresponding properties ing. The quotient mapg → g/a is a
homomorphism of Lie algebras, by definition, and hence every ideal is the
kernel of a homomorphism.

Ideals and homomorphisms for Lie algebras have a number of properties
in common with ideals and homomorphisms for rings. One such property
is the construction of homomorphismsg/a → h whena is an ideal ing:
If a homomorphismπ : g → h has the property thata ⊆ kerπ , thenπ

factors through the quotient mapg → g/a, thus defining a homomorphism
g/a → h. If π is ontoh, theng/a → h is onto; ifa = kerπ , theng/a → h
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is one-one. Whena equals kerπ andπ is ontoh, then the descended map
g/a → h is an isomorphism.

Another such property is the one-one correspondence of ideals ing that
containa with ideals ing/a, the correspondence being given by the quotient
map.

Yet another such property is theSecond Isomorphism Theorem. If g

is a Lie algebra and ifa andb are ideals ing such thata + b = g, then

(1.9) g/a = (a + b)/a ∼= b/(a ∩ b).

In fact, the map from left to right isA + B + a �→ B + (a ∩ b). The map
is known from linear algebra to be a vector space isomorphism, and we
easily check that it respects brackets.

For the remainder of this section, letg denote a finite-dimensional Lie
algebra. We define recursively

g
0 = g, g

1 = [g, g], g
j+1 = [g j , g j ].

Then the decreasing sequence

g = g
0 ⊇ g

1 ⊇ g
2 ⊇ · · ·

is called thecommutator series for g. Eachg j is an ideal ing, by
Proposition 1.7 and induction. We say thatg is solvable if g j = 0 for
somej . A nonzero solvableg has a nonzero abelian ideal, namely the last
nonzerog j .

Next we define recursively

g0 = g, g1 = [g, g], gj+1 = [g, gj ].

Then the decreasing sequence

g = g0 ⊇ g1 ⊇ g2 ⊇ · · ·
is called thelower central series for g. Eachgj is an ideal ing, by
Proposition 1.7 and induction. We say thatg is nilpotent if gj = 0 for
somej . A nonzero nilpotentg has nonzero center, the last nonzerogj being
in the center. Inductively we see thatg j ⊆ gj , and it follows that nilpotent
implies solvable.

Below are the standard examples of solvable and nilpotent Lie algebras.
See also Example 12 in §1. Further examples appear in the exercises at the
end of the chapter.
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EXAMPLES.

1) The Lie algebrag =
 a1 ∗

. . .

0 an

 is solvable.

2) The Lie algebrag =
 0 ∗

. . .

0 0

 is nilpotent.

Proposition 1.10.Any subalgebra or homomorphic image of a solvable
Lie algebra is solvable. Similarly any subalgebra or homomorphic image
of a nilpotent Lie algebra is nilpotent.

PROOF. If h is a subalgebra ofg, then induction giveshk ⊆ gk . Hence
g solvable impliesh solvable. Ifπ : g → h is a homomorphism of the
Lie algebrag onto the Lie algebrah, thenπ(gk) = hk . Henceg solvable
impliesh solvable. The arguments in the nilpotent case are similar.

Proposition 1.11.If a is a solvable ideal ing and ifg/a is solvable, then
g is solvable.

PROOF. Let π : g → g/a be the quotient homomorphism, and suppose
that (g/a)k = 0. Sinceπ(g) = g/a, π(g j) = (g/a) j for all j . Thus
π(gk) = 0, and we conclude thatgk ⊆ a. By assumptional = 0 for some
l. Hencegk+l = (gk)l ⊆ al = 0, andg is solvable.

Proposition 1.12. If g is a finite-dimensional Lie algebra, then there
exists a unique solvable idealr of g containing all solvable ideals ing.

PROOF. By finite dimensionality it suffices to show that the sum of two
solvable ideals, which is an ideal by Proposition 1.7, is solvable. Thus let
a andb be solvable ideals and leth = a + b. Thena is a solvable ideal in
h, and (1.9) gives

h/a = (a + b)/a ∼= b/(a ∩ b).

This is solvable by Proposition 1.10 sinceb is solvable. Henceh is solvable
by Proposition 1.11.

The idealr of Proposition 1.12 is called theradical of g and is denoted
radg.

A finite-dimensional Lie algebrag is simple if g is nonabelian andg has
no proper nonzero ideals. A finite-dimensional Lie algebrag issemisimple
if g has no nonzero solvable ideals, i.e., if radg = 0.
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Proposition 1.13.In a simple Lie algebra [g, g] = g. Every simple Lie
algebra is semisimple. Every semisimple Lie algebra has 0 center.

PROOF. Letg be simple. The commutator [g, g] is an ideal and hence is
0 org. It cannot be 0 sinceg is nonabelian. So it isg. This proves the first
statement. For the second statement, radg is an ideal and so is 0 org. If
radg = g, theng is solvable and [g, g] � g, contradiction. So radg = 0,
andg is semisimple. For the third statement,Zg is an abelian ideal and
must be 0, by definition of semisimplicity.

Proposition 1.14. If g is a finite-dimensional Lie algebra, theng/radg

is semisimple.

PROOF. Let π : g → g/radg be the quotient homomorphism, and let
h be a solvable ideal ing/radg. Form the ideala = π−1(h) ⊆ g. Then
π(a) = h is solvable, and kerπ |a is solvable, being in radg. So a is
solvable by Proposition 1.11. Hencea ⊆ radg andh = 0. Therefore
g/radg is semisimple.

EXAMPLES. Any 3-dimensional Lie algebrag is either solvable or
simple. In fact, Examples 10 and 11 in §1 show that any Lie algebra
of dimension 1 or 2 is solvable. Ifg is not simple, then it has a nontrivial
idealh. Thish is solvable, and so isg/h. Henceg is solvable by Proposition
1.11.

To decide whether such ag is solvable or simple, we have only to
compute [g, g]. If [ g, g] = g, theng is simple (because the commutator
series cannot end in 0), while if [g, g] � g, theng is solvable (because
[g, g] has dimension at most 2 and is therefore solvable).

It follows from this analysis and from the bracket relations (1.6) that
sl(2, k) is simple, for any fieldk of characteristic�= 2. Fork = R, we see
similarly thatso(3) andsu(2) are simple as a consequence of (1.3) and the
isomorphisms (1.4).

3. Field Extensions and the Killing Form

In this section we examine the effect of enlarging or shrinking the field
of scalars for a Lie algebra. Letk be a field, and letK be an extension field.

If U andV are vector spaces overk, then thetensor product U ⊗k V
is characterized up to canonical isomorphism by theuniversal mapping
property that ak bilinear mapL of U × V into ak vector spaceW extends
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uniquely to ak linear map̃L : U ⊗k V → W . The sense in which̃L is
an extension ofL is that L̃(u ⊗ v) = L(u, v) for all u ∈ U andv ∈ V .
Tensor products are described in more detail in Appendix A.

LetU ′ andV ′ be two furtherk vector spaces. Ifl is in Homk(U, U ′) and
m is in Homk(V, V ′), then we can use this property to define thetensor
product l⊗m : U ⊗k V → U ′⊗k V ′ as thek linear extension of the bilinear
map(u, v) �→ l(u) ⊗ m(v). Appendix A contains further discussion.

Of course,l ⊗ m can always be defined concretely in terms of bases.
If {ui} is a basis ofU and{vj} is a basis ofV, then{ui ⊗ vj} is a basis of
U ⊗k V . Hence if we let(l ⊗ m)(ui ⊗ vj) = l(ui) ⊗ m(vj), thenl ⊗ m
is defined on a basis, and we get a well defined linear transformation on
all of U ⊗k V . But it is tedious to check that this way of definingl ⊗ m
is independent of the choice of bases forU andV . The above approach
using the universal mapping property avoids this problem.

Still with V as a vector space overk, we are especially interested in
the special caseV ⊗k K. If c is a member ofK, then multiplication byc,
which we denote temporarilym(c), isk linear fromK toK. Thus 1⊗m(c)
defines ak linear map ofV ⊗k K to itself, and we define this to be scalar
multiplication byc in V ⊗k K. With this definition we easily check that
V ⊗k K becomes a vector space overK. We writeV K for this vector space.
The mapv �→ v ⊗ 1 allows us to identifyV canonically with a subset of
V K. If {vi} is a basis ofV over k, then{vi ⊗ 1} (which we often write
simply as{vi}) is a basis ofV K overK.

If W is a vector space over the extension fieldK, we can restrict the
definition of scalar multiplication to scalars ink, thereby obtaining a vector
space overk. This vector space we denote byW k. There will be no
possibility of confusing the notationsV K andW k since the field is extended
in one case and shrunk in the other.

In the special case thatk = R andK = C andV is a real vector space,
the complex vector spaceV C is called thecomplexificationof V . If W is
complex, thenW R is W regarded as a real vector space. The operations
( · )C and ( · )R are not inverse to each other:(V C)R has twice the real
dimension ofV, and(W R)C has twice the complex dimension ofW . More
precisely

(1.15a) (V C)R = V ⊕ i V

as real vector spaces, whereV meansV ⊗ 1 in V ⊗R C and thei refers to
the real linear transformation of multiplication byi . Often we abbreviate
the equation (1.15a) simply as

(1.15b) V C = V ⊕ i V .
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When a complex vector spaceW and a real vector spaceV are related by

W R = V ⊕ i V,

we say thatV is a real form of the complex vector spaceW . Formula
(1.15a) says that any real vector space is a real form of its complexification.
In (1.15a) theR linear map that is 1 onV and−1 on i V is called the
conjugation of the complex vector spaceV C with respect to the real form
V .

Now let us impose Lie algebra structures on these constructions. First
suppose thatg0 is a Lie algebra overk. We want to impose a Lie algebra
structure on theK vector spaceg = (g0)

K. To do so canonically, we
introduce the 4-linear map

g0 × K × g0 × K −→ g0 ⊗k K

given by
(X, a, Y, b) �→ [ X, Y ] ⊗ ab ∈ g0 ⊗k K.

This 4-linear map extends to ak linear map ong0 ⊗k K ⊗k g0 ⊗k K that
we can restrict to ak bilinear map

(g0 ⊗k K) × (g0 ⊗k K) −→ g0 ⊗k K.

The result is our definition of the bracket product ong = (g0)
K = g0 ⊗k K.

We readily check that it isK bilinear and extends the bracket product in
g0. Using bases, we see that it has the property [X, X ] = 0 and satisfies
the Jacobi identity. Henceg is a Lie algebra overK.

Starting from the Lie algebrag over K, we can forget about scalar
multiplication other than by scalars ink, and the result is a Lie algebragk

overk. The notationgk is consistent with the notation for vector spaces,
i.e., the underlyingk vector space ofgk is the vector space constructed
earlier by the operation( · )k.

In the special case thatk = R andK = C andg0 is a real Lie algebra, the
complex Lie algebra(g0)

C is called thecomplexification of g0. Similarly
when a complex Lie algebrag and a real Lie algebrag0 are related as vector
spaces overR by

(1.16) g
R = g0 ⊕ ig0,

we say thatg0 is a real form of the complex Lie algebrag. Any real Lie
algebra is a real form of its complexification. The conjugation of a complex
Lie algebrag with respect to a real form is a Lie algebra isomorphism of
gR with itself.
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Proposition 1.17.Let g be a Lie algebra overk, and identifyg with the
subsetg ⊗ 1 of gK. Then

[g, g]K = [gK, gK].

Consequently ifg is finite dimensional, theng is solvable if and only ifgK

is solvable.

PROOF. Fromg ⊆ gK, we obtain [g, g] ⊆ [gK, gK]. TheK subspace of
gK generated by [g, g] is [g, g]K, and therefore [g, g]K ⊆ [gK, gK]. In the
reverse direction leta andb be inK, and letX andY be ing. Then

[ X ⊗ a, Y ⊗ b] = [ X, Y ] ⊗ ab ∈ [g, g]K.

Passing to linear combinations in each factor of the bracket on the left, we
obtain [gK, gK] ⊆ [g, g]K. Thus [g, g]K = [gK, gK]. It follows that the
members of the commutator series satisfygm = 0 if and only if(gK)m = 0.
Thereforeg is solvable if and only ifgK is solvable.

Now let g be a finite-dimensional Lie algebra overk. If X andY are
in g, then adX adY is a linear transformation fromg to itself, and it is
meaningful to define

(1.18) B(X, Y ) = Tr(adX adY ).

Then B is a symmetric bilinear form ong known as theKilling form of
g after the person who introduced it. The Killing form isinvariant in the
sense that

(1.19a) B((adX)Y, Z) = −B(Y, (adX)Z)

for all X , Y , andZ in g. An alternative way of writing (1.19a) is

(1.19b) B([ X, Y ], Z) = B(X, [Y, Z ]).

Equation (1.19) is straightforward to verify; we simply expand both sides
and use the fact that Tr(L M) = Tr(M L).
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EXAMPLES.

1) Letg be 2-dimensional nonabelian as in Example 11b of §1. Theng

has a basis{X, Y } with [X, Y ] = Y . To understand the Killing formB, it
is enough to know whatB is on every pair of basis vectors. Thus we have
to compute the traces of adX adX , adX adY , and adY adY . The matrix
of adX adX in the basis{X, Y } is

adX adX =

X Y(
0 0
0 1

)
X
Y

and henceB(X, X) = 1. CalculatingB(X, Y ) andB(Y, Y ) similarly, we
see thatB is given by the matrix

B =

X Y(
1 0
0 0

)
X
Y

.

2) Letg = sl(2, k) with basis{h, e, f } as in (1.5) and bracket relations
as in (1.6). Computing as in the previous example, we see that the matrix
of B in this basis is

B =

h e f( 8 0 0
0 0 4
0 4 0

) h
e
f

.

Returning to a general finite-dimensional Lie algebrag over k, let us
extend the scalars fromk to K, forming the Lie algebragK. Let BK be the
Killing form of gK. If we fix a basis ofg overk, then that same set is a basis
of gK overK. Consequently ifX andY are ing, the matrix of adX adY is
the same forg as it is forgK, and it follows that

(1.20) BK|g×g = B.

When we shrink the scalars fromK to k, passing from a Lie algebra
h over K to the Lie algebrahk, the dimension is not preserved. In fact,
the k dimension ofhk is the product of the degree ofK over k and the
K dimension ofh. Thus the Killing forms ofh andhk are not related so
simply. We shall be interested in this relationship only in the special case
thatk = R andK = C, and we return to it in §8.
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4. Semidirect Products of Lie Algebras

In this section the underlying field for our Lie algebras remains an
arbitrary fieldk.

Let a andb be Lie algebras, and letg be the external direct sum ofa
andb as vector spaces, i.e., the set of ordered pairs with coordinate-wise
addition and scalar multiplication. Then we can define a bracket operation
on g so thata brackets witha as before,b brackets withb as before, and
[a, b] = 0. We say thatg is theLie algebra direct sumof a andb, and we
write g = a ⊕ b. Herea andb are ideals ing.

The above construction is what is sometimes called an “external direct
sum,” an object constructed out of the constituentsa and b. Now we
consider an “internal direct sum,” formed fromg by recognizinga andb

within it. Let a Lie algebrag be given, and leta andb be ideals ing such
thatg = a ⊕ b as vector spaces. Theng is isomorphic with the Lie algebra
direct sum ofa andb as defined above, and we shall simply say thatg is
theLie algebra direct sumof a andb.

Generalizing these external and internal constructions, we shall now
consider “semidirect products” of Lie algebras. We begin by examining
derivations more closely. Recall that a derivationD of an algebrab is
a member of Endk b satisfying the product rule (1.2). Let Derk b be the
vector space of all derivations ofb.

Proposition 1.21.If b is any algebra overk, then Derk b is a Lie algebra.
If b is a Lie algebra, then ad :b → Derk b ⊆ Endk b is a Lie algebra
homomorphism.

PROOF. For D andE in Derk b, we have

[D, E ][ X, Y ] = (DE − E D)[ X, Y ]

= D[E X, Y ] + D[ X, EY ] − E [DX, Y ] − E [ X, DY ]

= [DE X, Y ] + [E X, DY ] + [DX, EY ] + [ X, DEY ]

− [E DX, Y ] − [DX, EY ] − [E X, DY ] − [ X, E DY ]

= [[ D, E ] X, Y ] + [ X, [D, E ]Y ].

Thus Derk b is a Lie algebra. Finally we saw in (1.1) that adb ⊆ Derk b,
and in (1.8) that ad is a Lie algebra homomorphism.

We come to the notion of “internal semidirect product.” Letg be a
Lie algebra, letg = a ⊕ b as vector spaces, and suppose thata is a Lie
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subalgebra ofg andb is an ideal. IfA is in a, then adA leavesb stable
(sinceb is an ideal), and so adA|b is in Derk b. By Proposition 1.21 we
obtain a homomorphismπ from a to Derk b. This homomorphism tells
us the bracket ofa with b, namely [A, B] = π(A)(B). Thusa, b, andπ

determineg. We say thatg is thesemidirect product of a andb, and we
write g = a ⊕π b.

The notion of “external semidirect product” is captured by the following
proposition.

Proposition 1.22.Let Lie algebrasa andb be given, and supposeπ is
a Lie algebra homomorphism froma to Derk b. Then there exists a unique
Lie algebra structure on the vector space direct sumg = a ⊕ b retaining
the old bracket ina andb and satisfying [A, B] = π(A)(B) for A ∈ a and
B ∈ b. Within the Lie algebrag, a is a subalgebra andb is an ideal.

REMARK. The direct sum earlier in this section isg in the special case
thatπ = 0.

PROOF. Uniqueness is clear. Existence of an algebra structure with
[ X, X ] = 0 is clear, and the problem is to prove the Jacobi identity. Thus
let X, Y, Z ∈ g. If all three are ina or all three are inb, we are done. By
skew symmetry we reduce to two cases:

(i) X andY are ina andZ is in b. Then

π([ X, Y ]) = π(X)π(Y ) − π(Y )π(X).

If we apply both sides toZ , we get

[[ X, Y ], Z ] = [ X, [Y, Z ]] − [Y, [ X, Z ]] ,

which implies the Jacobi identity.
(ii) X is in a andY andZ are inb. Thenπ(X) is a derivation ofb, and

so
π(X)[Y, Z ] = [π(X)Y, Z ] + [Y, π(X)Z ]

or
[ X, [Y, Z ]] = [[ X, Y ], Z ] + [Y, [ X, Z ]] ,

which implies the Jacobi identity.

Finally a andb both bracketb into b, and consequentlyb is an ideal.
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EXAMPLES.
1) Letb be any Lie algebra, and letD be in Derk b. Then(D, b) defines

a new Lie algebrag unique up to isomorphism as follows. Leta = kX be
a 1-dimensional algebra, and takeg = a ⊕π b, whereπ(X) = D. This
condition onπ means that [X, Y ] = D(Y ) for Y ∈ b.

2) LetV be a vector space overk, and letC be a bilinear form onV ×V .
Let a be the algebra ofderivations of C , namely

a = {D ∈ Endk V | C(DX, Y ) + C(X, DY ) = 0 for all X, Y }.
Let b be V with abelian Lie algebra structure. Then Derk b = Endk V, so
that a ⊆ Derk b. Thus we can form the semidirect productg = a ⊕ι b,
whereι is inclusion. Here are two special cases:

(a) LetV beRn with C as the usual dot product. In the standard basis
of Rn, a gets identified with the Lie algebra of real skew-symmetric
n-by-n matrices. The Lie algebrab is justRn, and we can form the
semidirect productg = a⊕ι b. In this example,a is the Lie algebra
of the rotation group (about the origin) inRn, b is the Lie algebra
of the translation group inRn, andg is the Lie algebra of the proper
Euclidean motion group inRn (the group containing all rotations
and translations).

(b) Let V beR4, and defineC by

C




x
y
z
t

 ,


x ′

y ′

z′

t ′


 = xx ′ + yy ′ + zz′ − t t ′.

In this case,a is the Lie algebra of the homogeneous Lorentz group
in space-time,b is the Lie algebra of translations inR4, andg is the
Lie algebra of the inhomogeneous Lorentz group.

5. Solvable Lie Algebras and Lie’s Theorem

In this sectionk andK are fields satisfyingk ⊆ K ⊆ C, and all Lie
algebras havek as the underlying field and are finite dimensional.

Proposition 1.23. An n-dimensional Lie algebrag is solvable if and
only if there exists a sequence of subalgebras

g = a0 ⊇ a1 ⊇ a2 ⊇ · · · an = 0

such that, for eachi , ai+1 is an ideal inai and dim(ai/ai+1) = 1.
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PROOF. Letgbe solvable. Form the commutator seriesg j and interpolate
subspacesai in the sequence so that dim(ai/ai+1) = 1 for all i . We have

g = a0 ⊇ a1 ⊇ a2 ⊇ · · · an = 0.

For anyi , we can findj such thatg j ⊇ ai ⊇ ai+1 ⊇ g j+1. Then

[ai , ai ] ⊆ [g j , g j ] = g
j+1 ⊆ ai+1.

Henceai is a subalgebra for eachi , andai+1 is an ideal inai .
Conversely let the sequence exist. Choosexi so thatai = kxi + ai+1.

We show by induction thatgi ⊆ ai , so thatgn = 0. In fact,g0 = a0. If
gi ⊆ ai , then

g
i+1 = [gi , gi ] ⊆ [kxi+ai+1, kxi+ai+1] ⊆ [kxi , ai+1]+[ai+1, ai+1] ⊆ ai+1,

and the induction is complete. Henceg is solvable.

The kind of sequence in the theorem is called anelementary sequence.
The existence of such a sequence has the following implication. Write
ai = kxi ⊕ ai+1. Thenkxi is a 1-dimensional subspace ofai , hence a
subalgebra. Alsoai+1 is an ideal inai . In view of Proposition 1.22,ai

is exhibited as a semidirect product of a 1-dimensional Lie algebra and
ai+1. The proposition says that solvable Lie algebras are exactly those that
can be obtained from semidirect products, starting from 0 and adding one
dimension at a time.

Let V be a vector space overK, and letg be a Lie algebra. Arepresen-
tation of g on V is a homomorphism of Lie algebrasπ : g → (EndK V )k,
which we often write simply asπ : g → EndK V . Because of the definition
of bracket in EndK V, the conditions onπ are that it bek linear and satisfy

(1.24) π([ X, Y ]) = π(X)π(Y ) − π(Y )π(X) for all X, Y ∈ g.

EXAMPLES.

1) ad is a representation ofg ong, by (1.8). HereK = k.

2) If g is a Lie algebra ofn-by-n matrices overk, then the identity is a
representation ofg onKn wheneverK containsk.

3) A case often studied in later chapters is thatk = R andK = C. The
vector spaceV is thus to be complex. A representation of a real Lie algebra
g on the complex vector spaceV is a homomorphism ofg into EndC V,
which is to be regarded as the real Lie algebra(EndC V )R. [Warning: This
space of endomorphisms is different from EndR(V R), whose real dimension
is twice that of(EndC V )R.]
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4) On other occasions in later chapters the Lie algebrag under study will
be complex. In such cases we shall need to say whether we are thinking of
g as a complex Lie algebra (so that representations are complex linear) or
as the real Lie algebragR (so that representations are real linear).

Theorem 1.25(Lie’s Theorem). Letg be solvable, letV �= 0 be a
finite-dimensional vector space overK, and letπ : g → EndK V be a
representation. IfK is algebraically closed, then there is a simultaneous
eigenvectorv �= 0 for all the members ofπ(g). More generally (forK),
there is a simultaneous eigenvector if all the eigenvalues of allπ(X), X ∈ g,
lie in K.

REMARKS.
1) Wheng is a solvable Lie algebra andπ is a representation,π(g) is

solvable. This follows immediately from Proposition 1. Consequently the
theorem is really a result about solvable Lie algebras of matrices.

2) The theorem is the base step in an induction that will show thatV has a
basis in which all the matrices ofπ(g) are triangular. This final conclusion
appears as Corollary 1.29 below. In particular, ifg is a solvable Lie algebra
of matrices andπ is the identity and one of the conditions onK is satisfied,
theng can be conjugated so as to be triangular.

PROOF. We induct on dimg. If dim g = 1, thenπ(g) consists of the
multiples of a single transformation, and the result follows.

Assume the theorem for all solvable Lie algebras of dimension less than
dimg satisfying the eigenvalue condition. Sinceg is solvable, [g, g] � g.
Choose a subspaceh of codimension 1 ing with [g, g] ⊆ h. Then [h, g] ⊆
[g, g] ⊆ h, andh is an ideal. Soh is solvable. (Also the eigenvalue
condition holds forh if it holds for g.) By inductive hypothesis we can
choosee ∈ V with π(H)e = λ(H)e for all H ∈ h, whereλ(H) is a
scalar-valued function defined forH ∈ h.

Fix X ∈ g with g = kX + h. Define recursively

e−1 = 0, e0 = e, ep = π(X)ep−1,

and let E = span{e0, . . . , ep, . . . }. Then π(X)E ⊆ E . Let v be an
eigenvector forπ(X) in E . We show thatv is an eigenvector for each
π(H), H ∈ h.

First we show that

(1.26) π(H)ep ≡ λ(H)ep mod span{e0, . . . , ep−1}
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for all H ∈ h. We do so by induction onp. Formula (1.26) is valid for
p = 0 by definition ofe0. Assume (1.26) forp. Then

π(H)ep+1 = π(H)π(X)ep

= π([H, X ])ep + π(X)π(H)ep

≡ λ([H, X ])ep + π(X)π(H)ep mod span{e0, . . . , ep−1}
by induction

≡ λ([H, X ])ep + λ(H)π(X)ep

mod span{e0, . . . , ep−1, π(X)e0, . . . , π(X)ep−1}
by induction

≡ λ(H)π(X)ep mod span{e0, . . . , ep}
= λ(H)ep+1 mod span{e0, . . . , ep}.

This proves (1.26) forp + 1 and completes the induction.
Next we show that

(1.27) λ([H, X ]) = 0 for all H ∈ h.

In fact, (1.26) says thatπ(H)E ⊆ E and that, relative to the basise0, e1, . . . ,
the linear transformationπ(H) has matrix

π(H) =


λ(H) ∗

λ(H)
. . .

0 λ(H)

 .

Thus Trπ(H) = λ(H) dim E , and we obtain

λ([H, X ]) dim E = Tr π([H, X ]) = Tr[π(H), π(X)] = 0.

Since our fields have characteristic 0, (1.27) follows.
Now we can sharpen (1.26) to

(1.28) π(H)ep = λ(H)ep for all H ∈ h.

To prove (1.28), we induct onp. For p = 0, the formula is the definition
of e0. Assume (1.28) forp. Then

π(H)ep+1 = π(H)π(X)ep

= π([H, X ])ep + π(X)π(H)ep

= λ([H, X ])ep + π(X)λ(H)ep by induction

= 0 + λ(H)ep+1 by (1.27)

= λ(H)ep+1.
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This completes the induction and proves (1.28). Because of (1.28),
π(H)x = λ(H)x for all x ∈ E and in particular forx = v. Hence
the eigenvectorv of π(X) is also an eigenvector ofπ(h). The theorem
follows.

Before carrying out the induction indicated in Remark 2, we observe
something about eigenvalues in connection with representations. Letπ

be a representation ofg on a finite-dimensionalV, and letU ⊆ V be an
invariant subspace: π(g)U ⊆ U . Then the formulaπ(X)(v + U ) =
π(X)v + U defines aquotient representationof g on V/U . The char-
acteristic polynomial ofπ(X) on V is the product of the characteristic
polynomial onU and that onV/U , and hence the eigenvalues forV/U
are a subset of those forV .

Corollary 1.29 (Lie’s Theorem). Under the assumptions ong, V, π ,
andK as in Theorem 1.25, there exists a sequence of subspaces

V = V0 ⊇ V1 ⊇ · · · ⊇ Vm = 0

such that eachVi is stable underπ(g) and dimVi/Vi+1 = 1. Consequently
V has a basis with respect to which all the matrices ofπ(g) are upper
triangular.

REMARK. The sequence of subspaces in the corollary is called an
invariant flag of V .

PROOF. We induct on dimV, the case dimV = 1 being trivial. If V
is given, find by Theorem 1.25 an eigenvectorv �= 0 for π(g), and put
U = kv. ThenU is an invariant subspace, andπ provides a quotient
representation onV/U , where dim(V/U ) < dim V . Find by inductive
hypothesis an invariant flag forV/U , say

V/U = W0 ⊇ W1 ⊇ · · · ⊇ Wm−1 = 0,

and putVi = σ−1(Wi), whereσ : V → V/U is the quotient map (which
commutes with allπ(X) by definition). TakingVm = 0, we have

V = V0 ⊇ V1 ⊇ · · · ⊇ Vm−1 ⊇ Vm = 0

as the required sequence.
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A solvable Lie algebrag is said to besplit solvable if there is an
elementary sequence

g = a0 ⊇ a1 ⊇ · · · ⊇ an = 0

in which eachai is an ideal ing (rather than just inai−1). Notice that a
subspacea ⊆ g is an ideal if and only ifa is stable under adg. Thus in
the terminology above,g is split solvable if and only if there is an invariant
flag for the adjoint representation.

Corollary 1.30. If g is solvable, theng is split solvable if and only if
the eigenvalues of all adX , X ∈ g, are ink.

PROOF. Sufficiency is by Corollary 1.29. For necessity let the sequence

g = a0 ⊇ a1 ⊇ · · · ⊇ an = 0

exist. The eigenvalues of adX , X ∈ g, are those of adX on the various
ai/ai+1. Since dim(ai/ai+1) = 1, the eigenvalue of any endomorphism of
this space is ink.

An example of a split-solvable Lie algebra is in Example 12b at the end
of §1, and an example of a solvable Lie algebra that is not split solvable is
in Example 12c. The verifications of these properties use Corollary 1.30.

6. Nilpotent Lie Algebras and Engel’s Theorem

In this section until further notice,k is any field, and all Lie algebras
havek as underlying field and are finite dimensional.

Let g be a nilpotent Lie algebra. Ifgk = 0, then

(1.31) (adX)kY = [ X, [ X, [· · · , [ X, Y ] · · · ]]] ∈ gk = 0.

Hence(adX)k = 0, and adX is a nilpotent linear transformation ong.
Actually in (1.31) we can allow thek occurrences ofX to be unequal,

and then the conclusion is that adg is a nilpotent Lie algebra. This result,
along with a converse, are the subject of the following proposition.
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Proposition 1.32.If g is a Lie algebra, theng is nilpotent if and only if
the Lie algebra adg is nilpotent.

PROOF. We have

(1.33)
[[ · · · [[ Xk+1, Xk ], Xk−1], · · · ], X1] = ad [· · · [ Xk+1, Xk ], · · · X2](X1)

and

ad [· · · [ Xk+1, Xk ], · · · X2] = [ad[· · · [ Xk+1, Xk ], · · · X3], adX2]

= · · · = [· · · [adXk+1, adXk ], · · · adX2].(1.34)

If g is nilpotent, thengk = 0 for somek. Then the left side of (1.33) is
always 0, and hence the right side of (1.34) is always 0. This says that
(adg)k−1 = 0, and hence adg is nilpotent. Conversely if adg is nilpotent,
then by retracing the steps, we see thatg is nilpotent.

Engel’s Theorem is a converse to (1.31), saying that if adX is always a
nilpotent transformation ofg, theng is a nilpotent Lie algebra. Actually
we shall state Engel’s Theorem more generally, in a way that lends itself
better to an inductive proof, and then we shall derive this conclusion as a
corollary.

Theorem 1.35(Engel’s Theorem). LetV �= 0 be a finite-dimensional
vector space overk, and letg be a Lie algebra of nilpotent endomorphisms
of V . Then

(a) g is a nilpotent Lie algebra,
(b) there existsv �= 0 in V with X (v) = 0 for all X ∈ g,
(c) in a suitable basis ofV, all X are upper triangular with 0’s on the

diagonal.

PROOF. The proof is by induction on dimg. For dimg = 1, (b) and (c)
hold sinceX is nilpotent, and (a) is trivial. Suppose that (a), (b), and (c)
hold for dimension< dimg. We may assume that dimg > 1.

We shall prove that (b) holds when the dimension equals dimg. Then
(c) follows by the argument of Corollary 1.29 (Lie’s Theorem), and (a)
follows from (c) since a subalgebra of a nilpotent Lie algebra is nilpotent
(Proposition 1.10). Thus a proof of (b) will complete the induction.

The main step is to construct a nilpotent idealh ⊆ g of codimension 1
in g. To do so, leth be a proper Lie subalgebra ofg of maximal dimension
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in g. By inductive hypothesis,h is a nilpotent Lie algebra. We show that
h has codimension 1 and is an ideal. Since adh leavesh stable, ad defines
a representationρ of h ong/h by

ρ(H)(X + h) = [H, X ] + h.

We claim that eachρ(H) is nilpotent. In fact, ong, adH is the difference
L(H)− R(H) of the commuting operations of left and right multiplication
by H , and thus the binomial theorem shows that the powers of adH act by

(adH)2m X =
2m∑
j=0

(−1) j

(
2m

j

)
L(H) j R(H)2m− j X

=
2m∑
j=0

(−1) j

(
2m

j

)
H j X H 2m− j .(1.36)

If H m = 0, we see that every term on the right side is 0 and hence that
(adH)2m = 0. Therefore adH is nilpotent ong and must be nilpotent on
g/h.

Since dimρ(h) < dimg, we can find by inductive hypothesis a coset
X0 + h �= h in g/h with ρ(H)(X0 + h) = h for all H ∈ h. This condition
says that

(1.37) [H, X0] ∈ h for all H ∈ h.

Let s = h + kX0. Then (1.37) shows thats is a subalgebra ofg properly
containingh, and hences = g by maximality of dimh. Consequentlyh
has codimension 1 ing. Also (1.37) shows thath is an ideal.

To complete the proof, letV0 = {v ∈ V | Hv = 0 for all H ∈ h}. Since
h acts as nilpotent endomorphisms, the inductive hypothesis shows thatV0

is not 0. Ifv is in V0, then

H X0v = [H, X0]v + X0Hv = 0 + 0 = 0

sinceh is an ideal. ThusX0(V0) ⊆ V0. By assumptionX0 is nilpotent, and
thus 0 is its only eigenvalue. HenceX0 has an eigenvectorv0 in V0. Then
X0(v0) = 0 andh(v0) = 0, so thatg(v0) = 0. Consequently (b) holds for
g, and the induction is complete.

Corollary 1.38. If g is a Lie algebra such that each adX for X ∈ g is
nilpotent, theng is a nilpotent Lie algebra.

PROOF. Theorem 1.35 shows that adg is nilpotent, and Proposition 1.32
allows us to conclude thatg is nilpotent.
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We conclude this section by giving three results that use the kinds of
ideas involved in Lie’s Theorem and Engel’s Theorem. We return to the
assumption of §5 thatk is a subfield ofC; all Lie algebras havek as
underlying field and are finite dimensional.

Proposition 1.39.If g is a solvable Lie algebra, then [g, g] is nilpotent.

PROOF. We apply Lie’s Theorem in the form of Corollary 1.29 with
V = gC, π = ad, andK = C. ThengC has a basis in which all members of
adg are upper triangular. In this basis the members of ad [g, g] are strictly
upper triangular, and hence ad [g, g] is exhibited as isomorphic with a
subalgebra of a nilpotent Lie algebra. Therefore ad [g, g] is nilpotent. By
Proposition 1.32, [g, g] is nilpotent.

Proposition 1.40. If g is a solvable Lie algebra, theng has a unique
largest nilpotent idealn, namely the set of allX ∈ g such that adX is
nilpotent. If D is any derivation ofg, thenD(g) ⊆ n.

REMARK. From Proposition 1.39 we see that [g, g] ⊆ n. Equality fails
if g is 1-dimensional abelian but holds ifg is 2-dimensional nonabelian.

PROOF. For the first statement we again apply Lie’s Theorem in the form
of Corollary 1.29 withV = gC, π = ad, andK = C. ThengC has a basis in
which all members of adg are upper triangular. In this basis the members
of g with adg nilpotent are exactly those for which the upper triangular
matrix has 0’s on the diagonal, and they plainly form an ideal. Thusn is
an ideal. It is nilpotent because it is a subalgebra of the full strictly upper
triangular algebra.

If n′ is a nilpotent ideal ing andX is in n′, then

(adg X) j(g) ⊆ (adn′ X) j−1(n′)

since [X, g] ⊆ n′, and the right side is 0 for suitablej by Proposition 1.32.
Thus adg X is nilpotent, and we conclude thatn′ ⊆ n.

If a derivationD of g is given, we apply Proposition 1.22 witha = kD,
b = g, andπ(D) = D to form a Lie algebrãg = kD⊕π g. Then [̃g, g̃] ⊆ g,
and hencẽg is solvable. Letn andñ be the unique largest nilpotent ideals
of g and̃g. If X is in g, then our definitions makeD(X) = [D, X ]. Hence
D(X) is in [̃g, g̃], and we see from Proposition 1.39 thatD(X) is in ñ. That
is, ad̃g(D(X)) is nilpotent. The subalgebrag of g̃ is an invariant subspace
under ad̃g(D(X)), and hence adg(D(X)) is nilpotent. ThereforeD(X) is
in n.
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Corollary 1.41. If g is any Lie algebra, theng has a unique largest
nilpotent idealn, n is contained in radg, and every derivation of radg
carries radg into n. Moreover, [g, radg] ⊆ n.

PROOF. Applying Proposition 1.40, letn be the unique largest nilpotent
ideal of radg. The proposition says that every derivation of radg carries
radg into n. In particular, ifX is in g, then adX maps radg to itself since
radg is an ideal, and adX acts as a derivation of radg by (1.1). Thus
(adX)(radg) ⊆ n and, as a special case,(adX)(n) ⊆ n. Consequently
n is an ideal ing. The idealn is nilpotent by construction. Ifn′ is any
nilpotent ideal ing, thenn′ lies in radg since radg is the largest solvable
ideal. Sincen is the largest nilpotent ideal in radg, n′ is contained inn.

7. Cartan’s Criterion for Semisimplicity

In this section,k denotes a subfield ofC, and g denotes a finite-
dimensional Lie algebra overk. We shall relate semisimplicity ofg to
a nondegeneracy property of the Killing form ofg, the Killing form having
been defined in (1.18).

First we make some general remarks about bilinear forms. LetV be
a finite-dimensional vector space, and letC( · , · ) be a bilinear form on
V × V . Define

radC = {v ∈ V | C(v, u) = 0 for all u ∈ V }.

Writing 〈 · , · 〉 for the pairing of the dualV ∗ with V, defineϕ : V → V ∗

by 〈ϕ(v), u〉 = C(v, u). Then kerϕ = radC , and soϕ is an isomorphism
(onto) if and only ifC is nondegenerate(i.e., radC = 0).

If U is a subspace ofV, let

U⊥ = {v ∈ V | C(v, u) = 0 for all u ∈ U }.

Then

(1.42) U ∩ U⊥ = rad(C |U×U ).

Even ifC is nondegenerate, we may haveU ∩ U⊥ �= 0. For example, take
k = R, V = R2, C(x, y) = x1y1 − x2y2, andU = {(x1, x1)}; thenC is
nondegenerate, butU = U⊥ �= 0. However, we can make the positive
statement given in the following proposition.
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Proposition 1.43.In the above notation, ifC is nondegenerate, then

dimU + dimU⊥ = dim V .

PROOF. Defineψ : V → U ∗ by

〈ψ(v), u〉 = C(v, u) for v ∈ V, u ∈ U.

Then kerψ = U⊥. To see that imageψ = U ∗, let U1 be a linear comple-
ment forU in V . Let u∗ be inU ∗, and definev∗ ∈ V ∗ by

v∗ =
{

u∗ onU

0 onU1.

SinceC is nondegenerate,ϕ is ontoV ∗. Thus choosev ∈ V with ϕ(v) =
v∗. Then

〈ψ(v), u〉 = C(v, u) = 〈v∗, u〉 = 〈u∗, u〉,
and henceψ(v) = u∗. Therefore imageψ = U ∗, and

dim V = dim(kerψ) + dim(imageψ)

= dimU⊥ + dimU ∗

= dimU⊥ + dimU.

Corollary 1.44. In the above notation, ifC is nondegenerate, then
V = U ⊕ U⊥ if and only if C |U×U is nondegenerate.

PROOF. This follows by combining (1.42) with Proposition 1.43.

Theorem 1.45(Cartan’s Criterion for Semisimplicity). The Lie algebra
g is semisimple if and only if the Killing form forg is nondegenerate.

REMARKS. This theorem is a fairly easy consequence of Cartan’s
Criterion for Solvability, to be proved below. We shall state the criterion
for solvability, state and prove a corollary of it, show how the corollary
implies Theorem 1.45, and then prove the criterion for solvability. LetB
denote the Killing form ofg. We may assume thatg �= 0.

Proposition 1.46(Cartan’s Criterion for Solvability). The Lie algebra
g is solvable if and only if its Killing formB satisfiesB(X, Y ) = 0 for all
X ∈ g andY ∈ [g, g].
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Corollary 1.47. For any Lie algebrag, radB ⊆ radg.

PROOF. We show that radB is a solvable ideal, and then the corollary
follows. To see that radB is an ideal, letH ∈ radB and letX1 andX2 be
in g. Then

B([ X1, H ], X2) = −B(H, [ X1, X2]) = 0,

and so [X1, H ] is in radB. Thus radB is an ideal. To see that radB is
solvable, letC be the Killing form of radB, and lets be a vector subspace
with g = radB ⊕ s. If X is in radB, then the fact that radB is an ideal
forces adX to have the matrix form

adX =

radB s( ∗ ∗
0 0

)
radB

s
.

Consequently ifX andY are in radB, then

C(X, Y ) = Tr((adX adY )|radB) = Tr(adX adY ) = B(X, Y ) = 0,

the last step holding sinceX is in radB. By Proposition 1.46, radB is
solvable.

PROOF OFTHEOREM1.45GIVEN PROPOSITION1.46. If B is degenerate,
then radB �= 0. By the corollary radg �= 0. Henceg is not semisimple.

Conversely letg fail to be semisimple so that radg �= 0. Since radg
is solvable, there is a least integerl such that the member(radg)l of the
commutator series is 0. Then(radg)l−1 = a is a nonzero abelian ideal in
g. Let s be a vector space complement toa, so thatg = a ⊕ s as vector
spaces. IfX is in a andY is in g, then

adX =

a s(
0 ∗
0 0

)
a

s
and adY =

a s( ∗ ∗
0 ∗

)
a

s

in matrix form. Then adX adY has 0’s on the diagonal, andB(X, Y ) =
Tr(adX adY ) = 0. Thus X is in radB. Hencea ⊆ radB, and B is
degenerate.
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We are left with proving Proposition 1.46. By way of preparation for the
proof, letK be an extension field ofk within C, and form the Lie algebra
gK = g⊗k K (overK) and its Killing formBK, as in §3. We saw in §3 that
g is solvable if and only ifgK is solvable. Also [g, g]K = [gK, gK]. Next if
Y is in [g, g] andY is in radB, thenY is in radBK sinceBK is K bilinear
and agrees withB ong×g. So [g, g] ⊆ radB implies [g, g] ⊆ radBK, and
therefore [gK, gK] = [g, g]K ⊆ radBK. Conversely if [gK, gK] ⊆ radBK,
then [g, g] ⊆ radBK and so [g, g] ⊆ radB. Consequently each direction
of Proposition 1.46 holds forg if and only if it holds forgK.

PROOF THATg SOLVABLE IMPLIES [g, g] ⊆ radB. We may assume that
k is algebraically closed in view of the previous paragraph. We apply
Lie’s Theorem (Theorem 1.25) to the representation ad. The theorem
says that adg is simultaneously triangular in a suitable basis ofg. Then
ad[g, g] = [adg, adg] has 0’s on the diagonal, and soX ∈ g andY ∈ [g, g]
imply that adX adY has 0’s on the diagonal. HenceB(X, Y ) = 0.

For the converse we shall need to use the Jordan decomposition in the
following sharp form.

Theorem 1.48(Jordan decomposition). Letk be algebraically closed,
and letV be a finite-dimensional vector space overk. Eachl ∈ EndK V
can be uniquely decomposed asl = s + n with s diagonable,n nilpotent,
andsn = ns. Moreover,s = p(l) for some polynomialp without constant
term.

PROOF. We omit the proof, which may be found with Theorem 8 in
Hoffman–Kunze [1961], p. 217.

PROOF THAT[g, g] ⊆ radB g SOLVABLE.
As we saw before the direct part of the proof, we may assume thatk = C.

We shall show that each adY , for Y ∈ [g, g], is nilpotent. Then by Engel’s
Theorem, [g, g] is nilpotent, hence solvable. Consequentlyg is solvable.

Arguing by contradiction, suppose that adY is not nilpotent. Let adY =
s + n be its Jordan decomposition. Heres �= 0. Letµ1, . . . , µm be the dis-
tinct eigenvalues ofs, and letV1, . . . , Vm be the corresponding eigenspaces.
Defines̄ ∈ EndC g to beµ̄j on Vj . Then Tr(s̄s) = ∑m

j=1 |µj |2 > 0.
Sincen ands commute, so don ands̄; thuss̄n is nilpotent. Consequently

(1.49) Tr(s̄(adY )) = Tr(s̄s) + Tr(s̄n) = Tr(s̄s) > 0,
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the last equality following sincēsn is nilpotent.
Now we shall compute Tr(s̄(adY )) another way. SinceY is in [g, g],

we can writeY = ∑u
i=1 [ Xi , Zi ] with Xi andZi in g. Then

Tr(s̄ adY ) =
u∑

i=1

Tr(s̄ ad[Xi , Zi ])

=
u∑

i=1

Tr([s̄, adXi ] adZi) as in the proof of (1.19)

=
u∑

i=1

Tr({ad0 s̄ (adXi)}adZi),(1.50)

where ad0 is ad for EndC g. Since adY = s + n, we have

(1.51) ad0(adY ) = ad0 s + ad0 n.

Sincen is nilpotent, ad0 n is nilpotent (by the same computation as for
(1.36) in the proof of Engel’s Theorem). Also

[ad0 s, ad0 n] = ad0[s, n] = 0.

So ad0 s and ad0 n commute. Choose a basis forg compatible with the
decompositiong = ⊕

i Vi , and let

Ei j =
{

1 in the(i, j)th entry

0 elsewhere.

Then
s Ei j = µi Ei j and Ei j s = µj Ei j ,

and so
(ad0 s)Ei j = (µi − µj)Ei j .

Since EndC g = ⊕
i, j CEi j , ad0 s is diagonable. Thus (1.51) is the Jordan

decomposition of ad0(adY ), and it follows from Theorem 1.48 that

ad0 s = q(ad0(adY )) with q(0) = 0.

If we choose a polynomial that maps allµi − µj into µ̄i − µ̄j (including 0
into 0) and if we compose it withq, the result is a polynomialr with

(1.52) ad0 s̄ = r(ad0(adY )) and r(0) = 0.
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Now consider a term of the right side of (1.50), say thei th term
Tr({ad0 s̄ (adXi)}adZi). Because of (1.52), it is a linear combination of
terms

Tr({(ad0(adY ))k(adXi)}adZi) with k > 0.

For k = 1, we have

{(ad0(adY ))1(adXi)} = (adY )(adXi) − (adXi)(adY )

= ad[Y, Xi ].

For k = 2, we have

{(ad0(adY ))2(adXi)} = (adY )(ad[Y, Xi ]) − ad[Y, Xi ] adY

= ad[Y, [Y, Xi ]] .

And so on. Iterating, we see that the right side of (1.50) is a linear
combination of terms

Tr(ad([Y, [Y, [· · · , [Y, Xi ] · · · ]]] )adZi),

and this isB of something in [g, g] with something ing. By hypothesis,
it is therefore 0. Thus the right side of (1.50) adds to 0, in contradiction
with (1.49). We conclude that adY must indeed have been nilpotent, and
the proof is complete.

Corollary 1.53. If g0 is a real form of a complex Lie algebrag, theng0

is semisimple if and only ifg is semisimple.

REMARK. By contrast the complexification of a simple real Lie algebra
need not be simple. This point will be discussed more fully in §VI.9.

PROOF. By (1.20) the Killing forms ofg0 andg may be identified. Hence
they are both nondegenerate or both degenerate, and the corollary follows
from Theorem 1.45.

Theorem 1.54. The Lie algebrag is semisimple if and only ifg =
g1 ⊕ · · · ⊕ gm with gj ideals that are each simple Lie algebras. In this
case the decomposition is unique, and the only ideals ofg are the sums of
variousgj .
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PROOF IFg = g1 ⊕ · · · ⊕ gm. Let Pi be the projection ongi along the
other summands. Leta be any ideal ing, and formPia = ai . Thenai is
an ideal ingi since

[ Pi A, Xi ] = Pi [ A, Xi ] ⊆ Pia = ai for A ∈ a.

Sincegi is simple, eitherai = 0 orai = gi . In the latter case,gi ⊆ a since
Proposition 1.13 gives

gi = [gi , gi ] = [gi , Pia] = [gi , a] ⊆ [g, a] ⊆ a.

Consequentlyg = ⊕
gi implies

a = a ∩ g =
m⊕

i=1

(a ∩ gi) =
⊕
gi ⊆a

gi .

This proves uniqueness and the structure of the ideals. Now

[a, a] = [ ⊕
gi ⊆a

gi ,
⊕
gj ⊆a

gj

] =
⊕
gi ⊆a

[gi , gi ] =
⊕
gi ⊆a

gi = a.

Soa cannot be solvable unlessa is 0. Thusg is semisimple.

PROOF IFg IS SEMISIMPLE. Let a be a minimal nonzero ideal. Forma⊥

relative to the Killing formB. The subspacea⊥ is an ideal because ifH is
in a⊥, then

B([ X, H ], A) = B(H, −[ X, A]) ⊆ B(H, a) = 0 for A ∈ a andX ∈ g.

Therefore rad(B|a×a) = a ∩ a⊥ is 0 ora. Suppose rad(B|a×a) = a. Then
B(A1, A2) = 0 for all A1, A2 ∈ a. But for an ideala, the Killing form Ba

for a satisfiesBa = B|a×a, and the right side is 0. By Proposition 1.46,a

is solvable, in contradiction with the semisimplicity ofg.
So a ∩ a⊥ = 0. Then Corollary 1.44 and Theorem 1.45 show that

g = a ⊕ a⊥ as vector spaces. Botha anda⊥ are ideals, as we have seen.
Now a is nonabelian; we show it is simple. Ifb ⊆ a is an ideal ofa, then
[b, a⊥] = 0 and sob is an ideal ofg. By minimality of a, eitherb = 0 or
b = a. Thusa is simple.

Similarly any ideal ofa⊥ is an ideal ofg, and hence rada⊥ = 0. Thus
a⊥ is semisimple by Theorem 1.45. Therefore we can repeat the argument
with a⊥ and proceed by induction to complete the proof.
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Corollary 1.55. If g is semisimple, then [g, g] = g. If a is any ideal in
g, thena⊥ is an ideal andg = a ⊕ a⊥.

This is immediate from Theorem 1.54.
We say that the Lie algebrag is reductive if to each ideala in g corre-

sponds an idealb in g with g = a ⊕ b. Theorem 1.54 shows that the Lie
algebra direct sum of a semisimple Lie algebra and an abelian Lie algebra
is reductive. The next corollary shows that there are no other reductive Lie
algebras.

Corollary 1.56. If g is reductive, theng = [g, g] ⊕ Zg with [g, g]
semisimple andZg abelian.

PROOF. Among all direct sums of ideals ing such that each contains no
nonzero smaller ideals, leta be one of the maximum possible dimension.
By Proposition 1.7,a is an ideal. Sinceg is reductive, we can find an ideal
b with g = a ⊕ b. If b �= 0, then a nonzero ideal ofg in b of smallest
possible dimension can be adjoined toa and exhibit a contradiction with
the maximality ofa. We conclude thatb = 0 and thatg is the direct sum
of ideals that contain no nonzero smaller ideals. Write

g = a1 ⊕ · · · ⊕ aj ⊕ aj+1 ⊕ · · · ⊕ ak,

wherea1, . . . , aj are 1-dimensional andaj+1, . . . , ak are simple Lie alge-
bras. By Proposition 1.13,

[g, g] = [aj+1, aj+1] ⊕ · · · ⊕ [ak, ak ] = aj+1 ⊕ · · · ⊕ ak,

and this is semisimple by Theorem 1.54. To complete the proof we show
that Zg = a1 ⊕ · · · ⊕ aj . Certainly Zg ⊇ a1 ⊕ · · · ⊕ aj . In the reverse
direction if X = X1 + · · · + Xk is in Zg with Xi ∈ ai , thenXi is in Zai ,
which is 0 fori > j by Proposition 1.13. HenceX = X1 + · · · + X j , and
we conclude thatZg ⊆ a1 ⊕ · · · ⊕ aj .

8. Examples of Semisimple Lie Algebras

Cartan’s Criterion for Semisimplicity (Theorem 1.45) enables us to
produce a long list of examples of semisimple matrix Lie algebras over
R or C. The examples that we shall produce are the Lie algebras of some
groups of symmetries in geometry going under the name “classical groups.”
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In this section we give only the Lie algebras, deferring discussion of the
Lie groups to §17.

We shall work with Lie groups and real Lie algebras of matrices over
the realsR, the complex numbersC, and the quaternionsH. Recall that
H is a division algebra overR with R basis 1, i, j, k satisfyingi2 = j2 =
k2 = −1, i j = k, jk = i , ki = j , j i = −k, k j = −i , andik = − j . The
real part of a quaternion is given by Re(a + bi + cj + dk) = a. Despite
the noncommutativity ofH, the real part satisfies

(1.57) Rexy = Reyx for all x andy in H.

Conjugation is given by

a + bi + cj + dk = a − bi − cj − dk,

and it commutes with real part. Consequently (1.57) implies that

(1.58) Rex ȳ = Reyx̄ .

If x is in H, thenx x̄ = x̄ x = |x |2 is the square of the usual Euclidean norm
from R4. The fact that the bracket operation [X, Y ] = XY − Y X makes
all square matrices of sizen into a Lie algebra is valid overH, as well as
R andC; this follows from Example 2 in §1.

Groups and Lie algebras of complex matrices can be realized as groups
and Lie algebras of real matrices of twice the size. We shall write down an
explicit isomorphism in (1.63) below. Similarly, groups and Lie algebras of
quaternion matrices can be realized as groups of complex matrices of twice
the size. We shall write down an explicit isomorphism in (1.65) below.

The technique for recognizing certain Lie algebras of matrices as
semisimple begins with the following proposition.

Proposition 1.59. Let g be a real Lie algebra of matrices overR, C,
or H. If g is closed under the operation conjugate transpose, theng is
reductive.

REMARK. We write( · )∗ for conjugate transpose.

PROOF. For matricesX andY , define〈X, Y 〉 = Re Tr(XY ∗). This is
a real inner product ong, the symmetry following from (1.58). Leta be
an ideal ing, and leta⊥ be the orthogonal complement ofa in g. Then
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g = a ⊕ a⊥ as vector spaces. To see thata⊥ is an ideal ing, let X be ina⊥,
let Y be ing, and letZ be ina. Then

〈[ X, Y ], Z〉 = Re Tr(XY Z ∗ − Y X Z ∗)

= −Re Tr(X Z ∗Y − XY Z ∗) by (1.58)

= −Re Tr(X (Y ∗ Z)∗ − X (ZY ∗)∗)

= −〈X, [Y ∗, Z ]〉.
SinceY ∗ is in g, [Y ∗, Z ] is in a. Thus the right side is 0 for allZ , and
[ X, Y ] is in a⊥. Hencea⊥ is an ideal, andg is reductive.

All of our examplesg in this section will be closed under conjugate
transpose. In view of Proposition 1.59 and Corollary 1.56,g will be
semisimple as a real Lie algebra if and only if its center is 0. Checking
whether the center ofg is 0 is generally an easy matter.

Some of the examples will be complex Lie algebras. As we shall show
in connection with the embedding of complex matrices into real matrices
of twice the size, the Killing forms of a complex Lie algebrag and its
associatedgR are related by

(1.60) BgR = 2ReBg.

ConsequentlyBgR andBg are both nondegenerate or both degenerate. By
Cartan’s Criterion for Semisimplicity (Theorem 1.45), we see that

(1.61) g
R is semisimple overR if and only if g is semisimple overC.

In Example 3 in §1, we definedgl(n, R) and gl(n, C) to be the Lie
algebras of alln-by-n matrices overR and C, respectively. These Lie
algebras are reductive but not semisimple, the center in each case consisting
of scalar matrices. Letgl(n, H) be the real Lie algebra of alln-by-n
matrices overH. This Lie algebra is reductive but not semisimple, the
center consisting of scalar matrices with real entries.

EXAMPLES.

1) These first examples will be seen in §17 to be Lie algebras of compact
groups. They consist initially of all matrices that are skew Hermitian
relative to( · )∗. Specifically we define

u(n) = {X ∈ gl(n, C) | X + X ∗ = 0}
so(n) = {X ∈ gl(n, R) | X + X ∗ = 0}
sp(n) = {X ∈ gl(n, H) | X + X ∗ = 0}.
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To see that these examples are closed under bracket and hence are Lie
algebras, we argue as in Example 7 in §1, replacing( · )t by ( · )∗. All
three of these examples are reductive. Ifn ≥ 3, thenso(n) has 0 center,
while if n ≥ 1, sp(n) has 0 center. For these values ofn, so(n) andsp(n)

are therefore semisimple. Forn ≥ 1, the Lie algebrau(n) has imaginary
scalar matrices as center; the commutator subalgebra is the semisimple Lie
algebra

su(n) = {X ∈ gl(n, C) | X + X ∗ = 0 and TrX = 0}.
This is nonzero ifn ≥ 2.

2) These next examples are all complex Lie algebras with 0 center. Each
such complexg has the property thatgR is semisimple overR, and it follows
from (1.61) thatg is semisimple overC. We define

sl(n, C) = {X ∈ gl(n, C) | Tr X = 0} for n ≥ 2

so(n, C) = {X ∈ gl(n, C) | X + X t = 0} for n ≥ 3

sp(n, C) = {X ∈ gl(2n, C) | Xt J + J X = 0} for n ≥ 1,

where J = Jn,n is the 2n-by-2n matrix J =
(

0 1
−1 0

)
. Each of these

examples is a Lie algebra as a consequence of Examples 7, 8, and 9 in §1.

3) These final examples are real semisimple Lie algebras that are of
neither of the types in Examples 1 and 2 (except for small values of the
parameter). WithJ = Jn,n as in Example 2, let

Im,n =

m n(
1 0
0 −1

)
m
n

and In,n Jn,n =

n n(
0 1
1 0

)
n
n

.

The definitions are

sl(n, R) = {X ∈ gl(n, R) | Tr X = 0} for n ≥ 2

sl(n, H) = {X ∈ gl(n, H) | Re TrX = 0} for n ≥ 1

so(m, n) = {X ∈ gl(m + n, R) | X ∗ Im,n + Im,n X = 0} for m + n ≥ 3

su(m, n) = {X ∈ sl(m + n, C) | X ∗ Im,n + Im,n X = 0} for m + n ≥ 2

sp(m, n) = {X ∈ gl(m + n, H) | X ∗ Im,n + Im,n X = 0} for m + n ≥ 1

sp(n, R) = {X ∈ gl(2n, R) | Xt Jn,n + Jn,n X = 0} for n ≥ 1

so
∗(2n) = {X ∈ su(n, n) | Xt In,n Jn,n + In,n Jn,n X = 0} for n ≥ 2.
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It is necessary to check that each of these is closed under bracket, is closed
under conjugate transpose, and has 0 center. For closure under bracket,
we appeal to Example 9 of §1 forsl(n, R), to (1.57) forsl(n, H), and to
Example 8 of §1 (possibly with( · )t replaced by( · )∗) for the remaining
five classes of examples. Closure under conjugate transpose uses that
I ∗

m,n = Im,n and J ∗
n,n = −Jn,n. Seeing that the center is 0 in each case is a

matter of routine verification. Note thatsu(m, n) is the commutator ideal
of the reductive Lie algebra

u(m, n) = {X ∈ gl(m + n, C) | X ∗ Im,n + Im,n X = 0}.

To complete our discussion of these examples, we give some of the
details of how to write complex matrices as real matrices of twice the size,
as well as quaternion matrices as complex matrices of twice the size.

We begin with the relationship between complex and real matrices. For
v in Cn, write v = a + ib with a ∈ Rn andb ∈ Rn, and define functions
Re and Im fromCn to Rn by Rev = a and Imv = b. Then set up theR
isomorphismCn → R2n given in block form by

(1.62) v �→
(

Rev

Im v

)
.

Next let M be ann-by-n matrix overC and writeM = ReM + i Im M .
Under the isomorphism (1.62), left multiplication byM onCn corresponds
to left multiplication by

(1.63) Z(M) =
(

ReM −Im M
Im M ReM

)
onR2n. This identification has the following properties:

(a) Z(M N ) = Z(M)Z(N ),
(b) Z(M∗) = Z(M)∗,
(c) Tr Z(M) = 2Re TrM ,
(d) detZ(M) = | detM |2.

For the proof, only (d) requires comment. Because of (a) it is enough to
check (d) for elementary matrices. Matters come down toM of size 1-by-1,
where the argument is that

(z) = (x + iy) �→
(

x −y
y x

)
with det

(
x −y
y x

)
= |z|2.



8. Examples of Semisimple Lie Algebras 61

If g is a complex Lie algebra, thenBg(X, Y ) = Tr(adX adY ), while
BgR(X, Y ) = Tr(Z(adX adY )). Hence (1.60) follows immediately from
(c) above.

Next let us discuss the relationship between quaternion and complex
matrices. LetHn be the space ofn-component column vectors with quater-
nion entries. Writev in Hn asv = a + ib + jc + kd with a, b, c, d in Rn,
and definez1 : Hn → Cn andz2 : Hn → Cn by

(1.64a) z1(v) = a + ib and z2(v) = c − id,

so thatv = z1(v) + j z2(v) if we allow i to be interpreted as inH or C.
Then theR isomorphism

(1.64b) v �→
(

z1(v)

z2(v)

)
of Hn into C2n is aC isomorphism ifH is regarded as a right vector space
overC (complex scalars multiplying as expected on the right). In fact, we
have only to check that

z1(vi) = z1(v)i and z2(vi) = z2(v)i,

and then theC linearity of the isomorphism follows.
If M is ann-by-n matrix overH, we definez1(M) andz2(M) similarly.

Under the isomorphism (1.64), left multiplication byM onHn corresponds
to left multiplication by

(1.65) Z(M) =
(

z1(M) −z2(M)

z2(M) z1(M)

)
onC2n. This identification has the following properties:

(a) Z(M N ) = Z(M)Z(N ),
(b) Z(M∗) = Z(M)∗,
(c) Tr Z(M) = 2Re TrM .

From (a) it follows that the real Lie algebragl(n, H) is isomorphic to

u
∗(2n) =

{(
z1 −z2

z2 z1

) ∣∣∣∣ z1 andz2 are ingl(n, C)

}
.

Taking also (c) into account, we see thatsl(n, H) is isomorphic to

su
∗(2n) = {X ∈ u

∗(2n) | Tr X = 0}.
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Similarly it follows from (a) and (b) thatsp(n) is isomorphic to{(
z1 −z2

z2 z1

) ∣∣∣∣ z1 is skew Hermitian andz2 is symmetric

}
.

Then we obtain the important isomorphism

sp(n) ∼= sp(n, C) ∩ u(2n)

by writing out the conditions on then-by-n subblocks of members of the
right side and comparing with the matrices above.

In addition, we can reinterpretsp(m, n) in terms of complex matrices.
We apply the functionZ( · ) to the identity definingsp(m, n), noting that
Z(Im,n) is a diagonal matrixIm,n,m,n with m diagonal entries 1, followed
by n diagonal entries−1, m diagonal entries 1, andn diagonal entries−1.
Then (a) and (b) imply thatsp(m, n) is isomorphic to

{X ∈ u
∗(2m + 2n) | X ∗ Im,n,m,n + Im,n,m,n X = 0}.

9. Representations ofsl(2, C)

In Chapter II we shall see that complex semisimple Lie algebrasg are
built out of many copies ofsl(2, C). The action of each ad(sl(2, C)) ong

will give us our first control over the bracket structure withing.
To prepare for this analysis, we shall study in this section complex-linear

representationsϕ of the Lie algebrasl(2, C) on finite-dimensional vector
spacesV . An invariant subspacefor such a representation is a complex
vector subspaceU such thatϕ(X)U ⊆ U for all X ∈ sl(2, C). We say that
a representation on a nonzero spaceV is irreducible if the only invariant
subspaces are 0 andV . Two representationsϕ andϕ′ areequivalent if
there is an isomorphismE between the underlying vector spaces such that
Eϕ(X) = ϕ′(X)E for all X in the Lie algebra.

Let h, e, f be the basis ofsl(2, C) given in (1.5).

Theorem 1.66.For each integerm ≥ 1, there exists up to equivalence a
unique irreducible complex-linear representationπ of sl(2, C) on a com-
plex vector spaceV of dimensionm. In V there is a basis{v0, . . . , vm−1}
such that (withn = m − 1)

(a) π(h)vi = (n − 2i)vi ,
(b) π(e)v0 = 0,
(c) π( f )vi = vi+1 with vn+1 = 0,
(d) π(e)vi = i(n − i + 1)vi−1.



9. Representations ofsl(2, C) 63

REMARK. Conclusion (a) gives the eigenvalues ofπ(h). It is an impor-
tant observation that the smallest eigenvalue is the negative of the largest.

PROOF OF UNIQUENESS. Letπ be a complex-linear irreducible represen-
tation ofsl(2, C) on V with dim V = m. Let v �= 0 be an eigenvector for
π(h), say withπ(h)v = λv. Thenπ(e)v, π(e)2v, . . . are also eigenvectors
because

π(h)π(e)v = π(e)π(h)v + π([h, e])v by (1.24)

= π(e)λv + 2π(e)v by (1.6)

= (λ + 2)π(e)v.

Sinceλ, λ + 2, λ + 4, . . . are distinct, these eigenvectors are independent
(or 0). By finite dimensionality we can findv0 in V with (λ redefined and)

(i) v0 �= 0,
(ii) π(h)v0 = λv0,

(iii) π(e)v0 = 0.
Definevi = π( f )iv0. Thenπ(h)vi = (λ − 2i)vi , by the same argument
as above, and so there is a minimum integern with π( f )n+1v0 = 0. Then
v0, . . . , vn are independent and

(a) π(h)vi = (λ − 2i)vi ,
(b) π(e)v0 = 0,
(c) π( f )vi = vi+1 with vn+1 = 0.

We claimV = span{v0, . . . , vn}. It is enough to show that span{v0, . . . , vn}
is stable underπ(e). In fact, we show that

(d) π(e)vi = i(λ − i + 1)vi−1 with v−1 = 0.
We proceed by induction for (d), the casei = 0 being (b). Assume (d)

for casei . To prove casei + 1, we write

π(e)vi+1 = π(e)π( f )vi

= π([e, f ])vi + π( f )π(e)vi

= π(h)vi + π( f )π(e)vi

= (λ − 2i)vi + π( f )(i(λ − i + 1))vi−1

= (i + 1)(λ − i)vi .

and the induction is complete.
To finish the proof of uniqueness, we show thatλ = n. We have

Tr π(h) = Tr(π(e)π( f ) − π( f )π(e)) = 0.

Thus
∑n

i=0 (λ − 2i) = 0, and we find thatλ = n.
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PROOF OF EXISTENCE. We defineπ(h), π(e), andπ( f ) by (a) through
(d) and extend linearly to obtainπ(sl(2, C). Easy computation verifies that

π([h, e]) = π(h)π(e) − π(e)π(h)

π([h, f ]) = π(h)π( f ) − π( f )π(h)

π([e, f ]) = π(e)π( f ) − π( f )π(e),

and consequentlyπ is a representation. To see irreducibility, letU be a
nonzero invariant subspace. SinceU is invariant underπ(h), U is spanned
by a subset of the basis vectorsvi . Taking one suchvi that is inU and
applyingπ(e) several times, we see thatv0 is in U . Repeated application
of π( f ) then shows thatU = V . Henceπ is irreducible.

Theorem 1.67. Let ϕ be a complex-linear representation ofsl(2, C)

on a finite-dimensional complex vector spaceV . ThenV is completely
reducible in the sense that there exist invariant subspacesU1, . . . , Ur of
V such thatV = U1 ⊕ · · · ⊕ Ur and such that the restriction of the
representation to eachUi is irreducible.

At this time we shall give an algebraic proof. In Chapter VII we shall
give another argument that is analytic in nature. The algebraic proof will
be preceded by four lemmas. It is enough by induction to show that any
invariant subspaceU in V has an invariant complementU ′, i.e., an invariant
subspaceU ′ with V = U ⊕ U ′.

Lemma 1.68.If π is a representation ofsl(2, C), then

Z = 1
2π(h)2 + π(h) + 2π( f )π(e)

commutes with eachπ(X) for X in sl(2, C).

PROOF. For X ∈ sl(2, C), we have

Zπ(X) − π(X)Z = 1
2π(h)2π(X) − 1

2π(X)π(h)2 + π [h, X ]

+ 2π( f )π(e)π(X) − 2π(X)π( f )π(e)

= 1
2π(h)π [h, X ] − 1

2π [ X, h]π(h) + π [h, X ]

+ 2π( f )π [e, X ] − 2π [ X, f ]π(e)

= (∗).
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Then the result follows from the following computations as we takeX in
succession to beh, e, and f :

(∗) = 0 − 0 + 0 − 4π( f )π(e) + 4π( f )π(e) = 0
X = h:

(∗) = π(h)π(e) + π(e)π(h) + 2π(e) + 0 − 2π(h)π(e)
X = e:

= 2π(h)π(e) + π [e, h] + 2π(e) − 2π(h)π(e) = 0

(∗) = −π(h)π( f ) − π( f )π(h) − 2π( f ) + 2π( f )π(h) − 0
X = f :

= −π [h, f ] − 2π( f )π(h) − 2π( f ) + 2π( f )π(h) = 0.

Lemma 1.69(Schur’s Lemma). Letg = sl(2, C). If π : g → EndV
andπ ′ : g → EndV ′ are irreducible finite-dimensional representations
and if L : V → V ′ is a linear map such thatLπ(X) = π ′(X)L for all
X ∈ g, thenL = 0 or L is invertible. If Z : V → V is a linear map such
that Zπ(X) = π(X)Z for all X ∈ g, thenZ is scalar.

PROOF. The subspace kerL is π(g) invariant becausev ∈ kerL implies

L(π(X)v) = π ′(X)(Lv) = π ′(X)(0) = 0.

The subspace imageL is π ′(g) invariant becausev = Lu implies

π ′(X)v = π ′(X)Lu = L(π(X)u).

By the assumed irreducibility,L = 0 or L is invertible.
ThenZ , by the above, is 0 or invertible, and the same is true forZ −λ1,

for any complex constantλ. Choosingλ to be an eigenvalue ofZ , we see
that Z − λ1 cannot be invertible. ThereforeZ − λ1 = 0 andZ = λ1.

Lemma 1.70.If π is an irreducible representation ofsl(2, C) of dimen-
sionn + 1, then the operatorZ of Lemma 1.68 acts as the scalar1

2n2 + n,
which is not 0 unlessπ is trivial.

PROOF. The operatorZ acts as a scalar, by Lemmas 1.68 and 1.69. To
find the scalar, we identifyπ with the equivalent irreducible representation
of dimensionn +1 given in Theorem 1.66, and we computeZv0. We have

Zv0 = 1
2π(h)2v0 + π(h)v0 + 2π( f )π(e)v0.

Sinceπ(h)v0 = nv0 andπ(e)v0 = 0, the result follows.
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Lemma 1.71. Let π : sl(2, C) → EndV be a finite-dimensional
representation, and letU ⊆ V be an invariant subspace of codimension 1.
Then there is a 1-dimensional invariant subspaceW such thatV = U ⊕W .

PROOF.
Case 1. Suppose dimU = 1. Form the quotient representationπ on

V/U , with dim(V/U ) = 1. This quotient representation is irreducible of
dimension 1, and Theorem 1.66 shows it is 0. Consequently

π(sl(2, C))V ⊆ U and π(sl(2, C))U = 0.

Hence ifY = [ X1, X2], we have

π(Y )V ⊆ π(X1)π(X2)V + π(X2)π(X1)V

⊆ π(X1)U + π(X2)U = 0.

Sincesl(2, C) = [sl(2, C), sl(2, C)], we conclude thatπ(sl(2, C)) = 0.
Therefore any complementary subspace toU will serve asW .

Case 2. Suppose thatπ( · )|U is irreducible and that dimU > 1. Since
dim V/U = 1, the quotient representation is 0 andπ(sl(2, C))V ⊆ U .
The formula forZ in Lemma 1.68 then shows thatZ(V ) ⊆ U , and Lemma
1.70 says thatZ is a nonzero scalar onU . Therefore dim(kerZ) = 1 and
U ∩(kerZ) = 0. SinceZ commutes withπ(sl(2, C)), kerZ is an invariant
subspace. TakingW = kerZ , we haveV = U ⊕ W as required.

Case 3. Suppose thatπ( · )|U is not necessarily irreducible and that
dimU ≥ 1. We induct on dimV . The base case is dimV = 2 and is
handled by Case 1. When dimV > 2, let U1 ⊆ U be an irreducible
invariant subspace, and form the quotient representations on

U/U1 ⊆ V/U1

with quotientV/U of dimension 1. By inductive hypothesis we can write

V/U1 = U/U1 ⊕ Y/U1,

whereY is an invariant subspace inV and dimY/U1 = 1. Case 1 or Case
2 is applicable to the representationπ( · )|Y and the irreducible invariant
subspaceU1. ThenY = U1 ⊕ W , whereW is a 1-dimensional invariant
subspace. SinceW ⊆ Y andY ∩ U ⊆ U1, we find that

W ∩ U = (W ∩ Y ) ∩ U = W ∩ (Y ∩ U ) ⊆ W ∩ U1 = 0.

ThereforeV = U ⊕ W as required.
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PROOF OFTHEOREM 1.67. Letπ be a representation ofsl(2, C) on M ,
and letN �= 0 be an invariant subspace. Put

V = {Y ∈ EndM | Y : M → N andY |N is scalar}.
Use of bases shows thatV is nonzero. Define a linear function
σ : sl(2, C) → End(EndM) by

σ(X)γ = π(X)γ − γπ(X) for γ ∈ EndM andX ∈ sl(2, C).

Checking directly thatσ [ X, Y ] andσ(X)σ (Y ) − σ(Y )σ (X) are equal, we
see thatσ is a representation ofsl(2, C) on EndM .

We claim that the subspaceV ⊆ EndM is an invariant subspace under
σ . In fact, letγ (M) ⊆ N andγ |N = λ1. In the right side of the expression

σ(X)γ = π(X)γ − γπ(X),

the first term carriesM to N sinceγ carriesM to N andπ(X) carriesN
to N , and the second term carriesM into N sinceπ(X) carriesM to M
andγ carriesM to N . Thusσ(X)γ carriesM into N . On N , the action of
σ(X)γ is given by

σ(X)γ (n) = π(X)γ (n) − γπ(X)(n) = λπ(X)(n) − λπ(X)(n) = 0.

ThusV is an invariant subspace.
Actually the above argument shows also that the subspaceU of V given

by
U = {γ ∈ V | γ = 0 on N }

is an invariant subspace. Clearly dimV/U = 1. By Lemma 1.71,V =
U ⊕ W for a 1-dimensional invariant subspaceW = Cγ . Hereγ is a
nonzero scalarλ1 on N . The invariance ofW means thatσ(X)γ = 0
since 1-dimensional representations are 0. Thereforeγ commutes with
π(X) for all X ∈ sl(2, C). But then kerγ is a nonzero invariant subspace
of M . Sinceγ is nonsingular onN (being a nonzero scalar there), we must
haveM = N ⊕ kerγ . This completes the proof.

Corollary 1.72. Letπ be a complex-linear representation ofsl(2, C) on
a finite-dimensional complex vector spaceV . Thenπ(h) is diagonable, all
its eigenvalues are integers, and the multiplicity of an eigenvaluek equals
the multiplicity of−k.

PROOF. This is immediate from Theorems 1.66 and 1.67.
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To conclude the section, we sharpen the result about complete reducibil-
ity to include certain infinite-dimensional representations.

Corollary 1.73. Let ϕ be a complex-linear representation ofsl(2, C)

on a complex vector spaceV, and suppose that each vectorv ∈ V lies in
a finite-dimensional invariant subspace. ThenV is the (possibly infinite)
direct sum of finite-dimensional invariant subspaces on whichsl(2, C) acts
irreducibly.

PROOF. By hypothesis and Theorem 1.67 each member ofV lies in a
finite direct sum of irreducible invariant subspaces. ThusV = ∑

s∈S Us ,
whereS is some (possibly infinite) index set and eachUs is an irreducible
invariant subspace. Call a subsetR of S independent if the sum

∑
r∈R Ur

is direct. This condition means that for every finite subset{r1, . . . , rn} of
R and every set of elementsui ∈ Uri , the equation

u1 + · · · + un = 0

implies that eachui is 0. From this formulation it follows that the union of
any increasing chain of independent subsets ofS is itself independent. By
Zorn’s Lemma there is a maximal independent subsetT of S. By definition
the sumV0 = ∑

t∈T Ut is direct. We shall show thatV0 = V .
We do so by showing, for eachs ∈ S, thatUs ⊆ V0. If s is in T , this

conclusion is obvious. Ifs is not in T , then the maximality ofT implies
that T ∪ {s} is not independent. Consequently the sumUs + V0 is not
direct, and we must haveUs ∩ V0 �= 0. But this intersection is an invariant
subspace ofUs . SinceUs is irreducible and the intersection is not 0, the
intersection must beUs . Then it follows thatUs ⊆ V0, as we wished to
show.

10. Elementary Theory of Lie Groups

Now we turn to a discussion of Lie groups. Many readers of this book
will have some familiarity with the elementary theory of Lie groups, as
in Chapter IV of Chevalley [1946]. In this section we summarize much
of that material, discussing at length the connection between that material
and the theory of closed linear groups as presented in the Introduction.

The elementary theory of Lie groups uses manifolds and mappings,
and these manifolds and maps may be assumed to beC∞ or real analytic,
depending on the version of the theory that one encounters. The two
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theories come to the same thing, because theC∞ manifold structure of a
Lie group is compatible with one and only one real-analytic structure for the
Lie group. We shall prove this fact as an aside in §13. Chevalley [1946]
uses the real-analytic theory, calling his manifolds and maps “analytic”
as an abbreviation for “real analytic.” We shall use theC∞ theory for
convenience, noting any aspects that need special attention in the real-
analytic theory. We use the terms “C∞” and “smooth” interchangeably. A
“manifold” for Chevalley is always connected, but for us it is not; as in the
Introduction, we insist however, that a manifold have a countable base for
its topology.

If M is a smooth manifold, smooth vector fields onM are sometimes de-
fined as derivations of the algebraC∞(M) of smooth real-valued functions
on M , and then the tangent space is formed at each point ofM out of the
smooth vector fields. Alternatively the tangent space may be constructed
first at each point, and a vector field may then be defined as a collection
of tangent vectors, one for each point. In either case let us writeTp(M)

for the tangent space ofM at p. If X is a vector field onM , let X p

be the value ofX at p, i.e., the corresponding tangent vector inTp(M).
If  : M → N is a smooth map between smooth manifolds, we write
dp : Tp(M) → T(p)(N ) for the differential of at p. We may drop the
subscript “p” on dp if p is understood.

A Lie group is a separable topological group with the structure of a
smooth manifold such that multiplication and inversion are smooth. An
analytic group is a connected Lie group.

Let G be a Lie group, and letLx : G → G be left translation byx ,
i.e., the diffeomorphism fromG to itself given byLx(y) = xy. A vector
field X onG is left invariant if, for any x andy in G, (d L yx−1)(Xx) = X y.
EquivalentlyX , as an operator on smooth real-valued functions, commutes
with left translations.

If G is a Lie group, then the mapX �→ X1 is an isomorphism of the
real vector space of left-invariant vector fields onG onto T1(G), and the
inverse map isX f (x) = X1(Lx−1 f ), whereLx−1 f (y) = f (xy). Every left-
invariant vector field onG is smooth, and the bracket of two left-invariant
vector fields is left invariant.

If G is a Lie group, setg = T1(G). Theng becomes a Lie algebra overR
with the bracket operation given in the previous paragraph, andg is called
theLie algebra of G.

A closed subgroupG of nonsingular real or complex matrices will be
called aclosed linear group. Closed linear groups and their linear Lie
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algebras were discussed in the Introduction and reviewed in Example 6 in
§1. According to Theorem 0.15, a closed linear group has canonically the
structure of a Lie group. It therefore has a Lie algebra built from vector
fields as above. The following proposition exhibits this Lie algebra as
canonically isomorphic with the linear Lie algebra.

Proposition 1.74. Let G be a closed linear group ofn-by-n matrices,
regard the Lie algebrag1 of the Lie groupG as consisting of all left-invariant
vector fields onG, and letg2 be the linear Lie algebra of the matrix group
G. Then the mapµ : g1 → gl(n, C) given by

µ(X)i j = X1(Reei j) + i X1(Im ei j) with ei j(x) = xi j

is a Lie algebra isomorphism ofg1 ontog2.

REMARKS.
1) In this proof and later arguments it will be convenient to extend

the definition ofX ∈ g1 from real-valued functions to complex-valued
functions, using the ruleX f = X (Re f )+i X (Im f ). ThenX still satisfies
the product rule for differentiation.

2) The proposition makes a rigid distinction between the Lie algebrag1

and the linear Lie algebrag2, and we shall continue this distinction through-
out this section. In practice, however, one makes the distinction only when
clarity demands it, and we shall follow this more relaxed convention after
the end of this section.

PROOF. To prove thatµ is a Lie algebra homomorphism into matrices,
we argue as follows. LetX be ing1. We have

ei j ◦ Lx(y) = ei j(xy) =
∑

k

eik(x)ekj(y).

Application of X gives

(1.75) Xei j(x) = X1(ei j ◦ Lx) =
∑

k

eik(x)X1ekj =
∑

k

eik(x)µ(X)k j .

If also Y is in g1, then

Y Xei j(x) = Y1((Xei j) ◦ Lx)

= Y1

( ∑
k,l

eil(x)elk(y)µ(X)k j

)
with Y1 acting in they variable

=
∑

k,l

eil(x)µ(Y )lkµ(X)k j .
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We reverse the roles ofX andY , evaluate atx = 1, and subtract. Withδi j

denoting the Kronecker delta, the result is that

µ([ X, Y ])i j = ([ X, Y ]ei j)(1)

= XY ei j(1) − Y Xei j(1)

=
∑

k,l

δil(µ(X)lkµ(Y )k j − µ(Y )lkµ(X)k j)

= (µ(X)µ(Y ) − µ(Y )µ(X))i j

= [µ(X), µ(Y )]i j .

Thusµ is a Lie algebra homomorphism into matrices.
Next we prove that

(1.76) imageµ ⊇ g2,

whereg2 is defined as in (0.2). LetA be ing2, and choose a curvec(t) of
the kind in (0.2) withc′(0) = A. Put

X f (x) = d

dt
f (xc(t))

∣∣∣
t=0

.

ThenX is a left-invariant vector field onG, and

µ(X)i j = X1ei j = Xei j(1) = d

dt
ei j(c(t))

∣∣∣
t=0

= d

dt
c(t)i j

∣∣∣
t=0

= c′(0)i j = Ai j .

This proves (1.76).
Finally we have dimG = dimg2 by Theorem 0.15. Therefore (1.76)

gives

dimg1 = dimG = dimg2 ≤ dim(imageµ) ≤ dim(domainµ) = dimg1,

and equality must hold throughout. Consequentlyµ is one-one, and its
image is exactlyg2. This completes the proof.

The proof shows whatµ−1 is. Specifically if a matrixA is given, then
µ−1(A) = X , whereX is defined in terms of any curve as in (0.2) with
c′(0) = A by X f (x) = d

dt
f (xc(t))

∣∣
t=0

. It is a consequence of the proof
that the value ofX does not depend on the particular choice of the curvec.

Let us return to general Lie groups. Ananalytic subgroup H of a
Lie group G is a subgroup with the structure of an analytic group such
that the inclusion mapping is smooth and everywhere regular. Ifh andg
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denote the Lie algebras ofH andG, then the differential of the inclusion
at 1 carriesh = T1(H) to a subspacẽT1(H) of g and is a one-one Lie
algebra homomorphism. Thus̃T1(H) is a Lie subalgebra ofg, andh can
be identified with this subalgebra. This identification is normally made
without specific comment.

The correspondenceH �→ T̃1(H) ⊆ g of analytic subgroups ofG to
Lie subalgebras ofg, given as in the previous paragraph, is one-one onto.
This is our first fundamental result in the elementary theory of Lie groups.
The proof lies deep. A related result that needs its own proof is that if
M is a smooth manifold and : M → G is a smooth function such that
(M) ⊆ H for an analytic subgroupH , then : M → H is smooth. For
example, once one has constructed the underlying manifold of an analytic
subgroupH , it follows that multiplication is smooth as a function from
H × H into G; the above fact about mappings enables one to conclude that
multiplication is smooth as a mapping fromH × H into H .

For the correspondence of analytic subgroups and Lie subalgebras, it
is important to allow analytic subgroups that are not closed. The 2-torus
T = {(eiθ1, eiθ2)} provides an illuminating example. We may regard its Lie
algebra asR ∂

∂θ1
⊕ R ∂

∂θ2
. Each 1-dimensional subspaceR

(
∂

∂θ1
+ c ∂

∂θ2

)
is a

Lie subalgebra and leads to an analytic subgroup{(eit , eict) | t ∈ R}. This
subgroup is closed if and only ifc is rational (cf. Introduction, Problem 4).

Let G be a Lie group, and letH be a closed subgroup. Then there
exists a unique smooth manifold structure onH such thatH , in its relative
topology, is a Lie group and the identity component ofH is an analytic
subgroup ofG. This result generalizes Theorem 0.15.

Next let us consider homomorphisms. Let : G → H be a smooth
homomorphism between Lie groups, and letdx : g → h be the differ-
ential atx ∈ G. Thend has the following property: IfX is a left-invariant
vector field onG and if Y is the left-invariant vector field onH such that
(d)1(X1) = Y1, then

(1.77) (d)x(Xx) = Y(x) for all x ∈ G.

It follows thatd1 is a Lie algebra homomorphism. The results above that
relate analytic subgroups and Lie subalgebras imply that the image of

is an analytic subgroupH ′ of H and that : G → H ′ is smooth. When
there is no possibility of confusion, we shall writed in place ofd1.

The results above imply also that ifG andH are connected, then is
determined byd1. In fact, let : G → H and� : G → H be smooth
homomorphisms with a common homomorphismϕ : g → h on the level
of Lie algebras. The graph of, namely{(x, y) ∈ G × H | y = (x)},
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is a closed subgroup ofG × H and is therefore an analytic group. Its Lie
algebra is the graph ofϕ, namely{(X, Y ) ∈ g × h | Y = ϕ(X)}. But the
graph of� is another analytic group whose Lie algebra is the graph ofϕ,
and we conclude that and� have the same graph. Therefore = �.

In the case thatG andH are closed linear groups, we saw in §5 of the
Introduction that we could associate to a Lie algebra homomorphism of
the linear Lie algebras. The next lemma and proposition show how this Lie
algebra homomorphism is related to the Lie algebra homomorphismd1

above.

Lemma 1.78.Let G be a closed linear group, letc(t) be a curve inG of
the kind in (0.2), and letµ be the isomorphism of Proposition 1.74. Then

µ
(
dc0

(
d
dt

)) = c′(0).

PROOF. The lemma follows from the computation

µ
(
dc0

(
d
dt

))
i j

= dc0

(
d
dt

)
(ei j) = d

dt
ei j(c(t))

∣∣
t=0

= c′(0)i j .

Proposition 1.79. Let  : G → H be a smooth homomorphism
between closed linear groups, and letµG andµH be the corresponding Lie
algebra isomorphisms of Proposition 1.74. LetX be in the Lie algebra of
G, and putY = (d1)(X). If c(t) is a curve inG as in (0.2) such that
µG(X) = c′(0), thenµH (Y ) = d

dt
(c(t))

∣∣
t=0

.

PROOF. By Lemma 1.78,X = µ−1
G (c′(0)) is given by X = dc0

(
d
dt

)
.

Then

µH (Y ) = µH ((d1)(X)) = µH

(
(d1)(dc0)

(
d
dt

)) = µH

(
d( ◦ c)0

(
d
dt

))
,

and another application of Lemma 1.78 identifies the right side as
d
dt

(c(t))
∣∣

t=0
.

The passage in the reverse direction—from homomorphisms of Lie
algebras to homomorphisms of Lie groups—works well locally, but an
additional hypothesis is needed to get a global result. First let us state the
local result. IfG andH are analytic groups, alocal homomorphismof G
into H is a pair(�, U ), whereU is an open connected neighborhood of 1 in
G and� : U → H is a smooth map such that�(xy) = �(x)�(y) when-
everx , y, andxy are inU . The local result concerning homomorphisms is
that if G andH are analytic groups and ifϕ : g → h is a homomorphism
between their Lie algebras, then there exists a local homomorphism of
G into H with d1 = ϕ.
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The local result is another consequence of the correspondence between
analytic subgroups and Lie subalgebras. In fact, suppose thatG and H
are analytic groups and thatϕ : g → h is a homomorphism between their
Lie algebras. Lets = {(X, ϕ(X)) ∈ g ⊕ h | X ∈ g} be the graph ofϕ,
and letS be the corresponding analytic subgroup. ThenS ought to be the
graph of the desired group homomorphism fromG to H , but the problem
is that one element ofG may correspond to more than one element ofH .
Thus the homomorphism cannot necessarily be constructed globally. To
construct a local homomorphism rigorously, regardS as a subgroup of
G × H , and letG andH be the restrictions toS of the projections of
G × H to G and toH . The differential ofG is a homomorphism ofs to g

that carries(X, ϕ(X)) to X , and it is one-one onto. HenceG is a smooth
homomorphism onto, and it is one-one in a neighborhood of the identity. It
follows thatG has a local inverse� from a neighborhood of the identity in
G into S. This locally defined inverse function is a local homomorphism.
Following � with H yields the desired local homomorphism of G
into H .

The additional hypothesis that we impose in order to get a global result
is that the domain groupG is “simply connected.” A pathwise connected
topological space is said to besimply connectedif every loop based at a
point can be continuously deformed to the point with the point held fixed.
Simple connectivity is a concept that will discussed in more detail in the
next section, and some of the results of that section are needed in order
to derive the following conclusion: If(�, U ) is a local homomorphism
from one analytic groupG to another analytic groupH and if G is simply
connected, then there exists a smooth homomorphism : G → H such
that|U = �.

Putting this extension theorem together with the local result above, we
obtain the global conclusion about homomorphisms: IfG andH are ana-
lytic groups withG simply connected and ifϕ : g → h is a homomorphism
between their Lie algebras, then there exists a smooth homomorphism
 : G → H with d1 = ϕ. This is our second fundamental result in the
elementary theory of Lie groups.

An important corollary of the above lifting of homomorphisms of Lie
algebras to homomorphisms of analytic groups is that any two simply
connected analytic groups with isomorphic Lie algebras are isomorphic.

There are two ways of defining the exponential mapping for a general
analytic group. One uses the lifting of homomorphisms from Lie algebras
to simply connected analytic groups, while the other avoids using anything
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about simple connectivity and relies instead on an existence theorem for
solutions of systems of ordinary differential equations.

The first way uses the lifting of homomorphisms. LetR denote the
simply connected Lie group of additive reals with 1-dimensional abelian
Lie algebrar generated by

(
d
dt

)
0
, and letG be an analytic group with Lie

algebrag. If X is given ing, we can define a Lie algebra homomorphism
of r into g by requiring that

(
d
dt

)
0

map toX . The corresponding smooth
homomorphismR → G is writtent �→ expt X .

Write c(t) = expt X . Let d
dt

and X̃ be the left-invariant vector fields on
R andG, respectively, that extend

(
d
dt

)
0

and X . According to (1.77), we
have

(1.80) (dc)t

(
d
dt

) = X̃c(t).

Also c(0) = 1. Thus (1.80) says thatc(t) = expt X is theintegral curve
for X̃ with c(0) = 1. On a functionf , the left side of (1.80) is

= (dc)t

(
d
dt

)
f = d

dt
f (c(t)) = d

dt
f (expt X).

Therefore we obtain the important formula

(1.81) X̃ f (expt X) = d

dt
f (expt X).

The equation (1.80), when written in local coordinates, yields a system
of ordinary differential equations satisfied by the integral curve in question.
From this system of differential equations, one sees that the map of the Lie
algebrag into G given byX �→ expX is smooth. This is theexponential
map for G. If  : G → H is a smooth homomorphism, then and the
differentiald1 and the exponential map are connected by the formula

(1.82) expH ◦ d1 =  ◦ expG .

A second way of constructing the exponential map avoids the use of
the correspondence between homomorphisms of analytic subgroups and
homomorphisms of Lie algebras. Instead one applies the standard exis-
tence theorem for systems of ordinary differential equations to the system
obtained by writing out (1.80) in local coordinates. In other words, the
exponential map is constructed by piecing together integral curves con-
structed by solving differential equations. We omit the details.
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The exponential map is locally invertible about 0�→ 1 in the sense that
if X1, . . . , Xn is a basis of the Lie algebrag, then

(1.83) (x1, . . . , xn) �→ g exp(x1X1 + · · · + xn Xn)

carries a sufficiently small ball about 0 inRn diffeomorphically onto an
open neighborhood ofg in G. The inverse is therefore a compatible chart
aboutg and definescanonical coordinates of the first kind about the
elementg of G.

Let G be an analytic group with Lie algebrag, and suppose thatg is a
direct sum of vector subspaces

g = g1 ⊕ · · · ⊕ gk .

If Uj is a sufficiently small open neighborhood of 0 ingj for 1 ≤ j ≤ k,
then the map

(X1, . . . , Xk) �→ g(expX1) · · · (expXk)

is a diffeomorphism ofU1 × · · · × Uk onto an open neighborhood ofg in
G. When thegj ’s are all 1-dimensional, the local coordinates given by the
inverse map are calledcanonical coordinates of the second kindaboutg.

Proposition 1.84.Let G be a closed linear group, and letg be its linear
Lie algebra. If the exponential map is regarded as carryingg to G, then it
is given by the matrix exponential function of §2 of the Introduction.

PROOF. First considerG = GL(n, C). Let X be in the Lie algebra,
let µ(X) be the corresponding member ofg, and letX̃ be the associated
left-invariant vector field onG. We apply (1.81) tof = ei j and combine
with (1.75) to obtain

d

dt
(expt X)i j = X̃ei j(expt X) =

∑
k

eik(expt X)µ(X)k j .

In other words,c(t) = expt X satisfies

c′(t) = c(t)µ(X) with c(0) = 1,

and it follows from the theory of linear systems of ordinary differential
equations thatc(t) = etµ(X). This completes the proof forGL(n, C).
We obtain the result for generalG by applying (1.82) to the inclusion
 : G → GL(n, C) and using the result forGL(n, C).
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Corollary 1.85. If G is an analytic group and : G → GL(n, C) is a
smooth homomorphism, then ◦ expG can be computed ased if the Lie
algebra ofGL(n, C) is identified withgl(n, C).

PROOF. This follows by combining (1.82) and Proposition 1.84.

Let G be a Lie group of dimensionn, let H be a closed subgroup of
dimensions and letπ : G → G/H be the quotient map. Then there exists
a chart(U, ϕ) around 1 inG, sayϕ = (x1, . . . , xn), such that

(a) ϕ(U ) = {
(ξ1, . . . , ξn)

∣∣ |ξj | < ε for all j
}

for someε > 0,
(b) each slice withxs+1 = ξs+1, . . . , xn = ξn is a relatively open set in

some cosetgH and these cosets are all distinct,
(c) the restriction ofπ to the slicex1 = 0, . . . , xs = 0 is a homeomor-

phism onto an open set and therefore determines a chart about the
identity coset inG/H .

If the translates inG/H of the chart in (c) are used as charts to coverG/H ,
thenG/H becomes a smooth manifold such thatπ and the action ofG are
smooth. Moreover, any smooth mapσ : G → M that factors continuously
throughG/H asσ = σ̄ ◦ π is such that̄σ is smooth.

Let G be a Lie group of dimensionn, let H be a closed normal subgroup
of dimensions, and letg andh be the respective Lie algebras. Thenh is
an ideal ing, the manifold structure onG/H makesG/H a Lie group, the
quotient map ofG to G/H is a smooth homomorphism, and the differential
of G → G/H at the identity may be regarded as the quotient mapg → g/h.

Any continuous homomorphism between Lie groupsG andG ′ is auto-
matically smooth. Once this result is known for the special caseG = R,
the general case follows by using canonical coordinates of the second kind.

A corollary is that if two analytic groups have the same underlying
topological group, then they coincide as analytic groups.

Shortly we shall develop the “adjoint representation” of a Lie group on
its Lie algebra. In the development we shall need to use the following
version of Taylor’s Theorem.

Proposition 1.86(Taylor’s Theorem). LetG be a Lie group with Lie
algebrag. If X is in g, if X̃ denotes the corresponding left-invariant vector
field, and if f is aC∞ function onG, then

(X̃ n f )(g expt X) = dn

dtn
( f (g expt X)) for g in G.
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Moreover, if| · | denotes any norm ong and if X is restricted to a bounded
set ing, then

f (expX) =
n∑

k=0

1

k!
(X̃ k f )(1) + Rn(X),

where|Rn(X)| ≤ Cn|X |n+1.

REMARK. This proposition uses only theC∞ manifold structure onG.
In terms of the real-analytic manifold structure onG, one can prove for
real-analytic functionsf on G that

f (expX) =
∞∑

k=0

1

k!
(X̃ k f )(1)

for all X in a suitably small neighborhood of 0 ing. This variant of the
result is needed in some applications to infinite-dimensional representation
theory but will not play a role in this book.

PROOF. The first conclusion atg = 1 follows by iterating (1.81).
Replacing f (x) by fg(x) = f (gx) and using left invariance, we get
the first conclusion for generalg. For the second statement we expand
t �→ f (expt X) in Taylor series aboutt = 0 and evaluate att = 1. Then

f (expX) =
n∑

k=0

1

k!

(
d

dt

)k

( f (expt X))
∣∣

t=0

+ 1

n!

∫ 1

0

(1 − s)n

(
d

ds

)n+1

( f (exps X)) ds

=
n∑

k=0

1

k!
(X̃ k f )(1) + 1

n!

∫ 1

0

(1 − s)n(X̃ n+1 f )(exps X) ds.

In the second term on the right side, writeX = ∑
j λj X j and expand̃Xn+1.

SinceX is restricted to lie in a compact set, so is exps X , and the integral
is dominated by|λ|n+1 times a harmless integral. This proves the estimate
for the remainder.

Corollary 1.87. Let G be a Lie group with Lie algebrag. If X is in g,
if X̃ denotes the corresponding left-invariant vector field, and iff is aC∞

function onG, then

X̃ f (g) = d

dt
f (g expt X)

∣∣∣
t=0

.

PROOF. Putt = 0 in the proposition.
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The “adjoint representation” of a Lie group on its Lie algebra is defined
as follows. LetG be a Lie group with Lie algebrag. Fix an elementg ∈ G,
and consider the smooth isomorphism(x) = gxg−1 of G into itself. The
corresponding isomorphismd1 : g → g is denoted Ad(g). By (1.82),
we have

(1.88) exp(Ad(g)X) = g(expX)g−1.

In the special case thatG is a closed linear group, we can regardX and
g in (1.88) as matrices, and we can use Proposition 1.84 to think of exp as
the matrix exponential function. Let us replaceX by t X , differentiate, and
sett = 0. Then we see that Ad(g)X , regarded as a member of the linear
Lie algebrag, is given bygXg−1.

Returning to the general case, let us combine (1.88) with the fact that
exp has a smooth inverse in a neighborhood of the identity inG. Then we
see that Ad(g)X is smooth as a function from a neighborhood of 1 inG to
g if X is small. That is,g �→ Ad(g) is smooth from a neighborhood of 1 in
G into GL(g). But also it is clear that Ad(g1g2) = Ad(g1)Ad(g2). Thus
the smoothness is valid everywhere onG, and we arrive at the following
result.

Proposition 1.89. If G is a Lie group andg is its Lie algebra, then Ad
is a smooth homomorphism fromG into GL(g).

We call Ad theadjoint representation of G on g. When we want to
emphasize the space on which Ad(x) operates, we write Adg(x) for the
linear transformation.

We shall now compute the differential of Ad.

Lemma 1.90.Let G be a Lie group with Lie algebrag. If X andY are
in g, then

(a) expt X exptY = exp{t (X + Y ) + 1
2t2[ X, Y ] + O(t3)},

(b) expt X exptY (expt X)−1 = exp{tY + t2[ X, Y ] + O(t3)}
ast → 0. HereO(t3) denotes a smooth function from an interval oft ’s
aboutt = 0 intog such that the quotient byt3 remains bounded ast → 0.

PROOF. For (a) we use the local invertibility of exp near the identity to
write expt X exptY = expZ(t) for t near 0, whereZ(t) is smooth int .
SinceZ(0) = 0, we have

Z(t) = t Z1 + t2Z2 + O(t3),
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and we are to identifyZ1 and Z2. Let Z̃1 and Z̃2 be the corresponding
left-invariant vector fields. Iff is a smooth function near the identity ofG,
Taylor’s Theorem (Proposition 1.86) gives

f (expZ(t)) =
2∑

k=0

1

k!
(t Z̃1 + t2 Z̃2 + O(t3))k f (1) + O(t3)

= f (1) + t (Z̃1 f )(1) + t2( 1
2 Z̃2

1 + Z̃2) f (1) + O(t3).

On the other hand, another application of Taylor’s Theorem gives

f (expt X expsY ) =
2∑

k=0

1

k!
skỸ k f (expt X) + Ot(s

3)

=
2∑

k=0

2∑
l=0

1

k!

1

l!
skt l X̃ l Ỹ k f (1) + Ot(s

3) + O(t3),

whereOt(s3) denotes an expressionO(s3) depending ont and having the
property that the bound onO(s3)/s3 may be taken independent oft for t
small. Settingt = s, we obtain

f (expZ(t)) = f (expt X exptY )

= f (1) + t (X̃ + Ỹ ) f (1) + t2( 1
2 X̃2 + X̃ Ỹ + 1

2Ỹ 2) f (1) + O(t3).

Replacing f by the translatefg with fg(x) = f (gx), we are led to the
equalities of operators̃Z1 = X̃ + Ỹ and 1

2 Z̃2
1 + Z̃2 = 1

2 X̃2 + X̃ Ỹ + 1
2Ỹ 2.

ThereforeZ1 = X + Y andZ2 = 1
2[ X, Y ].

To prove (b), we apply (a) twice, and the result follows.

Proposition 1.91. Let G be a Lie group with Lie algebrag. The
differential of Ad : G → GL(g) is ad : g → Endg, where ad(X)Y =
[ X, Y ] and where the Lie algebra ofGL(g) has been identified with the
linear Lie algebra Endg. Consequently

(1.92) Ad(expX) = eadX

under this identification.

PROOF. Let L : g → End(g) be the differential of Ad. FixX andY in
g. Applying Lemma 1.90b and using (1.88), we obtain

Ad(expt X)tY = tY + t2[ X, Y ] + O(t3).
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Division by t gives

Ad(expt X)Y = Y + t [ X, Y ] + O(t2).

Differentiating and puttingt = 0, we see that

L(X)Y = [ X, Y ].

ThereforeL = ad as asserted. Formula (1.92) then becomes a special case
of Corollary 1.85.

11. Covering Groups

In being willing to skip details about the elementary theory of Lie groups,
this book takes for granted some basic knowledge concerning fundamental
groups, covering spaces, and topological groups. In this section we shall
summarize that material and then discuss in detail how these concepts come
together in the topic of covering groups.

All topological spaces in this section will be separable metric spaces.
As in the Introduction, a metric will ordinarily not be specified, but a
topological space can be recognized as admitting the structure of a separable
metric space if it is regular and Hausdorff and it possesses a countable base
for its topology.

Let X be such a space. Two (continuous) pathsa and b in X with
the same initial points and same final points areequivalent if one can
be deformed continuously into the other with the endpoints fixed. The
equivalence class ofa is denoted [a]. The fundamental group π1(X, p)

of X with base pointp is the set of equivalence classes of loops based at
p, the product [a][b] referring to the class of the loop that traces outa and
thenb.

If f : X → Y is a continuous map between separable metric spaces, then
f induces a homomorphismf∗ : π1(X, p) → π1(Y, f (p)) by composing
loops with f .

Let X be pathwise connected. Ifp andp′ are points inX , thenπ1(X, p)

is isomorphic toπ1(X, p′). Accordingly the statement thatπ1(X, p) =
{1}, i.e., thatX is simply connected, does not depend on the base point.
Euclidean spaces and spheresSn with n ≥ 2 are simply connected. The
fundamental group of the circleS1 is isomorphic to the integersZ. The
product of two simply connected spaces is simply connected.
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The subject of covering spaces is meaningful for separable metric spaces
that are connected and locally pathwise connected. Every connected open
set in such a space is pathwise connected, and the connected components
of any open set are open.

If e : X → Y is a continuous onto map between two separable metric
spaces that are connected and locally pathwise connected and ifV is open
and connected inY , we say thatV isevenly coveredbye if each connected
component ofe−1(V ) is mapped bye homeomorphically ontoV . We say
thate is acovering mapif eachy in Y has an open connected neighborhood
Vy that is evenly covered bye. In this caseY is called thebase spaceand
X is thecovering space. If e : X → Y ande′ : X ′ → Y are covering
maps, then a continuous mapf : X → X ′ with e′ f = e is said to befiber
preserving.

PROPERTIES OF COVERING SPACES.
1) (Path-lifting Theorem) Supposee : X → Y is a covering map. If

y(t), 0 ≤ t ≤ 1, is a path inY and if x0 is in e−1(y(0)), then there exists a
unique pathx(t), 0 ≤ t ≤ 1, in X with x(0) = x0 ande(x(t)) = y(t).

2) (Covering Homotopy Theorem) Lete : X → Y be a covering map,
let K be a compact topological space, and letf0 : K → X be continuous.
If g : K × [0, 1] → Y is continuous and satisfiesg( · , 0) = e f0, then there
is a unique continuousf : K × [0, 1] → X such thatf ( · , 0) = f0 and
g = e f . Consequently, under the Path-lifting Theorem, contractible loops
lift to contractible loops, and it follows thate∗ is one-one.

3) (Map-lifting Theorem) Lete : X → Y be a covering, and letx0 and
y0 be points inX andY such thate(x0) = y0. If P is a connected, locally
pathwise connected separable metric space, ifg : P → Y is continuous,
and if p0 is in g−1(y0), then there exists a continuousf : P → X with
f (p0) = x0 and g = e f if and only if g∗(π1(P, p0)) ⊆ e∗(π1(X, x0)).
When f exists, it is unique.

4) (Uniqueness theorem for coverings) Lete : X → Y ande′ : X ′ → Y
be coverings, and lety0 be inY . Then there exists a fiber-preserving home-
omorphism ofX ontoX ′ if and only if base pointsx0 in X andx ′

0 in X ′ can
be chosen so thate(x0) = e′(x ′

0) = y0 ande∗(π1(X, x0)) = e′
∗(π1(X ′, x ′

0)).
(In this case one says thate ande′ areequivalent coverings.)

5) (Coverings of simply connected coverings) Lete : X → Y be a
covering, and suppose thatY is simply connected. By Property 4 with
X ′ = Y , e is one-one, i.e., the covering is trivial.

6) (Manifold structure on a covering of a manifold) Lete : X → Y be
a covering, and suppose thatY has the structure of a smooth manifold of
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dimensionn. ThenX uniquely admits the structure of a smooth manifold
of dimensionn in such a way thate is smooth and everywhere regular.
Moreover if P is another smooth manifold and ifg : P → Y is smooth
and f : P → X is continuous withe f = g, then f is smooth.

7) Construction of coverings of a spaceY requires identifying some
open connected sets inY that will be evenly covered. Here is a condition:
if e : X → Y is a covering, then a connected open subsetQ of Y is evenly
covered if any loop inQ is contractible inY . Following Chevalley [1946],
we say thatY is locally simply connectedif each y in Y has an open
connected, simply connected neighborhood. In this case eachy in Y has
arbitrarily small open connected neighborhoods such that any loop in the
neighborhood is contractible inY . It need not be true that eachy in Y has
arbitrarily small simply connected neighborhoods.

8) (Existence theorem for coverings) IfY is locally simply connected,
if y0 is in Y , and if H is a subgroup ofπ1(Y, y0), then there exists a
covering spaceX with covering mape : X → Y and with pointx0 such
that e(x0) = y0 ande∗(π1(X, x0)) = H . Sincee∗ is one-one, the case
H = 1 shows thatY has a simply connected covering space, i.e., one with
trivial fundamental group. A simply connected covering space is called a
universal covering space. Such a space, by Property 4, is unique up to
fiber-preserving homeomorphism.

9) (Deck transformations of a universal covering space) LetY be given,
let X be a universal covering space, and lete : X → Y be the covering
map. Adeck transformation of X is a fiber-preserving homeomorphism
of X . Choose base pointsx0 in X andy0 in Y such thate(x0) = y0. Then

(a) π1(Y, y0) is in one-one correspondence withe−1(y0), the correspon-
dence being thatx1 ∈ e−1(y0) corresponds to

[e(any path fromx0 to x1)],

(b) the group of deck transformationsH of X acts simply transitively
on e−1(y0), and

(c) the correspondence that associates to a deck transformationf in
H the member ofπ1(Y, y0) corresponding tof (x0) is a group
isomorphism ofH ontoπ1(Y, y0).

Let us turn to topological groups. All of the topological groups that we
shall consider in the context of covering spaces areseparablein the sense
of having the topology of a separable metric space. LetG be a separable
topological group, and letH be a closed subgroup. The coset spaceG/H
is given the quotient topology. Then the quotient mapG → G/H is open,
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G/H has the topology of a separable metric space, and the action ofG
on G/H is jointly continuous. IfH andG/H are connected, thenG is
connected. IfH and G/H are compact, thenG is compact. IfG is a
Lie group, then we saw in §10 howG/H may be given the structure of a
manifold such that the action ofG on G/H is smooth. IfG is a separable
topological group andH is a closed normal subgroup, thenG/H is a
separable topological group; in this case ifG is a Lie group, thenG/H is
a Lie group.

Let us consider some properties relating closed subgroups and dis-
creteness. Already in the Introduction we used the fact that the identity
componentG0 of a topological groupG is a closed normal subgroup. If
U is an open neighborhood of 1 inG, then the subgroup generated byU
containsG0; in particular ifG is connected, any open neighborhood of 1
generatesG.

Proposition 1.93.If G is a separable topological group, then

(a) any open subgroupH is closed and the quotientG/H has the
discrete topology,

(b) the identity componentG0 of G is open ifG is locally connected,
(c) any discrete subgroupH of G (i.e., any subgroup whose relative

topology is the discrete topology) is closed, and
(d) under the assumption thatG is connected, any discrete normal

subgroupH of G lies in the center ofG.

PROOF.
(a) If H is an open subgroup, then every cosetx H is an open set inG.

Then the formulaH = G − ⋃
x /∈H x H shows thatH is closed. Also since

G → G/H is an open map, every one-element setx H in G/H is open.
ThusG/H has the discrete topology.

(b) In any locally connected topological space, the connected compo-
nents are open.

(c) By discreteness choose a neighborhoodV of 1 in G so thatH ∩ V =
{1}. By continuity of multiplication, choose an open neighborhoodU of 1
with UU ⊆ V . If H is not closed, letx be a limit point ofH that is not in
H . Then the neighborhoodU−1x of x must contain a memberh of H , and
h cannot equalx . Write u−1x = h with u ∈ U . Thenu = xh−1 is a limit
point of H that is not inH , and we can findh ′ �= 1 in H such thath ′ is in
Uu. But Uu ⊆ UU ⊆ V , and soh ′ is in H ∩ V = {1}, contradiction. We
conclude thatH contains all its limit points and is therefore closed.
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(d) Let G be connected, and letH be a discrete normal subgroup. Ifh
is in H , thenghg−1 is in H sinceH is normal, andghg−1 is in the same
component ofH as 1h1−1 = h sinceG is connected. SinceH is discrete,
ghg−1 = h. Thush is central.

Proposition 1.94. Let G be a connected, locally pathwise connected
separable topological group, and letH be a closed subgroup ofG that is
locally pathwise connected.

(a) The quotientG/H is connected and locally pathwise connected.
(b) If H0 is the identity component ofH , then the natural map ofG/H0

ontoG/H is a covering map.
(c) If G/H is simply connected, thenH is connected.
(d) If H is discrete, then the quotient map ofG ontoG/H is a covering

map.
(e) If H is connected andG is simply connected andG/H is locally

simply connected, thenG/H is simply connected.

PROOF.
(a) Letp : G → G/H be the quotient map. Ifx andy are given inG/H ,

take members ofp−1(x) andp−1(y) in G, connect them by a path, and map
them back down toG/H by p to see thatG/H is pathwise connected. Ifx
is in an open subsetV of G/H , takex̃ in p−1(x), and choose a connected
open neighborhoodU of x̃ that lies inp−1(V ). SinceG is locally pathwise
connected,U is pathwise connected. Thus anyx̃ ′ in U can be connected
to x̃ by a path inU . It follows that p(U ) is a pathwise connected open
neighborhhod ofx that lies inV . SoG/H is locally pathwise connected.

(b) Let p0 : G → G/H0, p : G → G/H , andq : G/H0 → G/H be the
quotient maps. For any open setV in G/H , q−1(V ) = p0(p−1(V )) is open,
and thusq is continuous. IfU is open inG/H0, thenq(U ) = p(p−1

0 (U ))

shows thatq(U ) is open. Thusq is an open map. SinceH is locally
connected, Proposition 1.93b shows that there is an open neighborhoodU
of 1 in G with U ∩ H = H0. By local connectivity ofG and continuity
of the group operations, find an open connected neighborhoodV of 1 in
G with V −1V ⊆ U . ThenV −1V ∩ H ⊆ H0. Form the setsV h H0 in
G/H0 for h ∈ H . These sets are open connected, and their union is
q−1(V H). If V h1H0 ∩ V h2H0 is not empty, then the same thing is true first
of V H0h1∩V H0h2 becauseH0 is normal inH , then ofV −1V H0∩H0h2h−1

1 ,
and finally ofV −1V ∩H0h2h−1

1 . SinceV −1V ∩H ⊆ H0, h2h−1
1 is in H0, and

soV h1H0 = V h2H0. In short, distinct setsV h H0 are disjoint. Finally let us
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see thatq is one-one from eachV h H0 ontoV H . If q(v1h H0) = q(v2h H0),
thenv1h = v2hh ′ for someh ′ ∈ H . The equationv−1

2 v1 = hh ′h−1 exhibits
v−1

2 v1 as inV −1V ∩ H ⊆ H0. Hencev1 = v2h0 for someh0 ∈ H0, and
the fact thatH0 is normal inH implies thatv1h H0 = v2h0h H0 = v2h H0.
Thusq is one-one continuous open from eachV h H0 ontoV H , andV H is
evenly covered. By translation we see that eachgV H is evenly covered.
Henceq is a covering map.

(c) We apply (b) to see thatG/H0 → G/H is a covering map. Since
G/H is simply connected, Property 5 of covering spaces says thatG/H0 →
G/H is one-one. ThereforeH = H0, andH is connected.

(d) This is the special case of (b) in whichH0 = {1}.
(e) By (a) above and Property 8 of covering spaces,G/H admits a simply

connected covering spaceX . Let e : X → G/H be the covering map, and
fix x0 in e−1(1H). Let ϕ : G → G/H be the quotient map. By Property 3
of covering spaces and the simple connectivity ofG, there exists a unique
ϕ̃ : G → X such thate ◦ ϕ̃ = ϕ andϕ̃(1) = x0. We shall exhibitX as
isomorphic toG/H ′ for some subgroupH ′ of H , and we shall prove that
H ′ is open inH . SinceH is connected, it follows thatH ′ = H and thate
is one-one. Thereforee : G/H ′ → G/H is a homeomorphism, andG/H
is simply connected.

To introduce a continuous action ofG on X , we apply Property 3 of
covering spaces: the mapψ : G × X → G × G/H given byψ(g, x) =
(g, ge(x)) lifts uniquely to a continuous̃ψ : G × X → G × X such that
ψ̃(1, x0) = (1, x0) and (1 × e) ◦ ψ̃ = ψ . The latter condition forces
ψ̃(g, x) = (g, ξ(g, x)) for some continuous functionξ : G × X → X ,
andξ has the property thate(ξ(g, x)) = ge(x). By uniqueness of̃ϕ above,
ϕ̃(g) = ξ(g, x0). The functions fromG × G × X to X carrying(g1, g2, x)

toξ(g1, ξ(g2, x)) and toξ(g1g2, x) have the property that when followed by
e, they each yield(g1, g2, x) �→ g1g2e(x). By the uniqueness in Property 3
of covering spaces,ξ(g1, ξ(g2, x)) = ξ(g1g2, x). A second application of
Property 3 shows thatξ(1, x) = x . If we definegx = ξ(g, x), then our
formulas yieldg1(g2x) = (g1g2)x and 1x = x . Frome(ξ(g, x)) = ge(x),
we obtaine(gx) = ge(x). Thus we have a continuous group action of
G on X that is compatible with the action ofG on G/H and with the
definition ofϕ̃.

Fix x in X . Let us prove that the mapg �→ gx of G into X is open. It is
enough to show that sufficiently small open neighborhoods of 1 inG map
to open neighborhoods ofx . Let V be an open neighborhood ofe(x) that is
evenly covered bye, letU be the component ofe−1(V ) to whichx belongs,
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and letN be an open neighborhood of elementsg about 1 inG such that
gx lies in U . Then we can definee−1 : V → U as a homeomorphism,
andgx = ξ(g, x) = e−1(e(ξ(g, x))) = e−1(ge(x)). SinceG → G/H is
open, the set of elementsge(x) is open inV , and thereforee−1 of this set
is open inX . Consequentlyg �→ gx is an open map.

It follows that each orbit ofG in X is open. SinceX is connected, there
is just one orbit. TakingH ′ = {g ∈ G | gx0 = x0}, we can identifyG/H ′

as a set withX by gH ′ �→ gx0, and the group actions correspond. We have
just seen that the continuous functiong �→ gx0 is open, and consequently
gH ′ �→ gx0 is a homeomorphism. Ifh ′ is in H ′, then application ofe to
the equalityh ′x0 = x0 yieldsh ′(1H) = 1H ; thereforeH ′ is a subgroup of
H .

To complete the proof, we show thatH ′ is relatively open inH . Let
V be an open neighborhood of 1H that is evenly covered bye, let U
be the component ofe−1(V ) to which x0 belongs, and letN be an open
neighborhood of 1 inG such thatN x0 ⊆ U . Then N H ′ is an open
neighborhood of 1 inG with N H ′x0 ⊆ U , and henceN H ′ ∩ H = H ′.
Thus H ′ is an open subset ofH in the relative topology, and the proof is
complete.

Proposition 1.95. Let G be a connected, locally pathwise connected,
simply connected separable topological group, and letH be a discrete
subgroup ofG, so that the quotient mapp : G → G/H is a covering
map. Then the group of deck transformations ofG is exactly the group of
right translations inG by members ofH . Consequentlyπ1(G/H, 1 · H)

is canonically isomorphic withH .

PROOF. Let fh(g) = gh for g in G and h in H . Then p fh(g) =
gh H = gH = p(g), so thatp fh = p and fh is a deck transformation.
Sincep−1(1 · H) = H , the group of translationsfh is simply transitive on
p−1(1 · H) and by Property 9b of covering spaces is the full group of deck
transformations. By Property 9c of covering spaces,π1(G/H, 1· H) ∼= H .

Corollary 1.96. Let G be a connected, locally pathwise connected,
simply connected separable topological group, and letH be a discrete
normal subgroup ofG, so that the quotient homomorphismp : G → G/H
is a covering map. Then

(a) H is contained in the center ofG,
(b) π1(G/H, 1) ∼= H is abelian, and
(c) the end-to-end multiplication of loop classes inπ1(G/H, 1)

coincides with pointwise multiplication of loop classes inG/H .
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PROOF. Part (a) is immediate from Proposition 1.93d, and (b) follows
from this conclusion and Proposition 1.95. For (c) we exploit the iso-
morphism in (b), which was stated as Property 9c of covering spaces.
Elementsh1, h2, andh1h2 of H correspond under this isomorphism to the
classes of loops [e(path inG from 1 toh1)], [e(path inG from 1 toh2)],
and [e(path inG from 1 toh1h2)]. But one particular path from 1 toh1h2

is the group product of the path from 1 toh1 by the path from 1 toh2. This
proves (c).

Proposition 1.97. Let G be a pathwise connected, locally connected,
locally simply connected separable topological group, letG̃ be a universal
covering space with covering mape : G̃ → G, and let̃1 be ine−1(1). Then
there exists a unique multiplication oñG that makes̃G into a separable
topological group in such a way thate is a group homomorphism.

REMARK. The group̃G is called auniversal covering groupof G. The
proposition asserts that it is unique up to isomorphism.

PROOF. Letm : G × G → G be multiplication, and letϕ : G̃ × G̃ → G
be the compositionm ◦ (e, e). Since

{1} = ϕ∗(π1(G̃ × G̃, 1̃ × 1̃)) ⊆ e∗(π1(G̃, 1̃)),

the Map-lifting Theorem provides a unique continuousϕ̃ : G̃ × G̃ → G̃
such thatϕ = eϕ̃ andϕ̃(̃1, 1̃) = 1̃. Thisϕ̃ is the multiplication for̃G.

It is associative by uniqueness of map lifting because

eϕ̃(ϕ̃(x, y), z) = ϕ(ϕ̃(x, y), z) = ϕ(x, y)(ez)

= ((ex)(ey))ez = ex((ey)(ez)) = eϕ̃(x, ϕ̃(y, z))

andϕ̃(ϕ̃(̃1, 1̃), 1̃) = 1̃ = ϕ̃(̃1, ϕ̃(̃1, 1̃)).
It has1̃ as identity becausẽϕ(̃1, · ) andϕ̃( · , 1̃) cover the identity and

send1̃ to 1̃. To obtain existence of inverses, we lift the composition
(inversion) ◦ e : G̃ → G to a map ofG̃ to G̃ sending̃1 to 1̃. Finally
e is a group homomorphism because

e(ϕ̃(x, y)) = ϕ(x, y) = (ex)(ey).

Corollary 1.98. Let G be a connected, locally pathwise connected,
locally simply connected separable topological group, and letH be a
closed subgroup ofG that is locally pathwise connected and locally simply
connected. IfG/H is simply connected, thenπ1(G, 1) is isomorphic to a
quotient group ofπ1(H, 1).
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PROOF. Let G̃ be a universal covering group ofG, and lete : G̃ → G
be the covering homomorphism. SetH ′ = e−1(H). Definee0 : G̃/H ′ →
G/H by e0(g̃H ′) = e(g̃)H . Thene0 is well defined, one-one, and onto.
An open set iñG/H ′ is mapped in stages undere0 to its preimage iñG,
to its image inG, and to its image inG/H . So e0 is open. Similarly
e−1

0 is open, and soe0 is a homeomorphism. ThereforẽG/H ′ is simply
connected.

Let us see thatH ′ is locally pathwise connected. In fact, ifU is a
connected open neighborhood of1̃ in G̃ mapped homeomorphically bye,
thene(U ) ∩ H contains a relatively open pathwise connected neighbor-
hoodV of 1 sinceH is locally pathwise connected. ThenU ∩ e−1(V ) is
homeomorphic withV and is the required neighborhood of 1 inH ′.

By Proposition 1.94c,H ′ is connected. Then Proposition 1.94d shows
that e

∣∣
H ′ : H ′ → H is a covering map. By Corollary 1.96,π1(G, 1) ∼=

kere. The group kere is completely contained inH ′ since kere = e−1(1) ⊆
e−1(H) = H ′.

Let H̃ be a universal covering group ofH ′, and let ẽ : H̃ → H ′

be the covering homomorphism. Thenẽe : H̃ → H is a covering
map, andπ1(H, 1) ∼= kerẽe. To complete the proof, we show that the
homomorphism̃e of kerẽe into kere is actually onto. Being a covering
map, ẽ carriesH̃ onto H ′. If h ′ is in kere ⊆ H ′, choosẽh ∈ H̃ with
ẽ(̃h) = h ′. Thenẽe(̃h) = e(h ′) = 1 shows that̃h is a member of kerẽe
mapping toh ′.

An analytic groupG is connected, locally pathwise connected, and
locally simply connected. Therefore we can apply Proposition 1.97 to
G to construct a universal covering group̃G.

Proposition 1.99. Let G be an analytic group. Then the canonical
manifold structure on the universal covering groupG̃ of G makesG̃ into
an analytic group such that the covering map is a smooth homomorphism.

REMARK. G̃ andG have the same dimension, ande is regular. Thus
G̃ has the same Lie algebra asG. Therefore ifg is the Lie algebra of an
analytic group, there exists a simply connected analytic group withg as
Lie algebra.

PROOF. We use Proposition 1.97 to introducẽG as a separable topo-
logical group and Property 6 of covering spaces to giveG̃ a manifold
structure. Property 6 says that the covering mape : G̃ → G is smooth
and everywhere regular. Therefore the mapϕ : G̃ × G̃ → G, given in the
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proof of Proposition 1.97 bym ◦ (e, e), is smooth. Another application of
Property 6 shows that the lift̃ϕ : G̃ × G̃ → G̃ is smooth. In other words
multiplication is smooth. Similarly inversion is smooth.

To conclude the section, we shall combine the above results with the
theorem of the previous section that homomorphisms between Lie alge-
bras lift to smooth homomorphisms between analytic groups provided the
domain group is simply connected.

Proposition 1.100. Any two simply connected analytic groups with
isomorphic Lie algebras are isomorphic.

PROOF. If G1 andG2 are the groups, the isomorphismg1 ↔ g2 of their
Lie algebras induces smooth homomorphismsG1 → G2 andG2 → G1

whose composition in either order has differential the identity. Therefore
the composition in either order is the identity.

Proposition 1.101. If G is an analytic group, thenG ∼= G̃/H , where
G̃ is a universal covering group ofG and whereH is a discrete subgroup
of the center of̃G. Conversely the most general analytic group with Lie
algebra the same as the Lie algebra ofG is isomorphic tõG/D for some
central discrete subgroupD of G.

REMARK. When an analytic groupG is written as the quotient of a
simply connected group by a discrete central subgroupD, Corollary 1.96
shows thatπ1(G, 1) ∼= D and that end-to-end multiplication of loop classes
in π1(G, 1) coincides with the pointwise product inG of the loop classes.

PROOF. Proposition 1.99 shows thatG ∼= G̃/H with H closed and
normal. Lete be the covering homomorphism. SinceH = e−1({1}), H
is discrete. By Proposition 1.93d,H is central. Conversely ifG1 is given,
we writeG1

∼= G̃1/D1. SinceG1 andG have isomorphic Lie algebras by
assumption,̃G1 and G̃ have isomorphic Lie algebras. Proposition 1.100
yields an isomorphism : G̃1 → G̃, and then we haveG1

∼= G̃/(D1).

Proposition 1.102.Let G be an analytic group with Lie algebrag, and
let H be the analytic subgroup corresponding to the Lie subalgebrah. Then
H is contained in the center ofG if and only if h is contained in the center
of g.

PROOF. SupposeH is contained in the center ofG. If X is in h, then
expt X is in H and the mapG → G given byx �→ (expt X)x(expt X)−1

is the identity. Hence its differential satisfies Ad(expt X) = 1. Differen-
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tiating gives adX = d
dt

Ad(exp t X)
∣∣

t=0
= 0, and thusX is in the center

of g.
Conversely ifh is in the center ofg, then adh = 0 and it follows that

Ad(exp h) = eadh = 1. Since Ad is a homomorphism and exph generates
H , Ad(h) = 1 for all h ∈ H . Now let X be ing andh be in H . Then
h(expX)h−1 = exp Ad(h)X = expX says thath commutes with expg.
Since expg generatesG, h commutes withG. HenceH is contained in
the center ofG.

Corollary 1.103.
(a) An analytic group is abelian if and only if its Lie algebra is abelian.
(b) The most general abelian analytic groupG is of the formRl × T k ,

whereT k is atorus (a product of circle groups).
(c) The most general compact abelian analytic group is a torus.

PROOF. For (a) we takeH = G in Proposition 1.102. Conclusion (c)
is a special case of (b). To prove (b), we apply (a) and Proposition 1.100
to see that the most general simply connected abelian analytic group is
Rn. By Proposition 1.101,G ∼= Rn/D for some discrete subgroupD of
Rn. The subgroupD must be of the form

∑k
i=1 Zvi with the vi linearly

independent overR. Then (b) follows by writingRn = ( ∑k
i=1 Rvi

)⊕Rn−k

and factoring byD.

Proposition 1.104.If G is an analytic group and ifX andY are in the
Lie algebrag, then [X, Y ] = 0 if and only if exps X and exptY commute
for all s andt .

PROOF. If exps X and exptY commute, then exp(Ad(exps X)tY ) =
(exps X)(exptY )(exps X)−1 = exptY . Since exp is invertible near 0,
Ad(exps X)tY = tY for small s and t . After dividing by t , we see that
[ X, Y ] = (adX)Y = d

ds
Ad(exps X)Y

∣∣
s=0

= 0.
Conversely if [X, Y ] = 0, let h = RX + RY . Thenh is an abelian

Lie subalgebra ofg. Let H be the corresponding analytic subgroup. By
Corollary 1.103a,H is abelian. Since exps X and exptY are in H , they
commute.

12. Complex Structures

Occasionally when working with Lie groups, we shall encounter com-
plex structures on Lie groups or quotient spaces of Lie groups. In this
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section we supply some background for this topic, and we relate complex
Lie groups to complex Lie algebras. Only incidental use of this material
will be made before Chapter VII, and the reader may want to postpone
looking at this section carefully until it is really needed.

A complex-valued functionf = u + iv on an open subset ofCn is
holomorphic if it is C∞ as anR2-valued function on an open subset of
R2n and if the Cauchy–Riemann equations hold in each complex variable
zj = xj + iyj :

∂u

∂xj
= ∂v

∂yj
and

∂u

∂yj
= − ∂v

∂xj
.

In this case it follows from the theory of one complex variable that, about
each pointz0 of the domain, f can be expanded in ann-variable power
series inz − z0 and the power series converges in any polydisc centered at
z0 in which f is holomorphic. Apolydisc in Cn is the product of discs in
each of then variables.

Holomorphic functions are closed under addition, multiplication by
complex scalars, and pointwise multiplication. They are closed under
division if the denominator is nowhere 0.

A function f from an open set inCn to Ck is holomorphic if each of
thek components off is holomorphic. The composition of holomorphic
functions is holomorphic. Consequently we can introduce a theory of charts
and atlases in the context of holomorphic functions, thereby defining the
notion of complex structure for an “n-dimensional complex manifold”
M . Fix n. The spaceM at the start is taken to be a separable metric space,
not necessarily connected. Achart is simply a pair(U, ϕ), whereU is an
open subset ofM andϕ is a homeomorphism ofU onto an open subset
ϕ(U ) of Cn. These charts are to have the following two properties:

(a) each pair of charts(U1, ϕ1) and(U2, ϕ2) is holomorphically com-
patible in the sense thatϕ2 ◦ ϕ−1

1 from the open setϕ1(U1 ∩ U2) of
Cn to ϕ2(U1 ∩ U2) is holomorphic and has a holomorphic inverse,
and

(b) the system of compatible charts(U, ϕ) is anatlas in the sense that
the setsU together coverM .

The atlas is called acomplex structure of dimensionn for M , andM
with its complex structure is called acomplex manifold of dimensionn.
We can then speak of holomorphic functions on open sets ofM by referring
them toCn via the above mappingsϕ, just as with smooth manifolds. More
generally we can introduce the notion of a holomorphic mapping between
complex manifolds.
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A complex manifold is in particular a smooth manifold and therefore
has a tangent space at each point. In the tangent space is a well defined
“multiplication-by-i” mapping. Specifically letM be a complex manifold
of dimensionn, and letϕ = (z1, . . . , zn) be the coordinates in a particular
chart. If we writezj = xj + iyj , then a basis for the tangent space at each
point p of the chart is

(
∂

∂x1

)
p
, . . . ,

(
∂

∂xn

)
p
,
(

∂

∂y1

)
p
, . . . ,

(
∂

∂yn

)
p
. Define a linear

transformationJp of the tangent space atp to itself by Jp

(
∂

∂xj

)
p

= (
∂

∂yj

)
p

and Jp

(
∂

∂yj

)
p

= −(
∂

∂xj

)
p
. If we put xj+n = yj for 1 ≤ j ≤ n, then the

matrix of Jp in this basis is
(

0 −1n

1n 0

)
. Let us see thatJp, as a linear map of

Tp(M) into itself, is unchanged if we start from a different chart aboutp.
Let ψ = (w1, . . . , wn) be the coordinates of a second chart aboutp in

M , and writewj = uj + ivj . We think ofψ ◦ ϕ−1 as given by expressions
wi = wi(z1, . . . , zn), 1 ≤ i ≤ n. If we put xj+n = yj for 1 ≤ j ≤ n and
uj+n = vj for 1 ≤ j ≤ n, then the derivative matrix ofψ ◦ ϕ−1 at p is
(ψ ◦ ϕ−1)′

p = {(
∂ui

∂xj

)
p

}
. The Cauchy–Riemann equations forψ ◦ ϕ−1 at p

say that

(1.105)
(

0 −1n

1n 0

) {(∂ui

∂xj

)
p

}
=

{(∂ui

∂xj

)
p

} (
0 −1n

1n 0

)
.

On the other hand, we obtain a second equation from a linear-algebra
change-of-basis formula in the vector spaceTp(M). Let{z} and{w} refer to

the two bases, let
(

Jp

{z}{z}

)
and

(
Jp

{w}{w}

)
be the matrices ofJp in the respective

bases, and let
(

1

{w}{z}

)
be the matrix of the identity transformation in the

domain basis{z} and the range basis{w}. This last matrix is detected
from the formula ∂

∂xj
= ∑

i
∂ui

∂xj

∂

∂ui
and is

{(
∂ui

∂xj

)
p

}
. From the linear-algebra

identity
(

Jp

{w}{w}

) (
1

{w}{z}

)
=

(
1

{w}{z}

) (
Jp

{z}{z}

)
, we therefore obtain

(1.106)
(

Jp

{w}{w}

) {(∂ui

∂xj

)
p

}
=

{(∂ui

∂xj

)
p

} (
Jp

{z}{z}

)
.

We have arranged that
(

Jp

{z}{z}

)
=

(
0 −1n

1n 0

)
. Comparing (1.105) and (1.106),

we therefore see that
(

Jp

{w}{w}

)
=

(
0 −1n

1n 0

)
. But this is the definition that we

would have made had we definedJp in terms of the basis{w} originally.
We conclude thatJp is independent of the basis used to define it. The map
Jp will be called themultiplication-by- i mapping atp, and the system of
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all Jp asp varies is thealmost-complex structureon M associated to the
complex structure. At everyp, we haveJ 2

p = −1.
Now suppose thatM and N are complex manifolds of dimensionsn

andk and thatp is in M . Let (U, ϕ) be a chart atp, and suppose that
 : M → N is smooth atp. Let (V, ψ) be a chart at(p), and write
ϕ = (z1, . . . , zn) andψ = (w1, . . . , wk). As above, writezj = xj + iyj

andwj = uj + ivj , and putxj+n = yj for 1 ≤ j ≤ n andui+k = vi for
1 ≤ i ≤ k. Then the local expression for in these coordinate systems
is ψ ◦  ◦ ϕ−1, and we may think of as given bywi = wi(z1, . . . , zn),
1 ≤ i ≤ k. The function will be holomorphic nearp if and only if the
Cauchy–Riemann equations are satisfied nearp, and these equations atp
say that (

0 −1k

1k 0

) {(∂ui

∂xj

)
p

}
=

{(∂ui

∂xj

)
p

} (
0 −1n

1n 0

)
.

In view of the definition of the almost-complex structures, we can reinter-
pret this equation in coordinate-free notation as

(1.107) J ′
(p) ◦ dp = dp ◦ Jp,

whereJ ′ is the almost-complex structure onN . Thus we have shown that
a smooth function : M → N is holomorphic if and only if (1.107) holds
for all p.

Lemma 1.108.Let  : M → N andι : N → R be smooth functions
between complex manifolds. Ifι ◦ is holomorphic andι is holomorphic,
one-one, and everywhere regular, then is holomorphic.

PROOF. Let {Jp}, {J ′
q}, and {J ′′

r } be the respective almost-complex
structures. Sinceι ◦  is holomorphic, (1.107) givesJ ′′

ι((p)) ◦ d(ι ◦ )p =
d(ι ◦ )p ◦ Jp, which we may rewrite as

(1.109) J ′′
ι((p)) ◦ dι(p) ◦ dp = dι(p) ◦ dp ◦ Jp.

Sinceι is holomorphic,J ′′
ι(x) ◦ dιx = dιx ◦ J ′

x . Puttingx = (p) gives

J ′′
ι((p)) ◦ dι(p) = dι(p) ◦ J ′

(p).

Substituting into the left side of (1.109), we obtain

dι(p) ◦ J ′
(p) ◦ dp = dι(p) ◦ dp ◦ Jp.

Finally sinceι is everywhere regular,dι(p) is one-one and can be canceled
from this equality. We obtainJ ′

(p) ◦ dp = dp ◦ Jp, which is (1.107)
for . Thus is holomorphic.
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At this stage we are ready to apply the above remarks to the context of
complex Lie groups. Acomplex Lie group is a Lie groupG possessing
a complex analytic structure such that multiplication and inversion are
holomorphic.

Proposition 1.110.If G is a complex Lie group, then

(a) the complex structure induces a multiplication-by-i mapping in the
Lie algebrag = T1(G) such thatg becomes a Lie algebra overC,

(b) any smooth homomorphism : G → H to another complex Lie
group is holomorphic if and only if the differential at 1 is complex
linear, and

(c) exp is a holomorphic mapping.

Conversely ifG is a Lie group whose Lie algebra admits the structure of a
complex Lie algebra, thenG admits the structure of a complex Lie group
compatibly with the multiplication-by-i mapping within its Lie algebra.

REMARKS. A proof of this result from first principles is possible. Nev-
ertheless, we shall give a proof using the complex form of Ado’s Theorem
(Theorem B.8) from Appendix B—that any complex Lie algebra has a one-
one finite-dimensional complex-linear representation. In fact, the complex
Lie groups that we study will always be groups of matrices, and Ado’s
Theorem says nothing new about their Lie algebras.

PROOF. Let {Jp} be the associated almost-complex structure forG. We
can makeg = T1(G) into a complex vector space by defining(a + ib)v =
av + bJ1v for reala andb.

For (a) we apply (1.107) atp = 1 to the holomorphic mapping(x) =
gxg−1 of G into itself, obtainingJ1◦Ad(g) = Ad(g)◦J1. This equality says
that each Ad(g) is complex linear as a mapping ofg into itself. Replacing
g by expt X , differentiating att = 0, and applying Proposition 1.91, we
see that adX is complex linear. Thus the multiplication by complex scalars
is compatible with the bracket operation, andg is a complex Lie algebra.

For (b) the necessity is immediate from (1.107). For the sufficiency let
{J ′

q} be the almost-complex structure forH . The assumption is that

(1.111) J ′
1 ◦ d1 = d1 ◦ J1.

We have

(1.112) dp = (d L H
(p))1 ◦ d1 ◦ (d LG

p−1)p,
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whereLG
p−1 and L H

(p) indicate left translations inG and H , respectively.
Since left translations are holomorphic inG andH , we have

(1.113)
J1 ◦ (d LG

p−1)p = (d LG
p−1)p ◦ Jp

J ′
(p) ◦ (d L H

(p))1 = (d L H
(p))1 ◦ J ′

1

If we substitute from (1.112) into the two sides of (1.107) and use (1.111)
and (1.113) to commuteJ and J ′ into position, we see that the two sides
of (1.107) are equal. Therefore is holomorphic.

For (c) we may assume thatG is connected. We shall use Ado’s Theorem
(Theorem B.8) to be able to regardG as an analytic subgroup of some
GL(N , C). More precisely Ado’s Theorem produces, sinceg is complex,
a one-one finite-dimensional complex-linear representationg ↪→ gl(N , C)

for someN . Let G ′ be the corresponding analytic subgroup ofGL(N , C),
so thatG and G ′ are locally isomorphic. If̃G is a universal covering
group ofG, thenG ′ ∼= G̃/D for some central discrete subgroup ofG̃, by
Proposition 1.101. We can transport the complex structure fromG to G̃
and then from̃G to G ′. The exponential mappings are compatible forG,
G̃, andG ′, and thus it is enough to prove that the exponential mapping for
any one of them is holomorphic. Thus we may assume from the outset that
G is an analytic subgroup ofGL(N , C).

We know that the exponential mapping expG for G is smooth fromg

into G, and Lemma 1.108 shows that we wantι ◦ expG to be holomorphic,
whereι : G → GL(N , C) denotes the inclusion. The exponential map for
GL(N , C) is e(·) by Proposition 1.84, and (1.82) gives

(1.114) e(·) ◦ dι1 = ι ◦ expG .

Being given by a convergent power series,e(·) is holomorphic fromgl(N , C)

into GL(N , C), and hence so is its restrictione(·) ◦ dι1. Thus the left side
of (1.114) is holomorphic, and hence so is the right side. This proves (c).

For the converse we argue with Ado’s Theorem as in the proof of (c) that
there is no loss of generality in assuming thatG is an analytic subgroup
of GL(N , C) and that the Lie algebrag of G is a complex Lie subalgebra
of gl(N , C). Let expG be the exponential function forG, and, in view of
Proposition 1.84, denote the exponential function forGL(N , C) by e(·).

The remainder of the proof is a variant of the last part of the proof
of Theorem 0.15. Lets be a complex subspace ofgl(N , C) such that
gl(N , C) = g⊕ s. Choose open ballsU1 andU2 small enough about 0 ing
ands so that expG is a diffeomorphism ofU1 onto an open subsetV1 of G
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ande(·) is a holomorphic diffeomorphism ofU1 × U2 onto an open subset
V of GL(N , C). To define a complex structure forG, we form the system
of charts(LgV1, exp−1

G ◦L−1
g ) indexed byg ∈ G. Take two of the charts

that overlap, say(LgV1, exp−1
G ◦L−1

g ) and(Lh V1, exp−1
G ◦L−1

h ), and let

W = LgV1 ∩ Lh V1 and W # = LgV ∩ Lh V .

DefineU andU ′ to be the images ofW in the complex vector spaceg,

U = exp−1
G ◦ L−1

g (W ) and U ′ = exp−1
G ◦ L−1

h (W ),

and letU # and U ′# be the images ofW # in the complex vector space
gl(N , C),

U # = (e(·))−1 ◦ L−1
g (W #) and U ′# = (e(·))−1 ◦ L−1

h (W #).

The setsU andU ′ are open subsets ofU1 ⊆ g, and the setsU # andU ′# are
open subsets ofU1 × U2 ⊆ gl(N , C). We are to check that

(1.115) (exp−1
G ◦ L−1

h ) ◦ (exp−1
G ◦ L−1

g )−1

is holomorphic as a map ofU onto U ′, i.e., as a map ofU × {1} onto
U ′ × {1}. SinceU ⊆ U #, the map (1.115) is the restriction to an open set
of a lower-dimensionalCn of the map((e(·))−1 ◦ L−1

h ) ◦ ((e(·))−1 ◦ L−1
g )−1

from U # ontoU ′#, and the latter map is known to be holomorphic. Thus
the map ofU ontoU ′ is holomorphic, and we conclude thatG is a complex
manifold.

The construction is arranged so that the inclusionι : G → GL(N , C)

is holomorphic and so that the almost-complex structure forG yields the
expected multiplication-by-i map forg. To prove thatG is a complex Lie
group, we are to show that multiplication and inversion are holomorphic.
If mG andm denote multiplication inG and GL(N , C), thenι ◦ mG =
m ◦ (ι × ι). The right side is holomorphic, and hence so is the left side.
By Lemma 1.108,mG is holomorphic. Similarly inversion withinG is
holomorphic.

Corollary 1.116. Within the complex Lie groupG with Lie algebrag,
suppose thatH is an analytic subgroup whose Lie algebra is closed under
the multiplication-by-i mapping forg. Then canonical coordinates of the
first kind define charts onH that makeH into a complex manifold, and
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multiplication and inversion are holomorphic. This complex structure for
H is uniquely determined by the conditions that

(a) the inclusionH ↪→ G is holomorphic and
(b) whenever : M → G is a holomorphic function on a complex

manifold M such that(M) ⊆ H , then : M → H is holomor-
phic.

REMARK. This result may be derived as a corollary of the previous
proposition or as a corollary of its proof. We follow the easier route and
derive it as a corollary of the proof.

PROOF. The complex manifold structure forH is established by the
same argument as in the converse part of Proposition 1.110, except that the
roles ofG andGL(N , C) there are played byH andG here. That proof
establishes also that multiplication and inversion inH are holomorphic and
that condition (a) holds. Condition (b) follows from Lemma 1.108.

Let H1 andH2 be two versions of the groupH endowed with complex
structures such that (a) and (b) hold. The identity map fromH1 to H2 is
holomorphic intoG by (a) and therefore, by (b), is holomorphic intoH2.
Reversing the roles ofH1 andH2, we see that the identity map fromH2 to
H1 is holomorphic. ThereforeH1 andH2 have the same complex structure.

13. Aside on Real-analytic Structures

We mentioned in §10 that Lie groups may be treated as smooth manifolds
or as real-analytic manifolds. Although this result is of importance in the
advanced theory of Lie groups, it does not play a role in this book. At
this time the reader may therefore want to skip this section, where this
relationship is explained in more detail.

A complex-valued functionf on an open subsetU of Rn is real analytic
if there is a holomorphic functionF on an open subsetV of Cn such that
U = V ∩Rn and f = F

∣∣
U

. Real-analytic functions are in particular smooth
and have convergent multiple power series expansions about each point of
their domain—the convergence of the series being in a rectangular set
centered at the point in question. The existence of these convergent series
characterizes the functions. In particular every holomorphic function is real
analytic whenCn is viewed asR2n. Real-analytic functions are closed under
the operations of arithmetic except for division by 0. We define vector-
valued real-analytic functions in the expected way, and the composition of
such functions is again real analytic. We can therefore define compatible
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real-analytic charts and obtain the notion of areal-analytic manifold. The
analog of Lemma 1.108 is valid—that if : M → N andι : N → R are
smooth functions between real-analytic manifolds, ifι ◦  is real analytic,
and if ι is real analytic, one-one, and everywhere regular, then is real
analytic.

Proposition 1.117.Each Lie group admits the structure of a real-analytic
manifold in one and only one way such that multiplication and inversion
are real analytic. In this case the exponential function is real analytic.

REMARK. This result may be proved from first principles, but we shall
give a proof that uses the real form of Ado’s Theorem (Theorem B.8) in
Appendix B. This form of Ado’s Theorem says that each real Lie algebra
has a one-one finite-dimensional representation on a complex vector space.

PROOF. The proof proceeds in the style of the converse part of Proposi-
tion 1.110. LetG be given, and letg be its Lie algebra. We may assume that
G is connected. Ado’s Theorem allows us to regardg as a real subalgebra
of somegl(N , C). Let G ′ be the analytic subgroup ofGL(N , C) with Lie
algebrag. If G̃ is a universal covering group ofG, thenG ′ ∼= G̃/D for
some central discrete subgroupD. If a real-analytic structure is introduced
on G ′, it can be transported tõG and then toG. So it is enough to prove
the proposition forG ′.

Changing notation, we may assume from the outset thatG is an analytic
subgroup ofGL(N , C). Adjusting the proof of Proposition 1.110 only
slightly, let s be a real subspace ofgl(N , C) such thatgl(N , C) = g ⊕ s.
Choose open ballsU1 and U2 small enough about 0 ing and s so that
expG is a diffeomorphism ofU1 onto an open subsetV1 of G and e(·)

is a real-analytic diffeomorphism ofU1 × U2 onto an open subset ofV .
To define a real-analytic structure forG, we form the system of charts
(LgV1, exp−1

G ◦L−1
g ) indexed byg ∈ G. Adjusting the proof of Proposition

1.110 so that holomorphic functions get replaced by real-analytic functions,
we see that these charts are real-analytically compatible, and we conclude
thatG is a real-analytic manifold.

The construction is arranged so that the inclusionι : G → GL(N , C)

is real analytic. We still need to show that multiplication and inversion are
real analytic. IfmG andm denote multiplication inG andGL(N , C), then
ι ◦ mG = m ◦ (ι × ι). The right side is real analytic, and hence so is the
left side. By the real-analytic version of Lemma 1.108,mG is real analytic.
Similarly inversion withinG is real analytic.
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14. Automorphisms and Derivations

In this section,g denotes a finite-dimensional Lie algebra overR or C.
First we define automorphisms. Anautomorphismof a Lie algebra is an

invertible linear mapL that preserves brackets: [L(X), L(Y )] = L[ X, Y ].
For example ifg is the (real) Lie algebra of a Lie groupG and if g is in G,
then Ad(g) is an automorphism ofg.

If g is real, let AutR g ⊆ GLR(g) be the subgroup ofR linear automor-
phisms ofg. This is a closed subgroup of a general linear group, hence a
Lie group. Ifg is complex, we can regard

AutC g ⊆ GLC(g) ⊆ GLR(gR),

the subscriptC referring to complex linearity andgR denoting the underly-
ing real Lie algebra ofg as in §3. But also we have the option of regarding
g as the real Lie algebragR directly. Then we have

AutC g ⊆ AutR g
R ⊆ GLR(gR).

Lemma 1.118. If a is an automorphism ofg and if X is in g, then
ad(a X) = a(adX)a−1.

PROOF. We have ad(a X)Y = [aX,Y ] = a[ X, a−1Y ] = (a(adX)a−1)Y .

Proposition 1.119.If B is the Killing form ofg and ifa is an automor-
phism ofg, thenB(a X, aY ) = B(X, Y ) for all X andY in g.

PROOF. By Lemma 1.118 we have

B(a X, aY ) = Tr(ad(aX)ad(aY ))

= Tr(a(adX)a−1a(adY )a−1)

= Tr((adX)(adY ))

= B(X, Y ),

as required.

Next we recall that derivations of the Lie algebrag were defined in (1.2).
In §4 we introduced Derg as the Lie algebra of all derivations ofg. If g

is real, then Derg has just one interpretation, namely the Lie subalgebra
DerR g ⊆ EndR g. If g is complex, then two interpretations are possible,
namely as DerR gR ⊆ EndR (gR) or as DerC g ⊆ EndC(g) ⊆ EndR(gR).
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Proposition 1.120. If g is real, the Lie algebra of AutR g is DerR g. If
g is complex, the Lie algebra of AutC g is DerC g. In either case the Lie
algebra contains adg.

PROOF. First let g be real. If c(t) is a curve of automorphisms
havingc(0) = 1 andc′(0) = l, thenc(t)[ X, Y ] = [c(t)X, c(t)Y ] implies
l[ X, Y ] = [l(X), Y ] + [ X, l(Y )]. Hence the Lie algebra in question is a Lie
subalgebra of DerR(g). For the reverse direction, we show thatl ∈ DerR(g)

implies thatetl is in AutR g, so that DerR g is a Lie subalgebra of the Lie
algebra in question. Thus consider

y1(t) = etl [ X, Y ] and y2(t) = [etl X, etlY ]

as two curves in the real vector spaceg with value [X, Y ] at t = 0. For any
t we have

y ′
1(t) = letl [ X, Y ] = ly1(t)

and

y ′
2(t) = [letl X, etlY ] + [etl X, letlY ]

= l[etl X, etlY ] by the derivation property

= ly2(t).

Thenetl [ X, Y ] = [etl X, etlY ] by the uniqueness theorem for linear systems
of ordinary differential equations.

If g is complex, then the Lie algebra of AutC g is contained in DerR gR by
the above, and it is contained in EndC g, which is the Lie algebra ofGLC(g).
Hence the Lie algebra in question is contained in their intersection, which
is DerC g. In the reverse direction, ifl is in DerC g, thenetl is contained
in AutR gR by the above, and it is contained inGLC(g) also. Hence it is
contained in the intersection, which is AutC g.

Finally adg is a Lie subalgebra of the Lie algebra of derivations, as a
consequence of (1.8).

Define Intg to be the analytic subgroup of AutR g with Lie algebra adg.
If g is complex, the definition is unaffected by using AutC g instead of
AutR gR as the ambient group, since adg is the same set of transformations
as adgR.

The analytic group Intg is a universal version of the group of inner
automorphisms. To be more precise, let us think ofg as real. Supposeg
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is the Lie algebra of a Lie groupG. As usual, we define Ad(g) to be the
differential at the identity of the inner automorphismx �→ gxg−1. Then
Proposition 1.89 shows thatg �→ Ad(g) is a smooth homomorphism ofG
into AutR g, and we may regard Ad(G) as a Lie subgroup of AutR g. As
such, its Lie algebra is adg. By definition the analytic subgroup of AutR(g)

with Lie algebra adg is Intg. Thus Intg is the identity component of Ad(G)

and equals Ad(G) if G is connected. In this sense Intg is a universal version
of Ad(G) that can be defined without reference to a particular groupG.

EXAMPLE. If g = R2, then AutR g = GLR(g) and DerR g = EndR g.
Also adg = 0, and so Intg = {1}. In particular Intg is strictly smaller than
the identity component of AutR g for this example.

Proposition 1.121. If g is semisimple (real or complex), then Derg =
adg.

PROOF. Let D be a derivation ofg. By Cartan’s Criterion (Theorem
1.45) the Killing formB is nondegenerate. Thus we can findX in g with
Tr(D adY ) = B(X, Y ) for all Y ∈ g. The derivation property

[DY, Z ] = D[Y, Z ] − [Y, DZ ]

can be rewritten as
ad(DY ) = [D, adY ].

Therefore

B(DY, Z) = Tr(ad(DY )adZ)

= Tr([D, adY ]adZ)

= Tr(D ad[Y, Z ]) by expanding both sides

= B(X, [Y, Z ]) by definition ofX

= B([ X, Y ], Z) by invariance ofB as in (1.19).

By a second application of nondegeneracy ofB, DY = [ X, Y ]. Thus
D = adX .

15. Semidirect Products of Lie Groups

In §4 we introduced semidirect products of Lie algebras. Now we shall
introduce a parallel theory of semidirect products of Lie groups and make
the correspondence with the theory for Lie algebras.



15. Semidirect Products of Lie Groups 103

Proposition 1.122.If G is a Lie group withG = H1 ⊕ H2 as Lie groups
(i.e., simultaneously as groups and manifolds) and ifg, h1, andh2 are the
respective Lie algebras, theng = h1 ⊕ h2 with h1 andh2 as ideals ing.
Conversely ifH1 andH2 are analytic subgroups ofG whose Lie algebras
satisfyg = h1 ⊕ h2 and if G is connected and simply connected, then
G = H1 ⊕ H2 as Lie groups.

PROOF. For the direct part,H1 and H2 are closed and normal. Hence
they are Lie subgroups, and their Lie algebras are ideals ing. The vector
space direct sum relationship depends only on the product structure of the
manifoldG.

For the converse the inclusions ofH1 and H2 into G give us a smooth
homomorphismH1 ⊕ H2 → G. On the other hand, the isomorphism ofg

with h1 ⊕ h2, in combination with the fact thatG is connected and simply
connected, gives us a homomorphismG → H1 ⊕ H2. The composition of
the two group homomorphisms in either order has differential the identity
and is therefore the identity homomorphism.

As in §4 the next step is to expand the theory of direct sums to a theory
of semidirect products. LetG and H be Lie groups. We say thatG acts
on H by automorphisms if a smooth mapτ : G × H → H is specified
such thatg �→ τ(g, ·) is a homomorphism ofG into the abstract group of
automorphisms ofH . In this case thesemidirect product G ×τ H is the
Lie group withG × H as its underlying manifold and with multiplication
and inversion given by

(1.123)
(g1, h1)(g2, h2) = (g1g2, τ (g−1

2 , h1)h2)

(g, h)−1 = (g−1, τ (g, h−1)).

(To understand the definition of multiplication, think of the formula as if it
were writteng1h1g2h2 = g1g2(g

−1
2 h1g2)h2.) A little checking shows that

this multiplication is associative. ThenG ×τ H is a Lie group,G andH
are closed subgroups, andH is normal.

EXAMPLE. LetG = SO(n), H = Rn, andτ(r, x) = r(x). ThenG×τ H
is the group of translations and rotations (with arbitrary center) inRn.

Let us compute the Lie algebra of a semidirect productG ×τ H . We
consider the differential̄τ(g) of τ(g, ·) at the identity ofH . Thenτ̄ (g) is
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a Lie algebra isomorphism ofh. As with Ad in §10, we find that

τ̄ is smooth intoGL(h)

τ̄ (g1g2) = τ̄ (g1)τ̄ (g2).

Thusτ̄ is a smooth homomorphism ofG into AutRh. Its differentiald τ̄ is
a homomorphism ofg into DerR h, by Proposition 1.120, and Proposition
1.22 allows us to form the semidirect product of Lie algebrasg ⊕d τ̄ h.

Proposition 1.124.The Lie algebra ofG ×τ H is g ⊕d τ̄ h.

PROOF. The tangent space at the identity ofG ×τ H is g ⊕ h as a vector
space, and the inclusions ofG and H into G ×τ H exhibit the bracket
structure ong andh as corresponding to the respective bracket structures
on (g, 0) and(0, h). We have to check the brackets of members of(g, 0)

with members of(0, h). Let X be ing, let Y be inh, and writeX̃ = (X, 0)

andỸ = (0, Y ). Then

exp(Ad(expt X̃)sỸ ) = (expt X̃)(expsỸ )(expt X̃)−1 by (1.82)

= (expt X, 1)(1, expsY )(expt X, 1)

= (1, τ (expt X, expsY )) by (1.123).

For fixed t , both sides are one-parameter groups, and the corresponding
identity on the Lie algebra level is

Ad(expt X̃)Ỹ = (0, τ̄ (expt X)Y ).

Differentiating with respect tot and puttingt = 0, we obtain

[ X̃ , Ỹ ] = (adX̃)(Ỹ ) = (0, d τ̄ (X)Y ),

by Proposition 1.91. This completes the proof.

Theorem 1.125. Let G and H be simply connected analytic groups
with Lie algebrasg andh, respectively, and letπ : g → Derh be a Lie
algebra homomorphism. Then there exists a unique actionτ of G on H
by automorphisms such thatd τ̄ = π , andG ×τ H is a simply connected
analytic group with Lie algebrag ⊕π h.

PROOF OF UNIQUENESS. If there exists an actionτ with d τ̄ = π , then
G ×τ H is a simply connected group and has Lie algebrag ⊕π h, by
Proposition 1.124. Ifτ ′ is an action different fromτ , thenτ̄ �= τ̄ ′ for some
g, and consequentlyd τ̄ �= d τ̄ ′. Uniqueness follows.
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PROOF OF EXISTENCE. SinceG is simply connected, we can find a
smoothτ̄ : G → Aut h such thatd τ̄ = π . For fixedg ∈ G, the map
τ̄ (g) : h → h is an automorphism. SinceH is simply connected, there
exists an automorphismτ(g)of H such thatd(τ (g)) = τ̄ (g). Sinceτ(g1g2)

andτ(g1)τ (g2) both haveτ̄ (g1g2) as differential, we see thatτ(g1g2) =
τ(g1)τ (g2). Thusτ is a homomorphism ofG into Aut H .

We are to prove thatτ : G × H → H is smooth. First we observe
that τ ′ : G × h → h given byτ ′(g, Y ) = τ̄ (g)Y is smooth. In fact, we
choose a basisYi of h and writeτ̄ (g)Yj = ∑

i ci j(g)Yi . If Y = ∑
j aj Yj ,

thenτ ′(g, Y ) = ∑
i, j ci j(g)aj Yi , and this is smooth as a function of the pair

(g, {aj}).
Next we haveτ(g, expY ) = expτ̄ (g)Y = expτ ′(g, Y ). Choose an

open neighborhoodW ′ of 0 in h such that exp is a diffeomorphism of
W ′ onto an open setW in H . Thenτ is smooth onG × W , being the
composition

(g, expY ) �→ (g, Y ) �→ τ ′(g, Y ) �→ expτ ′(g, Y ).

Forh ∈ H , defineτ h : G → H by τ h = τ( · , h). To see thatτ h is smooth,
write h = h1 · · · hk with hi ∈ W . Sinceτ(g, · ) is an automorphism,
τ h(g) = τ h1(g) · · · τ hk (g). Eachτ hi ( · ) is smooth, and thusτ h is smooth.
Finally τ |G×W h is the composition

G × W h
1×translation−−−−−−→ G × W

τ×τ h−−−−−−→ H × H
multiplication−−−−−−→ H

given by

(g, wh) �→ (g, w) �→ (τ (g, w), τ h(g)) �→ τ(g, w)τ(g, h) = τ(g, wh),

and soτ is smooth.

A Lie group is said to besolvable, nilpotent, or semisimple if it is
connected and if its Lie algebra is solvable, nilpotent, or semisimple, re-
spectively. (Occasionally an author will allow one or more of these terms to
refer to a disconnected group, but we shall not do so. By contrast “reductive
Lie groups,” which will be defined in Chapter VII, will be allowed a certain
amount of disconnectedness.) For the rest of this chapter, we shall consider
special properties of solvable, nilpotent, and semisimple Lie groups.
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Corollary 1.126. If g is a finite-dimensional solvable Lie algebra over
R, then there exists a simply connected analytic group with Lie algebra
g, andG is diffeomorphic to a Euclidean space via canonical coordinates
of the second kind. Moreover, there exists a sequence of closed simply
connected analytic subgroups

G = G0 ⊇ G1 ⊇ · · · ⊇ Gn−1 ⊇ Gn = {1}
such thatGi is a semidirect productGi = R1 ×τi Gi+1 with Gi+1 normal
in Gi . If g is split solvable, then eachGi may be taken to be normal inG.
Any nilpotentg is split solvable, and whenGn−1 is chosen to be normal, it
is contained in the center ofG.

PROOF. By Proposition 1.23 we can find a sequence of subalgebras

g = g0 ⊇ g1 ⊇ · · · ⊇ gn−1 ⊇ gn = 0

such that dim(gi/gi+1) = 1 andgi+1 is an ideal ingi . If we let Xi be
a member ofgi not in gi+1, then Proposition 1.22 shows thatgi is the
semidirect product ofRXi and gi+1. Using R1 as a simply connected
Lie group with Lie algebraRXi , we can invoke Theorem 1.125 to define
Gi inductively downward oni as a semidirect product ofR1 with Gi+1.
(Here the formulaGn = {1} starts the induction.) The groupsGi are then
diffeomorphic to Euclidean space and form the decreasing sequence in the
statement of the corollary.

If g is split solvable in the sense of §5, then thegi may be taken as ideals
in g, by definition, and in this case theGi are normal subgroups ofG.

If g is nilpotent, then each adX for X ∈ g is nilpotent and has all
eigenvalues 0. By Corollary 1.30,g is split solvable. Thus eachgi may be
assumed to be an ideal ing. Under the assumption thatgn−1 is an ideal, we
must have [g, gn−1] = 0 for g nilpotent, since [g, h] cannot equal all ofh
for any nonzero idealh. Thereforegn−1 is contained in the center ofg, and
Gn−1 is contained in the center ofG.

16. Nilpotent Lie Groups

Since nilpotent Lie algebras are solvable, Corollary 1.126 shows that
every simply connected nilpotent analytic group is diffeomorphic with a
Euclidean space. In this section we shall prove for the nilpotent case that
the exponential map itself gives the diffeomorphism. By contrast, for a
simply connected solvable analytic group, the exponential map need not
be onto, as the following example shows.
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EXAMPLE. Let G1 be the closed linear group of all 3-by-3 matrices

g1(t, x, y) =
( cos 2t sin 2t x

− sin 2t cos 2t y
0 0 1

)

with linear Lie algebra consisting of all 3-by-3 matrices

X1(s, a, b) =
( 0 2s a

−2s 0 b
0 0 0

)
.

This Lie algebra is solvable. ForG1, one can show that the exponential
map is onto, but we shall show that it is not onto for the double coverG
consisting of all 5-by-5 matrices

g(t, x, y) =
( g1(t, x, y)

cost sint
− sint cost

)
.

By (1.82) the exponential map cannot be onto for the simply connected
covering group ofG.

The linear Lie algebra ofG consists of all 5-by-5 matrices

X (s, a, b) =
( X1(s, a, b)

0 s
−s 0

)
.

Suppose expX (s, a, b) = g(π, 1, 0). Then X1(s, a, b) must commute
with g1(π, 1, 0), and this condition forcess = 0. But expX (0, a, b) =
g(0, a, b). Sinceg(π, 1, 0) is not of the formg(0, a, b) for anya andb, it
follows thatg(π, 1, 0) is not in the image of the exponential map. Thus the
exponential map is not onto for the solvable analytic groupG, as asserted.

Theorem 1.127. If N is a simply connected nilpotent analytic group
with Lie algebran, then the exponential map is a diffeomorphism ofn onto
N .

PROOF. The first step is to prove that the exponential map is one-one
onto. We proceed by induction on the dimension of the group in question.
The trivial case of the induction is dimension 1, where the group isR1 and
the result is known.
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For the inductive case letN be given. We begin to coordinatize the
groupN in question as in Corollary 1.126. Namely we form a decreasing
sequence of subalgebras

(1.128) n = n0 ⊇ n1 ⊇ n2 ⊇ · · · ⊇ nn = 0

with dimni/ni+1 = 1 and with eachni an ideal inn. The corresponding
analytic subgroups are closed and simply connected, and we are interested
in the analytic subgroupZ corresponding toz = nn−1. Corollary 1.126
notes thatZ is contained in the center ofN , and thereforez is contained
in the center ofn. SinceZ is central, it is normal, and we can form the
quotient homomorphismϕ : N → N/Z . The groupN/Z is a connected
nilpotent Lie group with Lie algebran/z, and N/Z is simply connected
sinceZ is connected andN is simply connected. The inductive hypothesis
is thus applicable toN/Z .

We can now derive our conclusions inductively aboutN . First we prove
“one-one.” LetX andX ′ be inn with expN X = expN X ′. Application of
ϕ gives expN/Z(X + z) = expN/Z(X ′ + z). By inductive hypothesis for
N/Z , X + z = X ′ + z. ThusX − X ′ is in the center and commutes with
X ′. Consequently

expN X = expN (X ′ + (X − X ′)) = (expN X ′)(expN (X − X ′)),

and we conclude that expN (X − X ′) = 1. SinceZ is simply connected,
the result for dimension 1 implies thatX − X ′ = 0. HenceX = X ′, and
the exponential map is one-one forN .

Next we prove “onto.” Letx ∈ N be given, and chooseX + z in n/z

with expN/Z(X + z) = ϕ(x). Putx ′ = expN X . Then (1.82) gives

ϕ(x ′) = ϕ(expN X) = expN/Z(X + z) = ϕ(x),

so thatx = x ′z with z in kerϕ = Z . SinceZ is connected and abelian,
we can findX ′′ in its Lie algebraz with expN X ′′ = z. SinceX and X ′′

commute,

x = x ′z = (expN X)(expN X ′′) = expN (X + X ′′).

Thus the exponential map is ontoN . This completes the inductive proof
that exp is one-one onto.

To complete the proof of the theorem, we are to show that the exponential
map is everywhere regular. We now more fully coordinatize the groupN
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in question as in Corollary 1.126. Withni as in (1.128), letXi be inni−1

but notni , 1 ≤ i ≤ n. Corollary 1.126 says that the canonical coordinates
of the second kind formed from the ordered basisX1, . . . , Xn exhibit N as
diffeomorphic toRn. In other words we can write

exp(x1X1+· · ·+xn Xn)=exp(y1(x1, . . . , xn)X1) · · ·exp(yn(x1, . . . , xn)Xn),

(1.129)

and what needs to be proved is that the matrix(∂yi/∂xj) is everywhere
nonsingular.

This nonsingularity will be an immediate consequence of the formula

(1.130) yi(x1, . . . , xn) = xi + ỹi(x1, . . . , xi−1) for i ≤ n.

To prove (1.130), we argue by induction onn = dim N . The trivial case
of the induction is the casen = 1, where we evidently havey1(x1) = x1

as required. For the inductive case letN be given, and defineZ , z, andϕ

as earlier. In terms of our basisX1, . . . , Xn, the Lie algebraz is given by
z = RXn. If we write dϕ for the differential at 1 of the homomorphismϕ,
thendϕ(X1), . . . , dϕ(Xn−1) is a basis of the Lie algebra ofN/Z .

Let us applyϕ to both sides of (1.129). Then (1.82) gives

exp(x1dϕ(X1) + · · · + xn−1dϕ(Xn−1))

= exp(y1(x1, . . . , xn)dϕ(X1)) · · · exp(yn−1(x1, . . . , xn)dϕ(Xn−1)).

The left side is independent ofxn, and therefore

y1(x1, . . . , xn), . . . , yn−1(x1, . . . , xn)

are all independent ofxn. We can regard them as functions ofn − 1
variables, and our inductive hypothesis says that, as such, they are of the
form

yi(x1, . . . , xn−1) = xi + ỹi(x1, . . . , xi−1) for i ≤ n − 1.

In terms of the functions ofn variables, the form is

(1.131) yi(x1, . . . , xn) = xi + ỹi(x1, . . . , xi−1) for i ≤ n − 1.

This proves (1.130) except fori = n.
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Thus let us definẽyn by yn(x1, . . . , xn) = xn + ỹn(x1, . . . , xn). Then we
have

(1.132) exp(yn(x1, . . . , xn)Xn) = exp(ỹn(x1, . . . , xn)Xn) exp(xn Xn).

SinceXn is central, we have also

(1.133) exp(x1X1+· · ·+xn Xn) = exp(x1X1+· · ·+xn−1Xn−1) exp(xn Xn).

Substituting from (1.132) and (1.133) into (1.129), using (1.131), and
canceling exp(xn Xn) from both sides, we obtain

exp(x1X1 + · · · + xn−1Xn−1)

= exp((x1 + ỹ1)X1) exp((x2 + ỹ2(x1))X2)

× · · · × exp((xn−1 + ỹn−1(x1, . . . , xn−2))Xn−1) exp(ỹn(x1, . . . , xn)Xn).

The left side is independent ofxn, and hence so is the right side. Therefore
ỹn(x1, . . . , xn) is independent ofxn, and the proof of (1.130) fori = n is
complete.

Corollary 1.134. If N is a simply connected nilpotent analytic group,
then any analytic subgroup ofN is simply connected and closed.

PROOF. Let n be the Lie algebra ofN . Let M be an analytic subgroup
of N , letm ⊆ n be its Lie algebra, let̃M be the universal covering group of
M , and letψ : M̃ → M be the covering homomorphism. Assuming that
M is not simply connected, let̃m �= 1 be in kerψ . Since exp is one-one
onto for M̃ by Theorem 1.127, we can findX ∈ m with expM̃ X = m̃.
Evidently X �= 0. By (1.82) applied toψ , expM X = 1. By (1.82) applied
to the inclusion ofM into N , expN X = 1. But this identity contradicts the
assertion in Theorem 1.127 that exp is one-one forN . We conclude that
M is simply connected. Since expM and expN are consistent, the image of
m under the diffeomorphism expN : n → N is M , and henceM is closed.

17. Classical Semisimple Lie Groups

The classical semisimple Lie groups are specific closed linear groups that
are connected and have semisimple Lie algebras listed in §8. Technically
we have insisted that closed linear groups be closed subgroups ofGL(n, R)
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or GL(n, C) for somen, but it will be convenient to allow closed subgroups
of the groupGL(n, H) of nonsingular quaternion matrices as well.

The groups will be topologically closed because they are in each case the
sets of common zeros of some polynomial functions in the entries. Most
of the verification that the groups have particular linear Lie algebras as in
§8 will be routine. It is necessary to make a separate calculation for the
special linear group

SL(n, C) = {g ∈ GL(n, C) | detg = 1},

and this step was carried out in the Introduction; formula (0.10) and Propo-
sition 0.11e allowed us to see that the linear Lie algebra ofSL(n, C) is
sl(n, C).

In practice we use this result by combining it with a result about inter-
sections: IfG1 andG2 are closed linear groups with respective linear Lie
algebrasg1 andg2, then the closed linear groupG1 ∩ G2 has linear Lie
algebrag1 ∩ g2. This fact follows immediately from the characterization
in Proposition 0.14 of the linear Lie algebra as the set of all matricesX
such that expt X is in the corresponding group for all realt . Thus when
“detg = 1” appears as a defining condition for a closed linear group, the
corresponding condition to impose for the linear Lie algebra is “TrX = 0.”

The issue that tends to be more complicated is the connectedness of the
given group. If we neglect to prove connectedness, we do not end up with
the conclusion that the given group is semisimple, only that its identity
component is semisimple.

To handle connectedness, we proceed in two steps, first establishing
connectedness for certain compact examples and then proving in general
that the number of components of the given group is the same as for a
particular compact subgroup. We return to this matter at the end of this
section.

We turn to a consideration of specific compact groups. Define

(1.135)

SO(n) = {g ∈ GL(n, R) | g∗g = 1 and detg = 1}
SU (n) = {g ∈ GL(n, C) | g∗g = 1 and detg = 1}
Sp(n) = {g ∈ GL(n, H) | g∗g = 1}.

These are all closed linear groups, and they are compact by the Heine-
Borel Theorem, their entries being bounded in absolute value by 1. The
groupSO(n) is called therotation group , andSU (n) is called thespecial
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unitary group . The groupSp(n) is theunitary group over the quater-
nions. No determinant condition is imposed forSp(n). Artin [1957],
pp. 151–158, gives an exposition of Dieudonn´e’s notion of determinant for
square matrices with entries fromH. The determinant takes real values≥ 0,
is multiplicative, is 1 on the identity matrix, and is 0 exactly for singular
matrices. For the members ofSp(n), the determinant is automatically 1.

Proposition 1.136.The groupsSO(n), SU (n), andSp(n) are all con-
nected forn ≥ 1. The groupsSU (n) andSp(n) are all simply connected
for n ≥ 1, and the fundamental group ofSO(n) has order at most 2 for
n ≥ 3.

REMARK. Near the end of Chapter V, we shall see that the fundamental
group ofSO(n) has order exactly 2 forn ≥ 3.

PROOF. ConsiderSO(n). Forn = 1, this group is trivial and is therefore
connected. Forn ≥ 2, SO(n) acts transitively on the unit sphere in the
spaceRn of n-dimensional column vectors with entries fromR, and the
isotropy subgroup at thenth standard basis vectoren is given in block form
by (

SO(n − 1) 0
0 1

)
.

Thus the continuous mapg �→ gen of SO(n) onto the unit sphere descends
to a one-one continuous map ofSO(n)/SO(n − 1) onto the unit sphere.
SinceSO(n)/SO(n −1) is compact, this map is a homeomorphism. Con-
sequentlySO(n)/SO(n − 1) is connected. To complete the argument for
connectivity ofSO(n), we induct onn, using the fact about topological
groups that ifH andG/H are connected, thenG is connected.

For SU (n), we argue similarly, replacingR by C. The groupSU (1) is
trivial and connected, and the action ofSU (n) on the unit sphere inCn is
transitive forn ≥ 2. ForSp(n), we argue withH in place ofR. The group
Sp(1) is the unit quaternions and is connected, and the action ofSp(n) on
the unit sphere inHn is transitive forn ≥ 2.

The assertions about fundamental groups follow from Corollary 1.98,
the simple connectivity ofSU (1) and Sp(1), and the fact thatSO(3)

has fundamental group of order 2. This fact aboutSO(3) follows from
the simple connectivity ofSU (2) and the existence of a covering map
SU (2) → SO(3). This covering map is the lift to analytic groups of the
composition of the Lie algebra isomorphisms (1.4) and (1.3b).
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It is clear from Proposition 1.136 and its remark that the linear Lie
algebras ofSO(n) and SU (n) areso(n) andsu(n), respectively. In the
case of matrices with quaternion entries, we did not develop a theory of
closed linear groups, but we can use the correspondence in §8 ofn-by-n
matrices overH with certain 2n-by-2n matrices overC to pass fromSp(n)

to complex matrices of size 2n, then to the linear Lie algebra, and then
back tosp(n). In this sense the linear Lie algebra ofSp(n) is sp(n).

Taking into account the values ofn in §8 for which these Lie algebras
are semisimple, we conclude thatSO(n) is compact semisimple forn ≥ 3,
SU (n) is compact semisimple forn ≥ 2, andSp(n) is compact semisimple
for n ≥ 1.

Two families of related compact groups are

(1.137)
O(n) = {g ∈ GL(n, R) | g∗g = 1}
U (n) = {g ∈ GL(n, C) | g∗g = 1}.

These are theorthogonal group and theunitary group , respectively. The
groupO(n) has two components; the Lie algebra isso(n), and the identity
component isSO(n). The groupU (n) is connected by an argument like
that in Proposition 1.136, and its Lie algebra is the reductive Lie algebra
u(n) ∼= su(n) ⊕ R.

Next we consider complex semisimple groups. According to §8,
sl(n, C) is semisimple forn ≥ 2, so(n, C) is semisimple forn ≥ 3,
andsp(n, C) is semisimple forn ≥ 1. Letting Jn,n be as in §8, we define
closed linear groups by

(1.138)

SL(n, C) = {g ∈ GL(n, C) | detg = 1}
SO(n, C) = {g ∈ SL(n, C) | gt g = 1}
Sp(n, C) = {g ∈ SL(2n, C) | gt Jn,ng = Jn,n}.

We readily check that their linear Lie algebras aresl(n, C), so(n, C), and
sp(n, C), respectively. SinceGL(n, C) is a complex Lie group and each
of these Lie subalgebras ofgl(n, C) is closed under multiplication byi ,
Corollary 1.116 says that each of these closed linear groupsG has the
natural structure of a complex manifold in such a way that multiplication
and inversion are holomorphic.

Proposition 1.139.Under the identificationM �→ Z(M) in (1.65),

Sp(n) ∼= Sp(n, C) ∩ U (2n).
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PROOF. From (1.65) we see that a 2n-by-2n complex matrixW is of the
form Z(M) if and only if

(1.140) J W = W J.

Let g be in Sp(n). From g∗g = 1, we obtainZ(g)∗ Z(g) = 1. Thus
Z(g) is in U (2n). Also (1.140) givesZ(g)t J Z(g) = Z(g)t Z(g)J =
(Z(g)∗ Z(g))J = J , and henceZ(g) is in Sp(n, C).

Conversely suppose thatW is in Sp(n, C) ∩ U (2n). FromW ∗W = 1
and W t J W = J , we obtainJ = W t W̄ W̄ −1J W = (W ∗W )W̄ −1J W =
W̄ −1J W and thereforeW J = J W . By (1.140),W = Z(g) for some
quaternion matrixg. FromW ∗W = 1, we obtainZ(g∗g) = Z(g)∗ Z(g) =
1 andg∗g = 1. Thereforeg is in Sp(n).

We postpone to the end of this section a proof that the groupsSL(n, C),
SO(n, C), andSp(n, C) are connected for alln. We shall see that the proof
of this connectivity reduces in the respective cases to the connectivity of
SU (n), SO(n), and Sp(n, C) ∩ U (2n), and this connectivity has been
proved in Propositions 1.136 and 1.139. We conclude thatSL(n, C) is
semisimple forn ≥ 2, SO(n, C) is semisimple forn ≥ 3, andSp(n, C) is
semisimple forn ≥ 1.

The groupsSO(n, C) andSp(n, C) have interpretations in terms of bi-
linear forms. The groupSO(n, C) is the subgroup of matrices inSL(n, C)

preserving the symmetric bilinear form onCn × Cn given by

〈 x1
...

xn

 ,

 y1
...

yn

〉
= x1y1 + · · · + xn yn,

while the groupSp(n, C) is the subgroup of matrices inSL(2n, C) pre-
serving the alternating bilinear form onC2n × C2n given by

〈 x1
...

x2n

 ,

 y1
...

y2n

〉
= x1yn+1 + · · · + xn y2n − xn+1y1 − · · · − x2n yn.

Finally we consider noncompact noncomplex semisimple groups. With
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notationIm,n andJn,n as in §8, the definitions are

(1.141)

SL(n, R) = {g ∈ GL(n, R) | detg = 1}
SL(n, H) = {g ∈ GL(n, H) | detg = 1}
SO(m, n) = {g ∈ SL(m + n, R) | g∗ Im,ng = Im,n}
SU (m, n) = {g ∈ SL(m + n, C) | g∗ Im,ng = Im,n}
Sp(m, n) = {g ∈ GL(m + n, H) | g∗ Im,ng = Im,n}
Sp(n, R) = {g ∈ SL(2n, R) | gt Jn,ng = Jn,n}
SO∗(2n) = {g ∈ SU (n, n) | gt In,n Jn,ng = In,n Jn,n}.

Some remarks are in order about particular groups in this list. ForSL(n, H)

and Sp(m, n), the prescription at the end of §8 allows us to replace the
realizations in terms of quaternion matrices by realizations in terms of
complex matrices of twice the size. The realization ofSL(n, H) with com-
plex matrices avoids the notion of determinant of a quaternion matrix that
was mentioned before the statement of Proposition 1.136; the isomorphic
group of complex matrices is

SU ∗(2n) =
{(

z1 −z2

z2 z1

)
∈ SL(2n, C)

}
.

The groupsSO(m, n), SU (m, n), and Sp(m, n) are isometry groups of
Hermitian forms. In more detail the group

O(m, n) = {g ∈ GL(m + n, R) | g∗ Im,ng = Im,n}
is the group of real matrices of sizem+n preserving the symmetric bilinear
form onRm+n × Rm+n given by〈 x1

...

xm+n

 ,

 y1
...

ym+n

〉
= x1y1+· · ·+xm ym −xm+1ym+1−· · ·−xm+n ym+n,

andSO(m, n) is the subgroup of members ofO(m, n) of determinant 1.
The group

U (m, n) = {g ∈ GL(m + n, C) | g∗ Im,ng = Im,n}
is the group of complex matrices of sizem + n preserving the Hermitian
form onCm+n × Cm+n given by〈 x1

...

xm+n

 ,

 y1
...

ym+n

〉
= x1y1+· · ·+xm ym −xm+1ym+1−· · ·−xm+n ym+n,
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andSU (m, n) is the subgroup of members ofU (m, n) of determinant 1.
The groupSp(m, n) is the group of quaternion matrices of sizem + n
preserving the Hermitian form onHm+n × Hm+n given by

〈 x1
...

xm+n

 ,

 y1
...

ym+n

〉
= x1y1+· · ·+xm ym −xm+1ym+1−· · ·−xm+n ym+n,

with no condition needed on the determinant.
The linear Lie algebras of the closed linear groups in (1.141) are given

in a table in Example 3 of §8, and the table in §8 tells which values of
m and n lead to semisimple Lie algebras. It will be a consequence of
results below that all the closed linear groups in (1.141) are topologically
connected except forSO(m, n). In the case ofSO(m, n), one often works
with the identity componentSO(m, n)0 in order to have access to the full
set of results about semisimple groups in later chapters.

Let us now address the subject of connectedness in detail. We shall work
with a closed linear group of complex matrices that is closed under adjoint
and is defined by polynomial equations. We begin with a lemma.

Lemma 1.142. Let P : Rn → R be a polynomial, and suppose
(a1, . . . , an) has the property thatP(eka1, . . . , ekan) = 0 for all integers
k ≥ 0. ThenP(eta1, . . . , etan) = 0 for all realt .

PROOF. A monomialcxl1
1 · · · xln

n , when evaluated at(eta1, . . . , etan), be-

comescet
∑

ai li . Collecting terms with like exponentials, we may assume
that we have an expression

∑N
j=1 cj etbj that vanishes whenevert is an

integer≥ 0. We may further assume that allcj are nonzero and that
b1 < b2 < · · · < bN . We argue by contradiction and supposeN > 0.
Multiplying by e−tbN and changing notation, we may assume thatbN = 0.
We pass to the limit in the expression

∑N
j=1 cj etbj ast tends to+∞ through

integer values, and we find thatcN = 0, contradiction.

Proposition 1.143.Let G ⊆ GL(n, C) be a closed linear group that is
the common zero locus of some set of real-valued polynomials in the real
and imaginary parts of the matrix entries, and letg be its linear Lie algebra.
Suppose thatG is closed under adjoints. LetK be the groupG ∩U (n), and
letp be the subspace of Hermitian matrices ing. Then the mapK ×p → G
given by(k, X) �→ keX is a homeomorphism onto.
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PROOF. ForGL(n, C), the map

U (n) × {Hermitian matrices} → GL(n, C)

given by(k, X) �→ keX is known to be a homeomorphism; see Cheval-
ley [1946], pp. 14–15. The inverse map is thepolar decompositionof
GL(n, C).

Let g be inG, and letg = keX be the polar decomposition ofg within
GL(n, C). To prove the proposition, we have only to show thatk is in G
and thatX is in the linear Lie algebrag of G.

Taking adjoints, we haveg∗ = eX k−1 and thereforeg∗g = e2X . Since
G is closed under adjoints,e2X is in G. By assumption,G is the zero locus
of some set of real-valued polynomials in the real and imaginary parts of
the matrix entries. Let us conjugate matters so thate2X is diagonal, say
2X = diag(a1, . . . , an) with eachaj real. Sincee2X and its integral powers
are inG, the transformed polynomials vanish at

(e2X)k = diag(eka1, . . . , ekan)

for every integerk. By Lemma 1.142 the transformed polynomials vanish
at diag(eta1, . . . , etan) for all real t . Thereforeet X is in G for all real t . It
follows from the definition ofg that X is in g. SinceeX andg are then in
G, k is in G. This completes the proof.

Proposition 1.143 says thatG is connected if and only ifK is connected.
To decide which of the groups in (1.138) and (1.141) are connected, we
therefore computeK for each group. In the case of the groups of quaternion
matrices, we computeK by converting to complex matrices, intersecting
with the unitary group, and transforming back to quaternion matrices. The
results are in (1.144). In theK column of (1.144), the notationS( · ) means

(1.144)

G K up to isomorphism
SL(n, C) SU (n)
SO(n, C) SO(n)
Sp(n, C) Sp(n) or Sp(n, C) ∩ U (2n)

SL(n, R) SO(n)
SL(n, H) Sp(n)
SO(m, n) S(O(m) × O(n))
SU (m, n) S(U (m) × U (n))
Sp(m, n) Sp(m) × Sp(n)
Sp(n, R) U (n)
SO∗(2n) U (n)
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the determinant-one subgroup of( · ). By Propositions 1.136 and 1.139
and the connectedness ofU (n), we see that all the groups in theK column
are connected except forS(O(m) × O(n)). Using Proposition 1.143, we
arrive at the following conclusion.

Proposition 1.145. All the classical groupsSL(n, C), SO(n, C),
Sp(n, C), SL(n, R), SL(n, H), SU (m, n), Sp(m, n), Sp(n, R), and
SO∗(2n) are connected. The groupSO(m, n) has two components if
m > 0 andn > 0.

18. Problems

1. Verify that Example 12a in §1 is nilpotent and that Example 12b is split
solvable.

2. For

(
α β

γ δ

)
any nonsingular matrix overk, letg(

α β

γ δ

) be the 3-dimensional

algebra overk with basisX , Y , Z satisfying

[ X, Y ] = 0

[ X, Z ] = αX + βY

[Y, Z ] = γ X + δY.

(a) Show thatg(
α β

γ δ

) is a Lie algebra by showing thatX ↔
( 0 0 1

0 0 0
0 0 0

)
,

Y ↔
( 0 0 0

0 0 1
0 0 0

)
, Z ↔ −

(
α γ 0
β δ 0
0 0 0

)
gives an isomorphism with a Lie algebra

of matrices.
(b) Show thatg(

α β

γ δ

) is solvable but not nilpotent.

(c) Let k = R. Takeδ = 1 andβ = γ = 0. Show that the various Lie
algebrasg(

α 0
0 1

) for α > 1 are mutually nonisomorphic. (Therefore for

k = R that there are uncountably many nonisomorphic solvable real Lie
algebras of dimension 3.)

3. Let

s(n, k) =
X ∈ gl(n, k)

∣∣∣∣ X =
 a1 ∗

. . .

0 an

 .
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Define a bracket operation ong = ⊕∞
n=1 s(n, k) (a vector space in which each

element has only finitely many nonzero coordinates) in such a way that each
s(n, k) is an ideal. Show that each member ofg lies in a finite-dimensional
solvable ideal but that the commutator series ofg does not terminate in 0.
(Hence there is no largest solvable ideal.)

4. Letg be a real Lie algebra of complex matrices with the property thatX ∈ g

and X �= 0 imply i X /∈ g. Make precise and verify the statement thatgC

can be realized as a Lie algebra of matrices by complexifying the entries ofg.
Use this statement to prove directly thatsl(2, R) andsu(2) have isomorphic
complexifications.

5. Under the isomorphism (1.4) ofso(3) with the vector product Lie algebra,
show that the Killing formB for so(3) gets identified with a multiple of the
dot product inR3.

6. Letg be a nonabelian 2-dimensional Lie algebra. Using the computation of
the Killing form in Example 1 of §3, show that radB �= radg.

7. Let g = sl(2, k). Show thatB(X, X) is a multiple of detX independent of
X ∈ g.

8. In sl(n, R) the Killing form and the trace formC(X, Y ) = Tr(XY ) are
multiples of one another. Identify the multiple.

9. Show that the solvable Lie algebrag =
( 0 θ x

−θ 0 y
0 0 0

)
over R is not split

solvable

(a) by showing thatg has no 1-dimensional ideal.
(b) by producing nonreal eigenvalues for some adX with X ∈ g.

Show also thatgC can be regarded as all complex matrices of the formg =( 0 θ x
−θ 0 y

0 0 0

)
, and exhibit a 1-dimensional ideal ingC (which exists since

gC has to be split solvable overC).

10. Show that ifg is a solvable Lie algebra overR andn is its largest nilpotent
ideal, theng/n is abelian.

11. Letk be the field of two elements. Find a solvable subalgebrag of gl(3, k)

such that [g, g] is not nilpotent. (This problem shows that an elementary proof
of Proposition 1.39 is unlikely.)

12. Prove that ifg is a finite-dimensional nilpotent Lie algebra overR, then the
Killing form of g is identically 0.
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13. Letg be a complex Lie algebra of complex matrices, and suppose thatg is
simple overC. Let C(X, Y ) = Tr(XY ) for X andY in g. Prove thatC is a
multiple of the Killing form.

14. Fork = R, prove thatsu(2) andsl(2, R) are not isomorphic.

15. Prove thatso(2, 1) is isomorphic withsl(2, R).

16. Foru(n), we have an isomorphismu(n) ∼= su(n) ⊕ R, whereR is the center.
Let Z be the analytic subgroup ofU (n) with Lie algebra the center. IsU (n)

isomorphic with the direct sum ofSU (n) andZ? Why or why not?

17. LetVn be the complex vector space of all polynomials in two complex variables
z1 andz2 homogeneous of degreen. Define a representation ofSL(2, C) by

n

(
a b
c d

)
P

(
z1

z2

)
= P

((
a b
c d

)−1 (
z1

z2

))
.

Then dimVn = n + 1,  is a homomorphism, and is holomorphic. Letϕ
be the differential of at 1. Prove thatϕ is isomorphic with the irreducible
complex-linear representation ofsl(2, C) of dimensionn+1 given in Theorem
1.66.

18. Letg be the Heisenberg Lie algebra overR as in Example 12a of §1. Verify
thatg is isomorphic with{( 0 0 0

z 0 0
i t z̄ 0

) ∣∣∣∣ z ∈ C, t ∈ R

}
.

19. The real Lie algebra

g =
{( iθ 0 0

z −2iθ 0
i t z̄ iθ

) ∣∣∣∣ z ∈ C, θ ∈ R, t ∈ R

}

is the Lie algebra of the “oscillator group.” Show that [g, g] is isomorphic
with the Heisenberg Lie algebra overR, defined in Example 12a of §1.

20. LetN be a simply connected nilpotent analytic group with Lie algebran, and
let ni be a sequence of ideals inn such that

n = n0 ⊇ n1 ⊇ · · · ⊇ nn−1 ⊇ nn = 0

and [n, ni ] ⊆ ni+1 for 0 ≤ i < n. Suppose thats andt are vector subspaces
of n such thatn = s ⊕ t andni = (s ∩ ni ) ⊕ (t ∩ ni ) for all i . Prove that the
maps ⊕ t → N given by(X, Y ) �→ expX expY is a diffeomorphism onto.
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21. Find the cardinality of the centers ofSU (n), SO(n), Sp(n), SL(n, C),
SO(n, C), andSp(n, C).

22. LetG = {g ∈ SL(2n, C) | gt In,ng = In,n}. Prove thatG is isomorphic to
SO(2n, C). (See §8 for the definition ofIn,n.)

23. Show that Proposition 1.143 can be applied toGL(n, R) if GL(n, R) is
embedded inSL(n + 1, R) in block diagonal form as

g �→
(

g 0
0 (detg)−1

)
.

Deduce thatGL(n, R) has two connected components.

24. Give an example of a closed linear groupG ⊆ SL(n, C) such thatG is closed
under adjoints butG is not homeomorphic to the product ofG ∩ U (n) and a
Euclidean space.

Problems 25–27 concern the Heisenberg Lie algebrag overR as in Example 12a
of §1. LetV be the complex vector space of complex-valued functions onR of
the forme−πs2

P(s), whereP is a polynomial, and let̄h be a positive constant.

25. Show that the linear mappingsi
d

ds
and “multiplication by−i h̄s” carry V

into itself.

26. Defineϕ

( 0 1 0
0 0 0
0 0 0

)
= i

d

ds
and letϕ

( 0 0 0
0 0 1
0 0 0

)
be multiplication by

−i h̄s. How shouldϕ

( 0 0 1
0 0 0
0 0 0

)
be defined so that the linear extension of

ϕ to g is a representation ofg on V ?

27. Withϕ defined as in Problem 26, prove thatϕ is irreducible.

Problems 28–30 classify the solvable Lie algebrasg of dimension 3 overR.

28. Prove that if dim[g, g] = 1, theng is isomorphic with either the Heisenberg
Lie algebra (Example 12a of §1) or the direct sum of a 1-dimensional (abelian)
Lie algebra and a nonabelian 2-dimensional Lie algebra.

29. If dim[g, g] = 2, use Proposition 1.39 to show that [g, g] is abelian. LetX , Y
be a basis of [g, g], and extend to a basisX , Y , Z of g. Defineα, β, γ , δ by

[ X, Z ] = αX + βY

[Y, Z ] = γ X + δY.

Show that

(
α β

γ δ

)
is nonsingular.
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30. Conclude that the only nilpotent 3-dimensional Lie algebras overR are the
abelian one and the Heisenberg Lie algebra; conclude that the only other
solvable ones of dimension 3 are those given by Problem 2 and the one that
is a direct sum of a 1-dimensional abelian Lie algebra with a nonabelian
2-dimensional algebra.

Problems 31–35 show that the only simple Lie algebrasg of dimension 3 overR,
up to isomorphism, are the ones in Examples 12e and 12f of §1. In view of the
discussion at the end of §2, Problems 28–30 and Problems 31–35 together classify
all the Lie algebras of dimension 3 overR.

31. Show that Tr(adX) = 0 for all X because [g, g] = g.

32. Using Engel’s Theorem, chooseX0 such that adX0 is not nilpotent. Show
that the 1-dimensional spaceRX0 has a complementary subspace stable under
adX0.

33. Show by linear algebra that some real multipleX of X0 is a member of a basis
{X, Y, Z} of g in which adX has matrix realization either

adX =

X Y Z( 0 0 0
0 2 0
0 0 −2

) X
Y
Z

or adX =

X Y Z( 0 0 0
0 0 −1
0 1 0

) X
Y
Z

.

34. Writing [Y, Z ] in terms of the basis and applying the Jacobi identity, show that
Y can be multiplied by a constant so that the first case of Problem 33 leads to
an isomorphism withsl(2, R) and the second case of Problem 33 leads to an
isomorphism withso(3).

35. Using a simplified version of the argument in Problems 29–32, show that the
only 3-dimensional simple Lie algebra overC, up to isomorphism, issl(2, C).



CHAPTER II

Complex Semisimple Lie Algebras

Abstract. The theme of this chapter is an investigation of complex semisimple Lie
algebras by a two-step process, first by passing from such a Lie algebra to a reduced abstract
root system via a choice of Cartan subalgebra and then by passing from the root system to
an abstract Cartan matrix and an abstract Dynkin diagram via a choice of an ordering.

The chapter begins by making explicit a certain amount of this structure for four infinite
classes of classical complex semisimple Lie algebras. Then for a general finite-dimensional
complex Lie algebra, it is proved that Cartan subalgebras exist and are unique up to
conjugacy.

When the given Lie algebra is semisimple, the Cartan subalgebra is abelian. The adjoint
action of the Cartan subalgebra on the given semisimple Lie algebra leads to a root-space
decomposition of the given Lie algebra, and the set of roots forms a reduced abstract root
system.

If a suitable ordering is imposed on the underlying vector space of an abstract root
system, one can define simple roots as those positive roots that are not sums of positive
roots. The simple roots form a particularly nice basis of the underlying vector space, and
a Cartan matrix and Dynkin diagram may be defined in terms of them. The definitions of
abstract Cartan matrix and abstract Dynkin diagram are arranged so as to include the matrix
and diagram obtained from a root system.

Use of the Weyl group shows that the Cartan matrix and Dynkin diagram obtained from
a root system by imposing an ordering are in fact independent of the ordering. Moreover,
nonisomorphic reduced abstract root systems have distinct Cartan matrices. It is possible
to classify the abstract Cartan matrices and then to see by a case-by-case argument that
every abstract Cartan matrix arises from a reduced abstract root system. Consequently
the correspondence between reduced abstract root systems and abstract Cartan matrices is
one-one onto, up to isomorphism.

The correspondence between complex semisimple Lie algebras and reduced abstract root
systems lies deeper. Apart from isomorphism, the correspondence does not depend upon
the choice of Cartan subalgebra, as a consequence of the conjugacy of Cartan subalgebras
proved earlier in the chapter. To examine the correspondence more closely, one first
finds generators and relations for any complex semisimple Lie algebra. The Isomorphism
Theorem then explains how much freedom there is in lifting an isomorphism between
root systems to an isomorphism between complex semisimple Lie algebras. Finally the
Existence Theorem says that every reduced abstract root system arises from some complex
semisimple Lie algebra. Consequently the correspondence between complex semisimple
Lie algebras and reduced abstract root systems is one-one onto, up to isomorphism.

123
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1. Classical Root-space Decompositions

Recall from §I.8 that the complex Lie algebrassl(n, C) for n ≥ 2,
so(n, C) for n ≥ 3, andsp(n, C) for n ≥ 1 are all semisimple. As we shall
see in this section, each of these Lie algebras has an abelian subalgebrah

such that an analysis of adh leads to a rather complete understanding of
the bracket law in the full Lie algebra. We shall give the analysis of adh

in each example and then, to illustrate the power of the formulas we have,
identify which of these Lie algebras are simple overC.

EXAMPLE 1. The complex Lie algebra isg = sl(n, C). Let

h0 = real diagonal matrices ing

h = all diagonal matrices ing.

Thenh = h0 ⊕ ih0 = (h0)
C. Define a matrixEi j to be 1 in the(i, j)th place

and 0 elsewhere, and define a memberej of the dual spaceh∗ by

ej

 h1
. . .

hn

 = hj .

For eachH ∈ h, adH is diagonalized by the basis ofg consisting of
members ofh and theEi j for i �= j . We have

(adH)Ei j = [H, Ei j ] = (ei(H) − ej(H))Ei j .

In other words,Ei j is a simultaneous eigenvector for all adH , with eigen-
valueei(H)−ej(H). In its dependence onH , the eigenvalue is linear. Thus
the eigenvalue is a linear functional onh, namelyei − ej . The(ei − ej)’s,
for i �= j , are calledroots. The set of roots is denoted�. We have

g = h ⊕
⊕
i �= j

CEi j ,

which we can rewrite as

(2.1) g = h ⊕
⊕
i �= j

gei −ej ,

where

gei −ej = {X ∈ g | (adH)X = (ei − ej)(H)X for all H ∈ h}.
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The decomposition (2.1) is called aroot-space decomposition. The set�
of roots spansh∗ overC.

The bracket relations are easy, relative to (2.1). Ifα andβ are roots, we
can compute [Ei j , Ei ′ j ′ ] and see that

(2.2) [gα, gβ ]


= gα+β if α + β is a root

= 0 if α + β is not a root or 0

⊆ h if α + β = 0.

In the last case the exact formula is

[Ei j , Eji ] = Eii − Ej j ∈ h.

All the roots are real onh0 and thus, by restriction, can be considered as
members ofh∗

0. The next step is to introduce a notion of positivity within
h∗

0 such that

(i) for any nonzeroϕ ∈ h∗
0, exactly one ofϕ and−ϕ is positive,

(ii) the sum of positive elements is positive, and any positive multiple
of a positive element is positive.

The way in which such a notion of positivity is introduced is not important,
and we shall just choose one at this stage.

To do so, we observe a canonical form for members ofh∗
0. The linear

functionalse1, . . . , en spanh∗
0, and their sum is 0. Any member ofh∗

0 can
therefore be written nonuniquely as

∑
j cj ej , and(

∑
i ci)(e1+· · ·+en) = 0.

Therefore our given linear functional equals

n∑
j=1

(
cj − 1

n

n∑
i=1

ci

)
ej .

In this latter representation the sum of the coefficients is 0. Thus any
member ofh∗

0 can be realized as
∑

j aj ej with
∑

j aj = 0. No such nonzero
expression can vanish onEii − Enn for all i with 1 ≤ i < n, and thus the
realization as

∑
j aj ej with

∑
j aj = 0 is unique.

If ϕ = ∑
j aj ej is given as a member ofh∗

0 with
∑

j aj = 0, we say that
a nonzeroϕ is positive (writtenϕ > 0) if the first nonzero coefficientaj is
> 0. It is clear that this notion of positivity satisfies properties (i) and (ii)
above.

We say thatϕ > ψ if ϕ − ψ is positive. The result is a simple ordering
onh∗

0 that is preserved under addition and under multiplication by positive
scalars.
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For the roots the effect is that

e1 − en > e1 − en−1 > · · · > e1 − e2

> e2 − en > e2 − en−1 > · · · > e2 − e3

> · · · > en−2 − en > en−2 − en−1 > en−1 − en > 0,

and afterward we have the negatives. The positive roots are theei −ej with
i < j .

Now let us prove thatg is simple overC for n ≥ 2. Let a ⊆ g be an
ideal, and first supposea ⊆ h. Let H �= 0 be ina. Since the roots spanh∗,
we can find a rootα with α(H) �= 0. If X is in gα andX �= 0, then

α(H)X = [H, X ] ∈ [a, g] ⊆ a ⊆ h,

and soX is in h, contradiction. Hencea ⊆ h impliesa = 0.
Next, supposea is not contained inh. Let X = H + ∑

Xα be ina with
eachXα in gα and with someXα �= 0. For the moment assume that there
is some rootα < 0 with Xα �= 0, and letβ be the smallest suchα. Say
Xβ = cEi j with i > j andc �= 0. Form

(2.3) [E1i , [ X, Ejn]] .

The claim is that (2.3) is a nonzero multiple ofE1n. In fact, we cannot
havei = 1 since j < i . If i < n, then [Ei j , Ejn] = aEin with a �= 0, and
also [E1i , Ein] = bE1n with b �= 0. Thus (2.3) has a nonzero component
in ge1−en in the decomposition (2.1). The other components of (2.3) must
correspond to larger roots thane1 − en if they are nonzero, bute1 − en is
the largest root. Hence the claim follows ifi < n. If i = n, then (2.3) is

= [E1n, [cEnj + · · · , Ejn]] = c[E1n, Enn − Ej j ] + · · · = cE1n.

Thus the claim follows ifi = n.
In any case we conclude thatE1n is in a. For i �= j , the formula

Ekl = c′[Ek1, [E1n, Enl ]] with c′ �= 0

(with obvious changes ifk = 1 or l = n) shows thatEkl is in a, and

[Ekl, Elk ] = Ekk − Ell

shows that a spanning set ofh is in a. Hencea = g.
Thus an ideala that is not inh has to be all ofg if there is someα < 0

with Xα �= 0 above. Similarly if there is someα > 0 with Xα �= 0, letβ
be the largest suchα, sayα = ei − ej with i < j . Form [Eni , [ X, Ej1]]
and argue withEn1 in the same way to geta = g. Thusg is simple overC.
This completes the first example.
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We can abstract these properties. The complex Lie algebrag will be
simple whenever we can arrange that

1) h is an abelian subalgebra ofg such thatg has a simultaneous
eigenspace decomposition relative to adh and

(a) the 0 eigenspace ish,
(b) the other eigenspaces are 1-dimensional,
(c) with the set� of roots defined as before, (2.2) holds,
(d) the roots are all real on some real formh0 of h.

2) the roots spanh∗. If α is a root, so is−α.
3)

∑
α∈�[gα, g−α] = h.

4) each rootβ < 0 relative to an ordering ofh∗
0 defined from a notion

of positivity satisfying (i) and (ii) above has the following property: There
exists a sequence of rootsα1, . . . , αk such that each partial sum from the
left of β + α1 + · · · + αk is a root or 0 and the full sum is the largest root.
If a partial sumβ + · · · + αj is 0, then the member [Eαj , E−αj ] of h is such
thatαj+1([Eαj , E−αj ]) �= 0.

We shall see that the other complex Lie algebras from §I.8, namely
so(n, C) and sp(n, C), have the same kind of structure, providedn is
restricted suitably.

EXAMPLE 2. The complex Lie algebra isg = so(2n + 1, C). Here a
similar analysis by means of adh for an abelian subalgebrah is possible,
and we shall say what the constructs are that lead to the conclusion thatg

is simple forn ≥ 1. We define

h = {H ∈ so(2n + 1, C) | H = matrix below}

H =



(
0 ih1

−ih1 0

)
(

0 ih2

−ih2 0

)
. . . (

0 ihn

−ihn 0

)
0


ej(aboveH) = hj , 1 ≤ j ≤ n

h0 = {H ∈ h | entries are purely imaginary}
� = {±ei ± ej with i �= j} ∪ {±ek}.
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The members ofh∗
0 are the linear functionals

∑
j aj ej with all aj real, and

every root is of this form. A memberϕ = ∑
j aj ej of h∗

0 is defined to be
positive if ϕ �= 0 and if the first nonzeroaj is positive. In the resulting
ordering the largest root ise1 + e2. The root-space decomposition is

g = h ⊕
⊕
α∈�

gα with gα = CEα

and with Eα as defined below. To defineEα, first let i < j and letα =
±ei ± ej . ThenEα is 0 except in the sixteen entries corresponding to the
i th and j th pairs of indices, where it is

Eα =

i j(
0 Xα

−Xt
α 0

)
i
j

with

Xei −ej =
(

1 i
−i 1

)
, Xei +ej =

(
1 −i

−i −1

)
,

X−ei +ej =
(

1 −i
i 1

)
, X−ei −ej =

(
1 i
i −1

)
.

To defineEα for α = ±ek , write

Eα =

pair
k

entry
2n + 1(

0 Xα

−Xt
α 0

)
with 0’s elsewhere and with

Xek =
(

1
−i

)
and X−ek =

(
1
i

)
.

EXAMPLE 3. The complex Lie algebra isg = sp(n, C). Again an
analysis by means of adh for an abelian subalgebrah is possible, and we
shall say what the constructs are that lead to the conclusion thatg is simple
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for n ≥ 1. We define

h =


H =



h1
. . .

hn

−h1
. . .

−hn




ej(aboveH) = hj , 1 ≤ j ≤ n

h0 = {H ∈ h | entries are real}
� = {±ei ± ej with i �= j} ∪ {±2ek}

Eei −ej = Ei, j − Ej+n,i+n, E2ek = Ek,k+n,

Eei +ej = Ei, j+n + Ej,i+n, E−2ek = Ek+n,k,

E−ei −ej = Ei+n, j + Ej+n,i .

EXAMPLE 4. The complex Lie algebra isg = so(2n, C). The analysis
is similar to that forso(2n + 1, C). The Lie algebraso(2n, C) is simple
overC for n ≥ 3, the constructs for this example being

h as withso(2n + 1, C) but with the last row and column deleted

ej(H) = hj , 1 ≤ j ≤ n, as withso(2n + 1, C)

h0 = {H ∈ h | entries are purely imaginary}
� = {±ei ± ej with i �= j}
Eα as forso(2n + 1, C) when α = ±ei ± ej .

Whenn = 2, condition (4) in the list of abstracted properties fails. In fact,
takeβ = −e1 + e2. The only choice forα1 is e1 − e2, and thenβ +α1 = 0.
We have to chooseα2 = e1 + e2, andα2([Eα1, E−α1]) = 0. In §5 we shall
see thatso(4, C) is actually not simple.

2. Existence of Cartan Subalgebras

The idea is to approach a general complex semisimple Lie algebrag by
imposing on it the same kind of structure as in §1. We try to construct an
h, a set of roots, a real formh0 on which the roots are real, and an ordering
on h∗

0. Properties (1) through (3) in §1 turn out actually to be equivalent
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with g semisimple. In the presence of the first three properties, property (4)
will be equivalent withg simple. But we shall obtain better formulations
of property (4) later, and that property should be disregarded, at least for
the time being.

The hypothesis of semisimplicity ofg enters the construction only by
forcing special features ofh and the roots. Accordingly we work with a
general finite-dimensional complex Lie algebrag until near the end of this
section.

Leth be a finite-dimensional Lie algebra overC. Recall from §I.5 that a
representationπ of h on a complex vector spaceV is a complex-linear Lie
algebra homomorphism ofh into EndC(V ). For suchπ andV, whenever
α is in the dualh∗, we letVα be defined as

{v ∈ V | (π(H) − α(H)1)nv = 0 for all H ∈ h and somen = n(H, v)}.
If Vα �= 0, Vα is called ageneralized weight spaceandα is a weight.
Members ofVα are calledgeneralized weight vectors.

For now, we shall be interested only in the case thatV is finite
dimensional. In this caseπ(H) − α(H)1 has 0 as its only generalized
eigenvalue onVα and is nilpotent on this space, as a consequence of the
theory of Jordan normal form. Thereforen(H, v) can be taken to be dimV .

Proposition 2.4.Suppose thath is a nilpotent Lie algebra overC and that
π is a representation ofh on a finite-dimensional complex vector spaceV .
Then there are finitely many generalized weights, each generalized weight
space is stable underπ(h), andV is the direct sum of all the generalized
weight spaces.

REMARKS.
1) The direct-sum decomposition ofV as the sum of the generalized

weight spaces is called aweight-space decompositionof V .
2) The weights need not be linearly independent. For example, they are

dependent in our root-space decompositions in the previous section.
3) Sinceh is nilpotent, it is solvable, and Lie’s Theorem (Corollary 1.29)

applies to it. In a suitable basis ofV, π(h) is therefore simultaneously
triangular. The generalized weights will be the distinct diagonal entries, as
functions onh. To get the direct sum decomposition, however, is subtler;
we need to make more serious use of the fact thath is nilpotent.

PROOF. First we check thatVα is invariant underπ(h). Fix H ∈ h and
let

Vα,H = {v ∈ V | (π(H) − α(H)1)nv = 0 for somen = n(v)},
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so thatVα = ∩H∈hVα,H . It is enough to prove thatVα,H is invariant under
π(h) if H �= 0. Sinceh is nilpotent, adH is nilpotent. Let

h(m) = {Y ∈ h | (adH)mY = 0},
so thath = ∪d

m=0h(m) with d = dimh. We prove thatπ(Y )Vα,H ⊆ Vα,H for
Y ∈ h(m) by induction onm.

For m = 0, we haveh(0) = 0 since(adH)0 = 1. Soπ(Y ) = π(0) = 0,
andπ(Y )Vα,H ⊆ Vα,H trivially.

We now address generalm under the assumption that our assertion is
true for all Z ∈ h(m−1). Let Y be inh(m). Then [H, Y ] is in h(m−1), and we
have

(π(H) − α(H)1)π(Y ) = π([H, Y ]) + π(Y )π(H) − α(H)π(Y )

= π(Y )(π(H) − α(H)1) + π([H, Y ])

and

(π(H) − α(H)1)2π(Y )

= (π(H)−α(H)1)π(Y )(π(H)−α(H)1) + (π(H)−α(H)1)π([H, Y ])

= π(Y )(π(H) − α(H)1)2 + π([H, Y ])(π(H) − α(H)1)

+ (π(H) − α(H)1)π([H, Y ]).

Iterating, we obtain

(π(H) − α(H)1)lπ(Y )

= π(Y )(π(H) − α(H)1)l

+
l−1∑
s=0

(π(H) − α(H)1)l−1−sπ([H, Y ])(π(H) − α(H)1)s .

For v ∈ Vα,H , we have(π(H) − α(H)1)Nv = 0 if N ≥ dim V . Take
l = 2N . When the above expression is applied tov, the only terms in the
sum on the right side that can survive are those withs < N . For these we
havel −1− s ≥ N . Then(π(H)−α(H)1)sv is in Vα,H , π([H, Y ]) leaves
Vα,H stable since [H, Y ] is in h(m−1), and

(π(H) − α(H)1)l−1−sπ([H, Y ])(π(H) − α(H)1)sv = 0.

Hence(π(H) − α(H)1)lπ(Y )v = 0, andVα,H is stable underπ(Y ). This
completes the induction and the proof thatVα is invariant underπ(h).
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Now we can obtain the decompositionV = ⊕
α Vα. Let H1, . . . , Hr be

a basis forh. The Jordan decomposition ofπ(H1) gives us a generalized
eigenspace decomposition that we can write as

V =
⊕

λ

Vλ,H1.

Here we can regard the complex numberλ as running over all distinct
values ofα(H1) for α arbitrary inh∗. Thus we can rewrite the Jordan
decomposition as

V =
⊕

values of
α(H1)

Vα(H1),H1.

For fixedα ∈ h∗, Vα(H1),H1 is nothing more than the spaceVα,H1 defined
at the start of the proof. From what we have already shown, the space
Vα(H1),H1 = Vα,H1 is stable underπ(h). Thus we can decompose it under
π(H2) as

V =
⊕
α(H1)

⊕
α(H2)

(Vα(H1),H1 ∩ Vα(H2),H2),

and we can iterate to obtain

V =
⊕

α(H1),...,α(Hr )

( r⋂
j=1

Vα(Hj ),Hj

)
with each of the spaces invariant underπ(h). By Lie’s Theorem (Corol-
lary 1.29), we can regard allπ(Hi) as acting simultaneously by triangu-
lar matrices on

⋂r
j=1 Vα(Hj ),Hj , evidently with all diagonal entriesα(Hi).

Thenπ(
∑

ci Hi) must act as a triangular matrix with all diagonal entries∑
ciα(Hi). Thus if we define a linear functionalα by α(

∑
ci Hi) =∑

ciα(Hi), we see that
⋂r

j=1 Vα(Hj ),Hj is exactlyVα. ThusV = ⊕
α Vα,

and in particular there are only finitely many weights.

Proposition 2.5. If g is any finite-dimensional Lie algebra overC and
if h is a nilpotent Lie subalgebra, then the generalized weight spaces ofg

relative to adg h satisfy

(a) g = ⊕
gα, wheregα is defined as

{X ∈ g | (adH − α(H)1)n X = 0 for all H ∈ h and somen = n(H, X)},
(b) h ⊆ g0,
(c) [gα, gβ ] ⊆ gα+β (with gα+β understood to be 0 ifα + β is not a

generalized weight).
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PROOF.
(a) This is by Proposition 2.4.
(b) Sinceh is nilpotent, adh is nilpotent onh. Thush ⊆ g0.
(c) Let X ∈ gα, Y ∈ gβ , andH ∈ h. Then

(adH − (α(H) + β(H))1)[ X, Y ]

= [H, [ X, Y ]] − α(H)[ X, Y ] − β(H)[ X, Y ]

= [(adH − α(H)1)X, Y ] + [ X, (adH − β(H)1)Y ],

and we can readily set up an induction to see that

(adH − (α(H) + β(H))1)n[ X, Y ]

=
n∑

k=0

(
n
k

)
[(adH −α(H)1)k X, (adH −β(H)1)n−kY ].

If n ≥ 2 dimg, eitherk or n − k is ≥ dimg, and hence every term on the
right side is 0.

Corollary 2.6. g0 is a subalgebra.

PROOF. This follows from Proposition 2.5c.

To match the behavior of our examples in the previous section, we
make the following definition. A nilpotent Lie subalgebrah of a finite-
dimensional complex Lie algebrag is aCartan subalgebraif h = g0. The
inclusionh ⊆ g0 is always guaranteed by Proposition 2.5b.

Proposition 2.7. A nilpotent Lie subalgebrah of a finite-dimensional
complex Lie algebrag is a Cartan subalgebra if and only ifh equals the
normalizerNg(h) = {X ∈ g | [ X, h] ⊆ h}.

PROOF. We always have

(2.8) h ⊆ Ng(h) ⊆ g0.

The first of these inclusions holds becauseh is a Lie subalgebra. The
second holds because(adH)n X = (adH)n−1[H, X ] and adH is nilpotent
onh.

Now assume thath is a Cartan subalgebra. Theng0 = h by definition.
By (2.8), h = Ng(h) = g0. Conversely assume thath is not a Cartan
subalgebra, i.e., thatg0 �= h. Form adh : g0/h → g0/h as a Lie algebra of
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transformations of the nonzero vector spaceg0/h. Sinceh is solvable, this
Lie algebra of transformations is solvable. By Lie’s Theorem (Theorem
1.25) there exists anX + h in g0/h with X /∈ h that is a simultaneous
eigenvector for adh, and we know that its simultaneous eigenvalue has to
be 0. This means that(adH)(X + h) ⊆ h, i.e., [H, X ] is in h. HenceX is
not inh but X is in Ng(h). Thush �= Ng(h).

Theorem 2.9. Any finite-dimensional complex Lie algebrag has a
Cartan subalgebra.

Before coming to the proof, we introduce “regular” elements ofg. In
sl(n, C) the regular elements will be the matrices with distinct eigenvalues.
Let us consider matters more generally.

If π is a representation ofg on a finite-dimensional vector spaceV, we
can regard eachX ∈ g as generating a 1-dimensional abelian subalgebra,
and we can then formV0,X , the generalized eigenspace for eigenvalue 0
underπ(X). Let

lg(V ) = min
X∈g

dim V0,X

Rg(V ) = {X ∈ g | dim V0,X = lg(V )}.
To understandlg(V ) andRg(V ) better, form the characteristic polynomial

det(λ1 − π(X)) = λn +
n−1∑
j=0

dj(X)λ j .

In any basis ofg, thedj(X) are polynomial functions ong, as we see by
expanding det(λ1 − ∑

µiπ(Xi)). For givenX , if j is the smallest value
for which dj(X) �= 0, then j = dim V0,X , since the degree of the last term
in the characteristic polynomial is the multiplicity of 0 as a generalized
eigenvalue ofπ(X). Thuslg(V ) is the minimumj such thatdj(X) ≡/ 0,
and

Rg(V ) = {X ∈ g | dlg(V )(X) �= 0}.
Let us apply these considerations to the adjoint representation ofg ong.

The elements ofRg(g), relative to the adjoint representation, are theregular
elementsof g. For anyX in g, g0,X is a Lie subalgebra ofg by the corollary
of Proposition 2.5, withh = CX .

Theorem 2.9′. If X is a regular element of the finite-dimensional
complex Lie algebrag, then the Lie algebrag0,X is a Cartan subalgebra
of g.
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PROOF. First we show thatg0,X is nilpotent. Assuming the contrary, we
construct two sets:

(i) the set ofZ ∈ g0,X such that((adZ)|g0,X )
dimg0,X �= 0, which is

nonempty by Engel’s Theorem (Corollary 1.38) and is open,
(ii) the set ofW ∈ g0,X such that adW |g/g0,X is nonsingular, which is

nonempty sinceX is in it (regularity is not used here) and is the
set where some polynomial is nonvanishing, hence is dense (be-
cause if a polynomial vanishes on a nonempty open set, it vanishes
identically).

These two sets must have nonempty intersection, and so we can findZ in
g0,X such that

((adZ)|g0,X )
dimg0,X �= 0 and adZ |g/g0,X is nonsingular.

Then the generalized multiplicity of the eigenvalue 0 for adZ is less
than dimg0,X , and hence dimg0,Z < dimg0,X , in contradiction with the
regularity ofX . We conclude thatg0,X is nilpotent.

Sinceg0,X is nilpotent, we can useg0,X to decomposeg as in Proposition
2.4. Letg0 be the 0 generalized weight space. Then we have

g0,X ⊆ g0 =
⋂

Y∈g0,X

g0,Y ⊆ g0,X .

Sog0,X = g0, andg0,X is a Cartan subalgebra.

In this book we shall be interested in Cartan subalgebrash only wheng

is semisimple. In this caseh has special properties, as follows.

Proposition 2.10. If g is a complex semisimple Lie algebra andh is a
Cartan subalgebra, thenh is abelian.

PROOF. Sinceh is nilpotent and therefore solvable, adh is solvable as a
Lie algebra of transformations ofg. By Lie’s Theorem (Corollary 1.29) it is
simultaneously triangular in some basis. For any three triangular matrices
A, B, C , we have Tr(ABC) = Tr(B AC). Therefore

(2.11) Tr(ad[H1, H2] adH) = 0 for H1, H2, H ∈ h.

Next letα be any nonzero generalized weight, letX be ingα, and letH be
in h. By Proposition 2.5c, adH adX carriesgβ to gα+β . Thus Proposition
2.5a shows that

(2.12) Tr(adH adX) = 0.
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Specializing (2.12) toH = [H1, H2] and using (2.11) and Proposition 2.5a,
we see that the Killing formB of g satisfies

B([H1, H2], X) = 0 for all X ∈ g.

By Cartan’s Criterion for Semisimplicity (Theorem 1.45),B is nondegen-
erate. Therefore [H1, H2] = 0, andh is abelian.

Proposition 2.13. In a complex semisimple Lie algebrag, a Lie
subalgebra is a Cartan subalgebra if it is maximal among the abelian
subalgebrash such that adg h is simultaneously diagonable.

REMARKS.
1) It is immediate from this corollary that the subalgebrash in the

examples of §1 are Cartan subalgebras.
2) Proposition 2.13 implies the existence of Cartan subalgebras, but

only in the semisimple case. A uniqueness theorem, Theorem 2.15 below,
will say that any two Cartan subalgebras are conjugate, and hence every
Cartan subalgebra in the semisimple case must satisfy the properties in the
proposition.

3) The properties in the proposition can also be seen directly without
using the uniqueness theorem. Proposition 2.10 shows that any Cartan
subalgebrah in the semisimple case is abelian, and it is maximal abelian
sinceh = g0. Corollary 2.23 will show for a Cartan subalgebrah in the
semisimple case that adg h is simultaneously diagonable.

PROOF. Let h be maximal among the abelian subalgebras such that
adg h is simultaneously diagonable. Sinceh is abelian and hence nilpo-
tent, Proposition 2.4 shows thatg has a weight-space decompositiong =
g0 ⊕ ⊕

β �=0 gβ under adg h. Since adg h is simultaneously diagonable,
g0 = h ⊕ r with [h, r] = 0. In view of Proposition 2.7, we are to prove
that h = Ng(h). Hereh ⊆ Ng(h) ⊆ g0 by (2.8), and it is enough to
show thatr = 0. Arguing by contradiction, suppose thatX �= 0 is in
r. Thenh ⊕ CX is an abelian subalgebra properly containingh, and the
hypothesis of maximality says that adX must not be diagonable. We
apply Proposition 2.4 again, this time using adg(h ⊕ CX) and obtaining
g = ⊕

β

⊕
β ′|h=β gβ ′ . By Theorem 1.48 we can write adX = s + n with s

diagonable,n nilpotent,sn = ns, ands = p(adX) for some polynomial
p without constant term. Since adX carries eachgβ ′ to itself, so does
s. The transformations must then act by the scalarβ ′(X) on gβ ′ . Since
[gβ ′, gγ ′ ] ⊆ gβ ′+γ ′ by Proposition 2.5c, it follows forY ∈ gβ ′ andZ ∈ gγ ′
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thats[Y, Z ] = (β ′(X) + γ ′(X))[Y, Z ] = [s(Y ), Z ] + [Y, s(Z)]. In other
words,s is a derivation ofg. By Proposition 1.121,s = adS for someS
in g. Sinces = p(adX) and [h, X ] = 0, we find that [h, S] = 0. By the
hypothesis of maximality,S is in h. From adX = adS + n, we conclude
that n = adN for someN in h ⊕ CX . In other words we could have
assumed that adX is nilpotent from the outset. Since adX is nilpotent ong
and sinceg0 = h⊕r is a subalgebra (Corollary 2.6), adX is nilpotent ong0.
Thus every member of ad(h⊕CX) is nilpotent ong0. But X is arbitrary in
r, and thus every member of adg0 is nilpotent ong0. By Engel’s Theorem
(Corollary 1.38),g0 is a nilpotent Lie algebra. Consequently we can use
adg g0 to decomposeg according to Proposition 2.4, and the 0 weight space
can be no bigger than it was when we used adg h at the start. Thus the 0
weight space has to beg0, andg0 is a Cartan subalgebra. If we write the
decomposition according to adg g0 asg = g0 ⊕ ⊕

α �=0 gα, then we have
B(X, X0) = ∑

(dimgα)α(X)α(X0) whenX is the element above andX0

is in g0. This sum is 0 since the nilpotence of adX makesα(X) = 0 for all
α. As in (2.12),B(X, Xα) = 0 for Xα ∈ gα with α �= 0. ThusB(X, g) = 0.
SinceB is nondegenerate, it follows thatX = 0, and we have arrived at a
contradiction.

3. Uniqueness of Cartan Subalgebras

We turn to the question of uniqueness of Cartan subalgebras. We begin
with a lemma about polynomial mappings.

Lemma 2.14.Let P : Cm → Cn be a holomorphic polynomial function
not identically 0. Then the set of vectorsz in Cm for which P(z) is not the
0 vector is connected inCm.

PROOF. Suppose thatz0 andw0 in Cm haveP(z0) �= 0 andP(w0) �= 0.
As a function ofz ∈ C, P(z0 + z(w0 − z0)) is a vector-valued holomorphic
polynomial nonvanishing atz = 0 andz = 1. The subset ofz ∈ C where
it vanishes is finite, and the complement inC is connected. Thusz0 and
w0 lie in a connected set inCm whereP is nonvanishing. Taking the union
of these connected sets withz0 fixed andw0 varying, we see that the set
whereP(w0) �= 0 is connected.

Theorem 2.15. If h1 and h2 are Cartan subalgebras of a finite-
dimensional complex Lie algebrag, then there existsa ∈ Int g with
a(h1) = h2.
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REMARKS.
1) In particular any two Cartan subalgebras are conjugate by an auto-

morphism ofg. As was explained after the introduction of Intg in §I.11,
Int g = Int gR is a universal version of Ad(G) for analytic groupsG with
Lie algebragR. Thus if G is some analytic group with Lie algebragR, the
theorem asserts that the conjugacy can be achieved by some automorphism
Ad(g) with g ∈ G.

2) By the theorem all Cartan subalgebras ofg have the same dimension.
The common value of this dimension is called therank of g.

PROOF. Let h be a Cartan subalgebra ofg. Under the definitions in §2,

Rh(g) = {Y ∈ h | dimg0,Y is a minimum for elements ofh}.

We shall show that

(a) two alternative formulas forRh(g) are

Rh(g) = {Y ∈ h | α(Y ) �= 0 for all generalized weightsα �= 0}
= {Y ∈ h | g0,Y = h},

(b) Y ∈ Rh(g) implies adY is nonsingular on
⊕

α �=0 gα,
(c) the image of the map

σ : Int g × Rh(g) → g

given byσ(a, Y ) = a(Y ) is open ing and is contained inRg(g),
(d) if h1 andh2 are Cartan subalgebras that are not conjugate by Intg,

then the corresponding images of the maps in (c) are disjoint,
(e) every member ofRg(g) is in the image of the map in (c) for some

Cartan subalgebrah,
(f) Rg(g) is connected.

These six statements prove the theorem. In fact, (c) through (e) exhibit
Rg(g) as a nontrivial disjoint union of open sets if we have nonconjugacy.
But (f) says that such a nontrivial disjoint union is impossible. Thus let us
prove the six statements.

(a) Sinceh is a Cartan subalgebra,g = h ⊕ ⊕
α �=0 gα. If Y is in h, then

g0,Y = {X ∈ g | (adY )n X = 0}, wheren = dimg. Thus elementsX
in g0,Y are characterized by being in the generalized eigenspace for adY
with eigenvalue 0. Sog0,Y = h ⊕ ⊕

α �=0,α(Y )=0 gα. Since finitely many
hyperplanes inh cannot have unionh (C being an infinite field), we can
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find Y with α(Y ) �= 0 for allα �= 0. Then we see thatg0,Y is smallest when
it is h, and (a) follows.

(b) The linear map adY acts ongα with generalized eigenvalueα(Y ) �= 0,
by (a). Hence adY is nonsingular on eachgα.

(c) Since Intg is a group, it is enough to show thatY ∈ Rh(g) implies
that(Int g)(Rh(g)) contains a neighborhood ofY in g. Form the differential
dσ at the point(1, Y ). SinceRh(g) is open inh, the tangent space atY
may be regarded ash (with cH (t) = Y + t H being a curve with derivative
H ∈ h). Similarly the tangent space at the pointσ(1, Y ) of g may be
identified withg. Finally the tangent space at the point 1 of Intg is the Lie
algebra adg. Hencedσ is a map

dσ : adg × h → g.

Now

dσ(adX, 0) = d

dt
σ(et adX , Y )|t=0

= d

dt
(et adX)Y |t=0 = (adX)Y = [ X, Y ]

and

dσ(0, H) = d

dt
σ(1, Y + t H)|t=0 = d

dt
(Y + t H)|t=0 = H.

Thus image(dσ) = [Y, g] + h. By (b), dσ is ontog. Hence the image of
σ includes a neighborhood ofσ(1, Y ) in g. Therefore image(σ ) is open.
But Rg(g) is dense. So image(σ ) contains a memberX of Rg(g). Then
a(Y ) = X for somea ∈ Int g andY ∈ h. Froma(Y ) = X we easily check
that a(g0,Y ) = g0,X . Hence dimg0,Y = dimg0,X . Since dimg0,Y = lh(g)

and dimg0,X = lg(g), we obtainlh(g) = lg(g). ThusRh(g) ⊆ Rg(g). Now
Rg(g) is stable under AutC g, and so image(σ ) ⊆ Rg(g).

(d) Let a1(Y1) = a2(Y2) with Y1 ∈ Rh1(g) andY2 ∈ Rh2(g). Thena =
a−1

2 a1 hasa(Y1) = Y2. As in the previous step, we obtaina(g0,Y1) = g0,Y2.
By (a),g0,Y1 = h1 andg0,Y2 = h2. Hencea(h1) = h2.

(e) If X is in Rg(g), let h = g0,X . This is a Cartan subalgebra, by
Theorem 2.9′, and (a) says thatX is in Rh(g) for thish. Thenσ(1, X) = X
shows thatX is in the image of theσ defined relative to thish.

(f) We have seen thatRg(g) is the complement of the set where a nonzero
polynomial vanishes. By Lemma 2.14 this set is connected.
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4. Roots

Throughout this section,g denotes a complex semisimple Lie algebra,B
is its Killing form, andh is a Cartan subalgebra ofg. We saw in Proposition
2.10 thath is abelian. The nonzero generalized weights of adh on g are
called theroots of g with respect toh. We denote the set of roots by
� or �(g, h). Then we can rewrite the weight-space decomposition of
Proposition 2.5a as

(2.16) g = h ⊕
⊕
α∈�

gα.

This decomposition is called theroot-space decompositionof g with
respect toh. Members ofgα are calledroot vectors for the rootα.

Proposition 2.17.

(a) If α andβ are in� ∪ {0} andα + β �= 0, thenB(gα, gβ) = 0.
(b) If α is in � ∪ {0}, thenB is nonsingular ongα × g−α.
(c) If α is in �, then so is−α.
(d) B|h×h is nondegenerate; consequently to each rootα correspondsHα

in h with α(H) = B(H, Hα) for all H ∈ h.
(e)� spansh∗.

PROOF.
(a) By Proposition 2.5c, adgα adgβ carriesgλ into gλ+α+β and conse-

quently, when written as a matrix in terms of a basis ofg compatible with
(2.16), has zero in every diagonal entry. Therefore its trace is 0.

(b) SinceB is nondegenerate (Theorem 1.45),B(X, g) �= 0 for each
X ∈ gα. Since (a) shows thatB(X, gβ) = 0 for everyβ other than−α, we
must haveB(X, g−α) �= 0.

(c, d) These are immediate from (b).
(e) SupposeH ∈ h hasα(H) = 0 for all α ∈ �. By (2.16), adH

is nilpotent. Sinceh is abelian, adH adH ′ is nilpotent for all H ′ ∈ h.
ThereforeB(H, h) = 0. By (d), H = 0. Consequently� spansh∗.

For each rootα, choose and fix, by Lie’s Theorem (Theorem 1.25)
applied to the action ofh on gα, a vectorEα �= 0 in gα with [H, Eα] =
α(H)Eα for all H ∈ h.
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Lemma 2.18.

(a) If α is a root andX is in g−α, then [Eα, X ] = B(Eα, X)Hα.
(b) If α andβ are in�, thenβ(Hα) is a rational multiple ofα(Hα).
(c) If α is in �, thenα(Hα) �= 0.

PROOF.
(a) Since [gα, g−α] ⊆ g0 by Proposition 2.5c, [Eα, X ] is in h. For H in

h, we have

B([Eα, X ], H) = −B(X, [Eα, H ]) = B(X, [H, Eα])

= α(H)B(X, Eα) = B(Hα, H)B(Eα, X)

= B(B(Eα, X)Hα, H).

Then the conclusion follows from Proposition 2.17d.
(b) By Proposition 2.17b, we can chooseX−α in g−α such that

B(Eα, X−α) = 1. Then (a) shows that

(2.19) [Eα, X−α] = Hα.

With β fixed in �, let g′ = ⊕
n∈Z gβ+nα. This subspace is invariant under

adHα, and we shall compute the trace of adHα on this subspace in two ways.
Noting that adHα acts ongβ+nα with the single generalized eigenvalue
(β + nα)(Hα) and adding the contribution to the trace over all values ofn,
we obtain

(2.20)
∑
n∈Z

(β(Hα) + nα(Hα)) dimgβ+nα

as the trace. On the other hand, Proposition 2.5c shows thatg′ is invariant
under adEα and adX−α. By (2.19) the trace is

= Tr adHα = Tr(adEαadX−α − adX−αadEα) = 0.

Thus (2.20) equals 0, and the conclusion follows.
(c) Supposeα(Hα) = 0. By (b), β(Hα) = 0 for all β ∈ �. By

Proposition 2.17e every member ofh∗ vanishes onHα. Thus Hα = 0.
But this conclusion contradicts Proposition 2.17d, sinceα is assumed to
be nonzero.

Proposition 2.21. If α is in �, then dimgα = 1. Also nα is not in�

for any integern ≥ 2.
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REMARK. Thus we no longer need to use the cumbersome condition
(adH − α(H)1)k X = 0 for X ∈ gα but can work withk = 1. Briefly

(2.22) gα = {X ∈ g | (adH)X = α(H)X}.
PROOF. As in the proof of Lemma 2.18b, we can chooseX−α in g−α

with B(Eα, X−α) = 1 and obtain the bracket relation (2.19). Putg′′ =
CEα ⊕ CHα ⊕ ⊕

n<0 gnα. This subspace is invariant under adHα and
adEα, by Proposition 2.5c, and it is invariant under adX−α by Proposition
2.5c and Lemma 2.18a. By (2.19), adHα has trace 0 in its action ong′′.
But adHα acts on each summand with a single generalized eigenvalue, and
thus the trace is

= α(Hα) + 0 +
∑
n<0

nα(Hα) dimgnα = 0.

Using Lemma 2.18c, we see that
∞∑

n=1

n dimg−nα = 1.

Consequently dimg−α = 1 and dimg−nα = 0 for n ≥ 2. Proposition 2.17c
shows that we may replaceα by −α everywhere in the above argument,
and then we obtain the conclusion of the proposition.

Corollary 2.23. The action of adh ong is simultaneously diagonable.

REMARK. This corollary completes the promised converse to Proposi-
tion 2.13.

PROOF. This follows by combining (2.16), Proposition 2.10, and Propo-
sition 2.21.

Corollary 2.24. Onh × h, the Killing form is given by

B(H, H ′) =
∑
α∈�

α(H)α(H ′).

REMARK. This formula is a special property of the Killing form. By
contrast the previous results of this section remain valid ifB is replaced by
any nondegenerate symmetric invariant bilinear form. We shall examine
the role of special properties ofB further when we come to Corollary 2.38.

PROOF. Let{Hi} be a basis ofh. By Proposition 2.21 and Corollary 2.23,
{Hi}∪{Eα} is a basis ofg, and each adH acts diagonally. Then adH adH ′

acts diagonally, and the respective eigenvalues are 0 and{α(H)α(H ′)}.
Hence

B(H, H ′) = Tr(adH adH ′) =
∑
α∈�

α(H)α(H ′).
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Corollary 2.25. The pair of vectors{Eα, E−α} selected before Lemma
2.18 may be normalized so thatB(Eα, E−α) = 1.

PROOF. By Proposition 2.17b,gα and g−α are nonsingularly paired.
Since Proposition 2.21 shows each of these spaces to be 1-dimensional, the
result follows.

The above results may be interpreted as saying thatg is built out of copies
of sl(2, C) in a certain way. To see this, letEα andE−α be normalized as
in Corollary 2.25. Then Lemma 2.18a gives us the bracket relations

[Hα, Eα] = α(Hα)Eα

[Hα, E−α] = −α(Hα)E−α

[Eα, E−α] = Hα.

We normalize these vectors suitably, for instance by

(2.26) H ′
α = 2

α(Hα)
Hα, E ′

α = 2

α(Hα)
Eα, E ′

−α = E−α.

Then

[H ′
α, E ′

α] = 2E ′
α

[H ′
α, E ′

−α] = −2E ′
−α

[E ′
α, E ′

−α] = H ′
α.

As in (1.5) let us define elements ofsl(2, C) by

h =
(

1 0

0 −1

)
, e =

(
0 1

0 0

)
, f =

(
0 0

1 0

)
.

These satisfy

[h, e] = 2e

[h, f ] = −2 f

[e, f ] = h.

Consequently

(2.27) H ′
α �→ h, E ′

α �→ e, E ′
−α �→ f
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extends linearly to an isomorphism of span{Hα, Eα, E−α} onto sl(2, C).
Thusg is spanned by embedded copies ofsl(2, C). The detailed structure
of g comes by understanding how these copies ofsl(2, C) fit together. To
investigate this question, we study the action of such ansl(2, C) subalgebra
on all ofg, i.e., we study a complex-linear representation ofsl(2, C) ong.
We already know some invariant subspaces for this representation, and we
study these one at a time.

Thus the representation to study is the one in the proof of Lemma 2.18b,
with the version ofsl(2, C) built from a rootα acting on the vector space
g′ = ⊕

n∈Z gβ+nα by ad. Correspondingly we make the following definition
of root string . Let α be in �, and letβ be in � ∪ {0}. The α string
containing β is the set of all members of� ∪ {0} of the formβ + nα for
n ∈ Z. Two examples of root strings appear in Figure 2.1.

(a) (b)
e2 − e3

2e1e1 − e2

e1 − e2

FIGURE 2.1. Root strings: (a)e2 − e3 string containinge1 − e2

for sl(3, C), (b) e1 − e2 string through 2e1 for sp(2, C)

Also we transfer the restriction toh of the Killing form to a bilinear form
on the dualh∗ by the definition

(2.28) 〈ϕ, ψ〉 = B(Hϕ, Hψ) = ϕ(Hψ) = ψ(Hϕ)

for ϕ andψ in h∗. HereHϕ andHψ are defined as in Proposition 2.17d.

Proposition 2.29.Let α be in�, and letβ be in� ∪ {0}.
(a) Theα string containingβ has the formβ +nα for −p ≤ n ≤ q with

p ≥ 0 andq ≥ 0. There are no gaps. Furthermore

p − q = 2〈β, α〉
〈α, α〉 ,
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and
2〈β, α〉
〈α, α〉 is in Z.

(b) If β + nα is never 0, defineslα to be the isomorphic copy ofsl(2, C)

spanned byH ′
α, E ′

α, andE ′
−α as in (2.26), and letg′ = ⊕

n∈Z gβ+nα. Then
the representation ofslα ong′ by ad is irreducible.

PROOF. If β + nα = 0 for somen, then conclusion (a) follows from
Proposition 2.21, and there is nothing to prove for (b). Thus we may assume
thatβ + nα is never 0, and we shall prove (a) and (b) together.

By Proposition 2.21 the transformation adH ′
α is diagonable ong′ with

distinct eigenvalues, and these eigenvalues are

(β + nα)(H ′
α) = 2

〈α, α〉 (β + nα)(Hα)

= 2

〈α, α〉 (〈β, α〉 + n〈α, α〉)

= 2〈β, α〉
〈α, α〉 + 2n.(2.30)

Thus any adH ′
α invariant subspace ofg′ is a sum of certaingβ+nα ’s. Hence

the same thing is true of any ad(slα) invariant subspace.
Let V be an irreducible such subspace, and let−p andq be the smallest

and largestn’s appearing forV . Theorem 1.66 shows that the eigenvalues
of adh = adH ′

α in V areN − 2i with 0 ≤ i ≤ N , whereN = dim V − 1.
Since these eigenvalues jump by 2’s, (2.30) shows that alln’s between−p
andq are present. Also (2.30) gives

N = 2〈β, α〉
〈α, α〉 + 2q

−N = 2〈β, α〉
〈α, α〉 − 2p.and

Adding, we obtain

(2.31) p − q = 2〈β, α〉
〈α, α〉 .

Theorem 1.67 shows thatg′ is the direct sum of irreducible subspaces
underslα. If V ′ is another irreducible subspace, let−p′ and q ′ be the
smallest and largestn’s appearing forV ′. Then (2.31), applied toV ′, gives

p′ − q ′ = 2〈β, α〉
〈α, α〉 ,
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so that

(2.32) p′ − q ′ = p − q.

On the other hand, all then’s from −p to q are accounted for byV, and we
must therefore have either−p′ > q or q ′ < −p. By symmetry we may
assume that−p′ > q. This inequality implies that

(2.33) p′ < −q

and thatq ′ ≥ −p′ > q ≥ −p. From the latter inequality we obtain

(2.34) −q ′ < p.

Adding (2.33) and (2.34), we obtain a contradiction with (2.32), and the
proposition follows.

Corollary 2.35. If α and β are in � ∪ {0} and α + β �= 0, then
[gα, gβ ] = gα+β .

PROOF. Without loss of generality, letα �= 0. Proposition 2.5c shows
that

(2.36) [gα, gβ ] ⊆ gα+β.

We are to prove that equality holds in (2.36) We consider cases.
If β is an integral multiple ofα and is not equal to−α, then Proposition

2.21 shows thatβ must beα or 0. If β = α, thengα+β = 0 by Proposition
2.21, and hence equality must hold in (2.36). Ifβ = 0, then the equality
[h, gα] = gα says that equality holds in (2.36).

If β is not an integral multiple ofα, then Proposition 2.29b is applicable
and shows thatslα acts irreducibly ong′ = ⊕

n∈Z gβ+nα. Making the
identification (2.27) and matching data with Theorem 1.66, we see that
the root vectorsEβ+nα, except for constant factors, are the vectorsvi of

Theorem 1.66. The onlyi for which e =
(

0 1

0 0

)
mapsvi to 0 isi = 0, and

v0 corresponds toEβ+qα. Thus [gα, gβ ] = 0 forcesq = 0 and says that
β +α is not a root. In this case,gα+β = 0, and equality must hold in (2.36).

Corollary 2.37. Let α and β be roots such thatβ + nα is never 0
for n ∈ Z. Let Eα, E−α, and Eβ be any root vectors forα, −α, andβ,
respectively, and letp andq be the integers in Proposition 2.29a. Then

[E−α, [Eα, Eβ ]] = q(1 + p)

2
α(Hα)B(Eα, E−α)Eβ.
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PROOF. Both sides are linear inEα and E−α, and we may therefore
normalize them as in Corollary 2.25 so thatB(Eα, E−α) = 1. If we then
make the identification (2.27) of the span of{Hα, Eα, E−α} with sl(2, C),
we can reinterpret the desired formula as

〈α, α〉
2

[ f, [e, Eβ ]]
?= q(1 + p)

2
α(Hα)Eβ,

i.e., as
[ f, [e, Eβ ]]

?= q(1 + p)Eβ.

From Proposition 2.29b, the action of the span of{h, e, f } on g′ is irre-
ducible. The vectorEβ+qα corresponds to a multiple of the vectorv0 in
Theorem 1.66. SinceEβ is a multiple of(ad f )q Eβ+qα, Eβ corresponds to
a multiple ofvq . By (d) and then (c) in Theorem 1.66, we obtain

(ad f )(ade)Eβ = q(N − q + 1)Eβ,

whereN = dimg′ −1 = (q + p +1)−1. Thenq(N −q +1) = q(1+ p),
and the result follows.

Corollary 2.38. Let V be theR linear span of� in h∗. ThenV is a real
form of the vector spaceh∗, and the restriction of the bilinear form〈 · , · 〉
to V × V is a positive-definite inner product. Moreover, ifh0 denotes the
R linear span of allHα for α ∈ �, thenh0 is a real form of the vector space
h, the members ofV are exactly those linear functionals that are real on
h0, and restriction of the operation of those linear functionals fromh to h0

is anR isomorphism ofV ontoh∗
0.

REMARK. The proof will make use of Corollary 2.24, which was the only
result so far that used any properties of the Killing form other than thatB is
a nondegenerate symmetric invariant bilinear form. The present corollary
will show that B is positive definite onh0, and then Corollary 2.24 will
no longer be needed. The remaining theory for complex semisimple Lie
algebras in this chapter goes through ifB is replaced by any nondegenerate
symmetric invariant bilinear form that is positive definite onh0. Because
of Theorem 2.15, once such a formB is positive definite on the real form
h0 of the Cartan subalgebrah, it is positive definite on the corresponding
real form of any other Cartan subalgebra.

PROOF. Combining Corollary 2.24 with the definition (2.28), we obtain

(2.39) 〈ϕ, ψ〉 = B(Hϕ, Hψ) =
∑
β∈�

β(Hϕ)β(Hψ) =
∑
β∈�

〈β, ϕ〉〈β, ψ〉
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for all ϕ andψ in h∗. Letα be a root, and letpβ andqβ be the integersp and
q associated to theα string containingβ in Proposition 2.29a. Specializing
(2.39) toϕ = ψ = α gives

〈α, α〉 =
∑
β∈�

〈β, α〉2 =
∑
β∈�

[(pβ − qβ)
1
2〈α, α〉]2.

Since〈α, α〉 �= 0 according to Lemma 2.18c, we obtain

〈α, α〉 = 4∑
β∈� (pβ − qβ)2

,

and therefore〈α, α〉 is rational. By Lemma 2.18b,

(2.40) β(Hα) is rational for allα andβ in �.

Let dimC h = l. By Proposition 2.17e we can choosel rootsα1, . . . , αl

such thatHα1, . . . , Hαl is a basis ofh overC. Let ω1, . . . , ωl be the dual
basis ofh∗ satisfyingωi(Hαj ) = δi j , and letV be the real vector space of all
members ofh∗ that are real on all ofHα1, . . . , Hαl . ThenV = ⊕l

j=1 Rωj ,
and it follows thatV is a real form of the vector spaceh∗. By (2.40) all
roots are inV . Sinceα1, . . . , αl are already linearly independent overR,
we conclude thatV is theR linear span of the roots.

If ϕ is in V, thenϕ(Hβ) is real for each rootβ. Since (2.39) gives

〈ϕ, ϕ〉 =
∑
β∈�

〈β, ϕ〉2 =
∑
β∈�

ϕ(Hβ)
2,

we see that the restriction of〈 · , · 〉 to V × V is a positive-definite inner
product.

Now leth0 denote theR linear span of allHα for α ∈ �. Sinceϕ �→ Hϕ

is an isomorphism ofh∗ with h carryingV to h0, it follows thath0 is a real
form of h. We know that the real linear span of the roots (namelyV ) has
real dimensionl, and consequently the real linear span of allHα for α ∈ �

has real dimensionl. SinceHα1, . . . , Hαl is linearly independent overR, it
is a basis ofh0 overR. HenceV is the set of members ofh∗ that are real on
all of h0. Therefore restriction fromh to h0 is a vector-space isomorphism
of V ontoh∗

0.

Let | · |2 denote the norm squared associated to the inner product〈 · , · 〉
onh∗

0 ×h∗
0. Letα be a root. Relative to the inner product, we introduce the

root reflection

sα(ϕ) = ϕ − 2〈ϕ, α〉
|α|2 α for ϕ ∈ h

∗
0.

This is an orthogonal transformation onh∗
0, is −1 onRα, and is+1 on the

orthogonal complement ofα.
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Proposition 2.41. For any rootα, the root reflectionsα carries� into
itself.

PROOF. Letβ be in�, and letp andq be as in Proposition 2.29a. Then

sαβ = β − 2〈β, α〉
|α|2 α = β − (p − q)α = β + (q − p)α.

Since−p ≤ q − p ≤ q, β + (q − p)α is in theα string containingβ.
Hencesαβ is a root or is 0. Sincesα is an orthogonal transformation onh∗

0,
sαβ is not 0. Thussα carries� into �.

5. Abstract Root Systems

To examine roots further, it is convenient to abstract the results we have
obtained so far. This approach will allow us to work more easily toward
a classification of complex semisimple Lie algebras and also to apply the
theory of roots in a different situation that will arise in Chapter VI.

An abstract root systemin a finite-dimensional real inner product space
V with inner product〈 · , · 〉 and norm squared| · |2 is a finite set� of
nonzero elements ofV such that

(i) � spansV ,

(ii) the orthogonal transformationssα(ϕ) = ϕ − 2〈ϕ, α〉
|α|2 α, for α ∈ �,

carry� to itself,

(iii)
2〈β, α〉

|α|2 is an integer wheneverα andβ are in�.

An abstract root system is said to bereduced if α ∈ � implies 2α /∈ �.
Much of what we saw in §4 can be summarized in the following theorem.

Theorem 2.42.The root system of a complex semisimple Lie algebrag

with respect to a Cartan subalgebrah forms a reduced abstract root system
in h∗

0.

PROOF. With V = h∗
0, V is an inner product space spanned by� as

a consequence of Corollary 2.38. Property (ii) follows from Proposition
2.41, and property (iii) follows from Proposition 2.29a. According to
Proposition 2.21, the abstract root system� is reduced.
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As a consequence of the theorem, the examples of §1 give us many
examples of reduced abstract root systems. We recall them here and tell
what names we shall use for them:

(2.43)

Vector Space Root System g

An V =


∑n+1
i=1 ai ei

with∑
ai ei = 0

 � = {ei − ej | i �= j} sl(n + 1, C)

Bn V = { ∑n
i=1 ai ei

} � = {±ei ± ej | i �= j}
∪ {±ei} so(2n+1,C)

Cn V = { ∑n
i=1 ai ei

} � = {±ei ± ej | i �= j}
∪ {±2ei}

sp(n, C)

Dn V = { ∑n
i=1 ai ei

}
� = {±ei ± ej | i �= j} so(2n, C)

Some 2-dimensional examples of abstract root systems are given in
Figure 2.2. All but(BC)2 are reduced. The systemA1 ⊕ A1 arises as the
root system forsl(2, C) ⊕ sl(2, C).

We say that two abstract root systems� in V and�′ in V ′ areisomorphic
if there is a vector-space isomorphism ofV onto V ′ carrying� onto�′

and preserving the integers 2〈β, α〉/|α|2 for α andβ in �. The systemsB2

andC2 in Figure 2.2 are isomorphic.
An abstract root system� is said to bereducible if � admits a nontrivial

disjoint decomposition� = �′ ∪ �′′ with every member of�′ orthogonal
to every member of�′′. We say that� is irreducible if it admits no such
nontrivial decomposition. In Figure 2.2 all the abstract root systems are
irreducible exceptA1 ⊕ A1. The fact that this root system comes from
a complex semisimple Lie algebra that is not simple generalizes as in
Proposition 2.44 below.

Proposition 2.44. The root system� of a complex semisimple Lie
algebrag with respect to a Cartan subalgebrah is irreducible as an abstract
reduced root system if and only ifg is simple.

PROOF THAT � IRREDUCIBLE IMPLIES g SIMPLE. Suppose thatg is a
nontrivial direct sum of idealsg = g′ ⊕g′′. Letα be a root, and decompose
the corresponding root vectorEα accordingly asEα = E ′

α + E ′′
α. For H in

h, we have

0 = [H, Eα] − α(H)Eα = ([H, E ′
α] − α(H)E ′

α) + ([H, E ′′
α] − α(H)E ′′

α).
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Sinceg′ andg′′ are ideals and have 0 intersection, the two terms on the
right are separately 0. ThusE ′

α andE ′′
α are both in the root spacegα. Since

dimgα = 1, E ′
α = 0 or E ′′

α = 0. Thusgα ⊆ g′ or gα ⊆ g′′. Define

(2.45)
�′ = {α ∈ � | gα ⊆ g

′}
�′′ = {α ∈ � | gα ⊆ g

′′}.
What we have just shown about (2.45) is that� = �′ ∪�′′ disjointly. Now
with obvious notation we have

α′(Hα′′)Eα′ = [Hα′′, Eα′ ] ⊆ [Hα′′, g′] = [[ Eα′′, E−α′′ ], g′] ⊆ [g′′, g′] = 0,

and thusα′(Hα′′) = 0. Hence�′ and�′′ are mutually orthogonal.

A1 ⊕ A1 A2

B2 C2

(BC)2 G2

FIGURE 2.2. Abstract root systems withV = R2
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PROOF THAT g SIMPLE IMPLIES � IRREDUCIBLE. Suppose that� =
�′ ∪ �′′ exhibits� as reducible. Define

g
′ =

∑
α∈�′

{CHα + gα + g−α}

g
′′ =

∑
α∈�′′

{CHα + gα + g−α}.

Theng′ andg′′ are vector subspaces ofg, andg = g′ ⊕ g′′ as vector spaces.
To complete the proof, it is enough to show thatg′ andg′′ are ideals ing. It
is clear that they are Lie subalgebras. Forα′ in �′ andα′′ in �′′, we have

(2.46) [Hα′, Eα′′ ] = α′′(Hα′)Eα′′ = 0

by the assumed orthogonality. Also if [gα′, gα′′ ] �= 0, thenα′ + α′′ is a root
that is not orthogonal to every member of�′ (α′ for instance) and is not
orthogonal to every member of�′′ (α′′ for instance), in contradiction with
the given orthogonal decomposition of�. We conclude that

(2.47) [gα′, gα′′ ] = 0.

Combining (2.46) and (2.47), we see that [g′, gα′′ ] = 0. Since [g′, h] ⊆ g′

and sinceg′ is a subalgebra,g′ is an ideal ing. Similarly g′′ is an ideal.
This completes the proof.

EXAMPLE. Let g = so(4, C) with notation as in §1. The root system is
� = {±e1 ± e2}. If we put �′ = {±(e1 − e2)} and�′′ = {±(e1 + e2)},
then� = �′ ∪ �′′ exhibits� as reducible. By Proposition 2.44,so(4, C)

is not simple. The root system is isomorphic toA1 ⊕ A1.

We extend our earlier definition ofroot string to the context of an
abstract root system�. For α ∈ � and β ∈ � ∪ {0}, the α string
containing β is the set of all members of� ∪ {0} of the formβ + nα with
n ∈ Z. Figure 2.1 in §4 showed examples of root strings. In the system
G2 as pictured in Figure 2.2, there are root strings containing four roots.

If α is a root and1
2α is not a root, we say thatα is reduced.

Proposition 2.48.Let � be an abstract root system in the inner product
spaceV .

(a) If α is in �, then−α is in �.
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(b) If α is in � and is reduced, then the only members of� ∪ {0}
proportional toα are ±α, ±2α, and 0, and±2α cannot occur if� is
reduced.

(c) If α is in � andβ is in � ∪ {0}, then

2〈β, α〉
|α|2 = 0, ±1, ±2, ±3, or ± 4,

and±4 occurs only in a nonreduced system withβ = ±2α.
(d) If α andβ are nonproportional members of� such that|α| ≤ |β|,

then
2〈β, α〉

|β|2 equals 0 or+1 or−1.

(e) If α andβ are in� with 〈α, β〉 > 0, thenα − β is a root or 0. Ifα
andβ are in� with 〈α, β〉 < 0, thenα + β is a root or 0.

(f) If α andβ are in� and neitherα + β norα − β is in � ∪ {0}, then
〈α, β〉 = 0.

(g) If α is in � andβ is in � ∪ {0}, then theα string containingβ has
the formβ + nα for −p ≤ n ≤ q with p ≥ 0 andq ≥ 0. There are no

gaps. Furthermorep − q = 2〈β, α〉
|α|2 . Theα string containingβ contains

at most four roots.

PROOF.
(a) This follows sincesα(α) = −α.
(b) Letα be in�, and letcα be in� ∪ {0}. We may assume thatc �= 0.

Then 2〈cα, α〉/|α|2 and 2〈α, cα〉/|cα|2 are both integers, from which it
follows that 2c and 2/c are integers. Sincec �= ± 1

2, the only possibilities
arec = ±1 andc = ±2, as asserted. If� is reduced,c = ±2 cannot
occur.

(c) We may assume thatβ �= 0. From the Schwarz inequality we have∣∣∣∣2〈α, β〉
|α|2

2〈α, β〉
|β|2

∣∣∣∣ ≤ 4

with equality only if β = cα. The case of equality is handled by (b).

If strict equality holds, then
2〈α, β〉

|α|2 and
2〈α, β〉

|β|2 are two integers whose

product is≤ 3 in absolute value. The result follows in either case.
(d) We have an inequality of integers∣∣∣∣2〈α, β〉

|α|2
∣∣∣∣ ≥

∣∣∣∣2〈α, β〉
|β|2

∣∣∣∣ ,
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and the proof of (c) shows that the product of the two sides is≤ 3. Therefore
the smaller side is 0 or 1.

(e) We may assume thatα andβ are not proportional. For the first

statement, assume that|α| ≤ |β|. Then sβ(α) = α − 2〈α, β〉
|β|2 β must

be α − β, by (d). Soα − β is in �. If |β| ≤ |α| instead, we find that
sα(β) = β − α is in �, and thenα − β is in � as a consequence of (a).
For the second statement we apply the first statement to−α.

(f) This is immediate from (e).
(g) Let−p andq be the smallest and largest values ofn such thatβ +nα

is in � ∪ {0}. If the string has a gap, we can findr ands with r < s − 1
such thatβ + rα is in � ∪ {0}, β + (r + 1)α andβ + (s − 1)α are not in
� ∪ {0}, andβ + sα is in � ∪ {0}. By (e),

〈β + rα, α〉 ≥ 0 and 〈β + sα, α〉 ≤ 0.

Subtracting these inequalities, we obtain(r − s)|α|2 ≥ 0, and thusr ≥ s,
contradiction. We conclude that there are no gaps. Next

sα(β + nα) = β + nα − 2〈β + nα, α〉
|α|2 α = β −

(
n + 2〈β, α〉

|α|2
)

α,

and thus−p ≤ n ≤ q implies−q ≤ n + 2〈β, α〉
|α|2 ≤ p. Takingn = q and

thenn = −p, we obtain in turn

2〈β, α〉
|α|2 ≤ p − q and then p − q ≤ 2〈β, α〉

|α|2 .

Thus 2〈β, α〉/|α|2 = p − q. Finally, to investigate the length of the string,
we may assumeq = 0. The length of the string is thenp + 1, with
p = 2〈β, α〉/|α|2. The conclusion that the string has at most four roots
then follows from (c) and (b).

We now introduce a notion of positivity inV that extends the notion
in the examples in §1. The intention is to single out a subset of nonzero
elements ofV aspositive, writing ϕ > 0 if ϕ is a positive element. The
only properties of positivity that we need are that

(i) for any nonzeroϕ ∈ V, exactly one ofϕ and−ϕ is positive,
(ii) the sum of positive elements is positive, and any positive multiple

of a positive element is positive.
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The way in which such a notion of positivity is introduced is not important,
and we shall give a sample construction shortly.

We say thatϕ > ψ orψ < ϕ if ϕ−ψ is positive. Then>defines a simple
ordering onV that is preserved under addition and under multiplication by
positive scalars.

One way to define positivity is by means of alexicographic ordering.
Fix a spanning setϕ1, . . . , ϕm of V, and define positivity as follows: We say
thatϕ > 0 if there exists an indexk such that〈ϕ, ϕi〉 = 0 for 1 ≤ i ≤ k −1
and〈ϕ, ϕk〉 > 0.

A lexicographic ordering sometimes arises disguised in a kind of dual
setting. To use notation consistent with applications, think ofV as the
vector space dual of a spaceh0, and fix a spanning setH1, . . . , Hm for h0.
Then we say thatϕ > 0 if there exists an indexk such thatϕ(Hi) = 0 for
1 ≤ i ≤ k − 1 andϕ(Hk) > 0.

Anyway, we fix a notion of positivity and the resulting ordering forV .
We say that a rootα is simple if α > 0 and ifα does not decompose as
α = β1+β2 with β1 andβ2 both positive roots. A simple root is necessarily
reduced.

Proposition 2.49. With l = dim V, there arel simple rootsα1, . . . , αl ,
and they are linearly independent. Ifβ is a root and is written asβ =
x1α1 + · · · + xlαl , then all thexj have the same sign (if 0 is allowed to be
positive or negative), and all thexj are integers.

REMARKS. Once this proposition has been proved, any positive rootα

can be written asα = ∑l
i=1 niαi with eachni an integer≥ 0. The integer∑l

i=1 ni is called thelevel of α relative to{α1, . . . , αl} and is sometimes
used in inductive proofs. The first example of such a proof will be with
Proposition 2.54 below.

(2.50)

Positive Roots Simple Roots

An ei − ej , i < j e1 − e2, e2 − e3, . . . , en − en+1

Bn
ei ± ej with i < j

ei
e1 − e2, e2 − e3, . . . , en−1 − en, en

Cn
ei ± ej with i < j

2ei
e1 − e2, e2 − e3, . . . , en−1 − en, 2en

Dn ei ± ej with i < j e1−e2, . . . , en−2−en−1, en−1−en, en−1+en
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Before coming to the proof, let us review the examples in (2.43), which
came from the complex semisimple Lie algebras in §1. In (2.50) we recall
the choice of positive roots we made in §1 for each example and tell what
the corresponding simple roots are.

Lemma 2.51. If α andβ are distinct simple roots, thenα − β is not a
root. Hence〈α, β〉 ≤ 0.

PROOF. Assuming the contrary, suppose thatα −β is a root. Ifα −β is
positive, thenα = (α − β) + β exhibitsα as a nontrivial sum of positive
roots. Ifα −β is negative, thenβ = (β −α)+α exhibitsβ as a nontrivial
sum of positive roots. In either case we have a contradiction. Thusα − β

is not a root, and Proposition 2.48e shows that〈α, β〉 ≤ 0.

PROOF OFPROPOSITION2.49. Letβ > 0 be in�. If β is not simple,
write β = β1 + β2 with β1 andβ2 both positive in�. Then decompose
β1 and/orβ2, and then decompose each of their components if possi-
ble. Continue in this way. We can list the decompositions as tuples
(β, β1, component ofβ1, etc.) with each entry a component of the previous
entry. The claim is that no tuple has more entries than there are positive
roots, and therefore the decomposition process must stop. In fact, otherwise
some tuple would have the sameγ > 0 in it at least twice, and we would
haveγ = γ +α with α a nonempty sum of positive roots, contradicting the
properties of an ordering. Thusβ is exhibited asβ = x1α1 + · · · + xmαm

with all xj positive integers or 0 and with allαj simple. Thus the simple
roots span in the fashion asserted.

Finally we prove linear independence. Renumbering theαj ’s, suppose
that

x1α1 + · · · + xsαs − xs+1αs+1 − · · · − xmαm = 0

with all xj ≥ 0 in R. Putβ = x1α1 + · · · + xsαs . Then

0 ≤ 〈β, β〉 =
〈

s∑
j=1

xjαj ,

m∑
k=s+1

xkαk

〉
=

∑
j,k

xj xk〈αj , αk〉 ≤ 0.

the last inequality holding by Lemma 2.51. We conclude that〈β, β〉 = 0,
β = 0, and all thexj ’s equal 0 since a positive combination of positive
roots cannot be 0.

For the remainder of this section, we fix an abstract root system�, and
we assume that� is reduced. Fix also an ordering coming from a notion of
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positivity as above, and let� be the set of simple roots. We shall associate
a “Cartan matrix” to the system� and note some of the properties of this
matrix. An “abstract Cartan matrix” will be any square matrix with this
list of properties. Working with an abstract Cartan matrix is made easier
by associating to the matrix a kind of graph known as an “abstract Dynkin
diagram.”

Enumerate� as� = {α1, . . . , αl}, wherel = dim V . Thel-by-l matrix
A = (Ai j) given by

Ai j = 2〈αi , αj〉
|αi |2

is called theCartan matrix of � and�. The Cartan matrix depends on
the enumeration of�, and distinct enumerations evidently lead to Cartan
matrices that are conjugate to one another by a permutation matrix.

For the examples in Figure 2.2 with dimV = 2, the Cartan matrices are
of course 2-by-2 matrices. For all the examples exceptG2, an enumeration
of the simple roots is given in (2.50). ForG2 let us agree to list the short
simple root first. Then the Cartan matrices are as follows:

A1 ⊕ A1

(
2 0
0 2

)
A2

(
2 −1

−1 2

)
B2

(
2 −1

−2 2

)
C2

(
2 −2

−1 2

)
G2

(
2 −3

−1 2

)
Proposition 2.52.The Cartan matrixA = (Ai j) of � relative to the set

� of simple roots has the following properties:

(a) Ai j is in Z for all i and j ,
(b) Aii = 2 for all i ,
(c) Ai j ≤ 0 for i �= j ,
(d) Ai j = 0 if and only if Aji = 0,
(e) there exists a diagonal matrixD with positive diagonal entries such

that D AD−1 is symmetric positive definite.
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PROOF. Properties (a), (b), and (d) are trivial, and (c) follows from
Lemma 2.51. Let us prove (e). Put

(2.53) D = diag(|α1|, . . . , |αl |),

so thatD AD−1 =
(

2

〈
αi

|αi | ,
αj

|αj |
〉)

. This is symmetric, and we can discard

the 2 in checking positivity. But(〈ϕi , ϕj〉) is positive definite whenever{ϕi}
is a basis, since

( c1 · · · cl )
(〈ϕi , ϕj〉

)  c1
...

cl

 = ∣∣ ∑
i

ciϕi

∣∣2
.

The normalized simple roots may be taken as the basisϕi of V, according
to Proposition 2.49, and the result follows.

A square matrixA satisfying properties (a) through (e) in Proposition
2.52 will be called anabstract Cartan matrix . Two abstract Cartan
matrices areisomorphic if one is conjugate to the other by a permutation
matrix.

Proposition 2.54. The abstract reduced root system� is reducible if
and only if, for some enumeration of the indices, the Cartan matrix is block
diagonal with more than one block.

PROOF. Suppose that� = �′ ∪ �′′ disjointly with every member of
�′ orthogonal to every member of�′′. We enumerate the simple roots by
listing all those in�′ before all those in�′′, and then the Cartan matrix is
block diagonal.

Conversely suppose that the Cartan matrix is block diagonal, with the
simple rootsα1, . . . , αs leading to one block and the simple roots
αs+1, . . . , αl leading to another block. Let�′ be the set of all roots whose
expansion in terms of the basisα1, . . . , αl involves onlyα1, . . . , αs , and
let �′′ be the set of all roots whose expansion involves onlyαs+1, . . . , αl .
Then�′ and�′′ are nonempty and are orthogonal to each other, and it
is enough to show that their union is�. Let α ∈ � be given, and write
α = ∑l

i=1 niαi . We are to show that eitherni = 0 for i > s or ni = 0 for
i ≤ s. Proposition 2.49 says that all theni are integers and they have the
same sign. Without loss of generality we may assume thatα is positive, so
that allni are≥ 0.
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We proceed by induction on the level
∑l

i=1 ni . If the sum is 1, then
α = αj for some j . Certainly eitherni = 0 for i > s or ni = 0 for i ≤ s.
Assume the result for leveln −1, and let the level ben > 1 forα. We have

0 < |α|2 =
l∑

i=1

ni〈α, αi〉,

and therefore〈α, αj〉 > 0 for somej . To fix the notation, let us say that
1 ≤ j ≤ s. By Proposition 2.48e,α −αj is a root, evidently of leveln −1.
By inductive hypothesis,α − αj is in �′ or �′′. If α − αj is in �′, thenα is
in �′, and the induction is complete. So we may assume thatα − αj is in
�′′. Then〈α −αj , αj〉 = 0. By Proposition 2.48g, theαj string containing
α − αj hasp = q, and this number must be≥ 1 sinceα is a root. Hence
α − 2αj is in � ∪ {0}. We cannot haveα − 2αj = 0 since� is reduced,
and we conclude that the coefficient ofαj in α −αj is > 0, in contradiction
with the assumption thatα − αj is in �′′. Thusα − αj could not have been
in �′′, and the induction is complete.

Motivated by Proposition 2.54, we say that an abstract Cartan matrix
is reducible if, for some enumeration of the indices, the matrix is block
diagonal with more than one block. Otherwise the abstract Cartan matrix
is said to beirreducible .

If we have several abstract Cartan matrices, we can arrange them as the
blocks of a block-diagonal matrix, and the result is a new abstract Cartan
matrix. The converse direction is addressed by the following proposition.

Proposition 2.55. After a suitable enumeration of the indices, any
abstract Cartan matrix may be written in block-diagonal form with each
block an irreducible abstract Cartan matrix.

PROOF. Call two indicesi and j equivalent if there exists a sequence of
integersi = k0, k1, . . . , kr−1, kr = j such thatAks−1ks �= 0 for 1 ≤ s ≤ r .
Enumerate the indices so that the members of each equivalence class appear
together, and then the abstract Cartan matrix will be in block-diagonal form
with each block irreducible.

To our set� of simple roots for the reduced abstract root system�, let
us associate a kind of graph known as a “Dynkin diagram.” We associate to
each simple rootαi a vertex of a graph, and we attach to that vertex a weight
proportional to|αi |2. The vertices of the graph are connected by edges as
follows. If two vertices are given, say corresponding to distinct simple
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rootsαi andαj , we connect those vertices byAi j Aji edges. The resulting
graph is called theDynkin diagram of �. It follows from Proposition
2.54 that� is irreducible if and only if the Dynkin diagram is connected.
Figure 2.3 gives the Dynkin diagrams for the root systemsAn, Bn, Cn, and
Dn when the simple roots are chosen as in (2.50). Figure 2.3 shows also
the Dynkin diagram for the root systemG2 of Figure 2.1 when the two
simple roots are chosen so that|α1| < |α2|.

Let us indicate how we can determine the Dynkin diagram almost com-
pletely from the Cartan matrix. The key is the following lemma.

Lemma 2.56.Let A be an abstract Cartan matrix in block-diagonal form
with each block an irreducible abstract Cartan matrix. Then the associated
diagonal matrixD given in the defining property (e) of an abstract Cartan
matrix is unique up to a multiplicative scalar on each block.

PROOF. Suppose thatD andD′ are two diagonal matrices with positive
diagonal entries such thatP = D AD−1 and P ′ = D′ AD′−1 are symmet-
ric positive definite. ThenP and P ′ = (D′ D−1)P(D′ D−1)−1 are both
symmetric. WriteD′ D−1 = diag(b1, . . . , bl). For anyi and j , we have

bi Pi j b
−1
j = P ′

i j = P ′
j i = bj Pji b

−1
i = bj Pi j b

−1
i .

Thus eitherPi j = 0 or bi = bj , i.e.,

(2.57) Ai j = 0 or bi = bj .

If i and j are in the same block ofA, then there exists a sequence of integers
i = k0, k1, . . . , kr−1, kr = j such thatAks−1ks �= 0 for 1 ≤ s ≤ r . From
(2.57) we obtain

bi = bk0 = bk1 = · · · = bkr−1 = bkr = bj .

Thus the diagonal entries ofD′ are proportional to the diagonal entries of
D within each block forA.

Returning to a Cartan matrix arising from the abstract reduced root
system� and the set� of simple roots, we note that the numbersAi j Aji

available from the Cartan matrix determine the numbers of edges between
vertices in the Dynkin diagram. But the Cartan matrix also almost com-
pletely determines the weights in the Dynkin diagram. In fact, (2.53) says
that the square roots of the weights are the diagonal entries of the matrix
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D of Proposition 2.52e. Lemma 2.56 says thatD is determined by the
properties ofA up to a multiplicative scalar on each irreducible block,
and irreducible blocks correspond to connected components of the Dynkin
diagram. Thus by usingA, we can determine the weights in the Dynkin
diagram up to a proportionality constant on each connected component.
These proportionality constants are the only ambiguity in obtaining the
Dynkin diagram from the Cartan matrix.

An
1 1 1 1

e1 − e2 e2 − e3 e3 − e4 en − en+1

Bn
2 2 2 2 1

e1 − e2 e2 − e3 e3 − e4 en−1 − en en

Cn
1 1 1 1 2

e1 − e2 e2 − e3 e3 − e4 en−1 − en 2en

Dn 1

1 1 1 1

e1 − e2 e2 − e3 e3 − e4 en−2−en−1

1

en−1 + en

en−1 − enG2
1 3

FIGURE 2.3. Dynkin diagrams forAn, Bn, Cn, Dn, G2
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The same considerations allow us to associate an “abstract Dynkin di-
agram” to an abstract Cartan matrixA. If A has sizel-by-l, theabstract
Dynkin diagram is a graph withl vertices, thei th and j th vertices being
connected byAi j Aji edges. IfD is the matrix given in defining property (e)
of an abstract Cartan matrix in Proposition 2.52, then we assign a weight
to the vertexi equal to the square of thei th diagonal entry ofD. ThenA
by itself determines the abstract Dynkin diagram up to a proportionality
constant for the weights on each connected component.

Finally let us observe that we can recover an abstract Cartan matrix
A from its abstract Dynkin diagram. Let the system of weights be{wi}.
First suppose there are no edges from thei th vertex to thej th vertex. Then
Ai j Aji = 0. SinceAi j = 0 if and only if Aji = 0, we obtainAi j = Aji = 0.
Next suppose there exist edges between thei th vertex and thej th vertex.
Then the number of edges tells usAi j Aji , while the symmetry ofD AD−1

says that

w
1/2
i Ai jw

−1/2
j = w

1/2
j Ajiw

−1/2
i ,

i.e., that
Ai j

Aji
= wj

wi
.

SinceAi j and Aji are< 0, the number of edges and the ratio of weights
together determineAi j andAji .

6. Weyl Group

Schematically we can summarize our work so far in this chapter as
constructing a two-step passage

complex
semisimple
Lie algebra

choice of−−−−−−−−−−→
Cartan subalgebra

abstract reduced
root system

choice of−−−−−−→
ordering

abstract
Cartan
matrix.

(2.58)

Each step of the passage relies on a certain choice, and that choice is listed
as part of the arrow. For this two-step passage to be especially useful,
we should show that each step is independent of its choice, at least up to
isomorphism. Then we will have a well defined way of passing from a
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complex semisimple Lie algebra first to an abstract reduced root system
and then to an abstract Cartan matrix.

We can ask for even more. Once (2.58) is shown to be well defined
independently of the choices, we can try to show that each step is one-one,
up to isomorphism. In other words, two complex semisimple Lie algebras
with isomorphic abstract reduced root systems are to be isomorphic, and
two abstract reduced root systems leading to isomorphic abstract Cartan
matrices are to be isomorphic. Then we can detect isomorphisms of com-
plex semisimple Lie algebras by using Dynkin diagrams.

Finally we can ask that each step of the two-step passage be onto.
In other words, every abstract reduced root system, up to isomorphism,
is to come from a complex semisimple Lie algebra, and every abstract
Cartan matrix is to come from an abstract reduced root system. Then a
classification of abstract Cartan matrices will achieve a classification of
complex semisimple Lie algebras.

We begin these steps in this section, starting by showing that each step
in (2.58) is well defined, independently of the choices, up to isomorphism.
For the first step, from the complex semisimple Lie algebra to the abstract
reduced root system, the tool is Theorem 2.15, which says that any two
Cartan subalgebras of our complex semisimple Lie algebrag are conjugate
via Intg. It is clear that we can follow the effect of this conjugating
automorphism through to its effect on roots and obtain an isomorphism
of the associated root systems.

For the second step, from the abstract reduced root system to the abstract
Cartan matrix up to isomorphism (or equivalently to the set� of simple
roots), the tool is the “Weyl group,” which we study in this section.

Thus let� be an abstract root system in a finite-dimensional inner
product spaceV . It will not be necessary to assume that� is reduced. We
let W = W (�) be the subgroup of the orthogonal group onV generated by
the reflectionssα for α ∈ �. This is theWeyl group of �. In the special
case that� is the root system of a complex semisimple Lie algebrag with
respect to a Cartan subalgebrah, we sometimes writeW (g, h) for the Weyl
group.

We immediately see thatW is a finite group of orthogonal transforma-
tions of V . In fact, anyw in W maps the finite set� to itself. If w fixes
each element of�, thenw fixes a spanning set ofV and hence fixesV .
The assertion follows.

In addition, we have the formula

(2.59) srα = rsαr−1



164 II. Complex Semisimple Lie Algebras

for any orthogonal transformationr of V . In fact,

srα(rϕ) = rϕ − 2〈rϕ, rα〉
|rα|2 rα = rϕ − 2〈ϕ, α〉

|α|2 rα = r(sαϕ).

As a consequence of (2.59), ifr is in W andrα = β, then

(2.60) sβ = rsαr−1.

EXAMPLES.

1) The root systems of typesAn, Bn, Cn, andDn are described in (2.43).
For An, W (�) consists of all permutations ofe1, . . . , en+1. For Bn and
Cn, W (�) is generated by all permutations ofe1, . . . , en and all sign
changes (of the coefficients ofe1, . . . , en). For Dn, W (�) is generated
by all permutations ofe1, . . . , en and all even sign changes.

2) The nonreduced abstract root system(BC)2 is pictured in Figure 2.2.
For it, W (�) has order 8 and is the same group as forB2 andC2. The
group contains the 4 rotations through multiples of anglesπ/2, together
with the 4 reflections defined by sending a root to its negative and leaving
the orthogonal complement fixed.

3) The reduced abstract root systemG2 is pictured in Figure 2.2. For
it, W (�) has order 12 and consists of the 6 rotations through multiples of
anglesπ/3, together with the 6 reflections defined by sending a root to its
negative and leaving the orthogonal complement fixed.

Introduce a notion of positivity withinV, such as from a lexicographic
ordering, and let�+ be the set of positive roots. The set�+ determines a
set� = {α1, . . . , αl} of simple roots, and in turn� can be used to pick out
the members of�+ from �, since Proposition 2.49 says that the positive
roots are those of the formα = ∑

i niαi with all ni ≥ 0.
Now suppose that� = {α1, . . . , αl} is any set ofl independent reduced

elementsαi such that every expression of a memberα of � as
∑

i ciαi

has all nonzeroci of the same sign. We call� a simple system. Given
a simple system�, we can define�+ to be all roots of the form

∑
i ciαi

with all ci ≥ 0. The claim is that�+ is the set of positive roots in some
lexicographic ordering. In fact, we can use the dual basis to{αi} to get
such an ordering. In more detail if〈αi , ωj〉 = δi j and if j is the first index
with 〈α, ωj〉 nonzero, then the fact that〈α, ωj〉 = cj is positive implies that
α is positive.

Thus we have an abstract characterization of the possible�’s that can
arise as sets of simple roots: they are all possible simple systems.
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Lemma 2.61.Let � = {α1, . . . , αl} be a simple system, and letα > 0
be in�. Then

sαi (α) is

{ = −α if α = αi or α = 2αi

> 0 otherwise.

PROOF. If α = ∑
cjαj , then

sαi (α) =
l∑

j=1

cjαj − 2〈α, αi〉
|αi |2 αi .

If at least onecj is > 0 for j �= i , thensαi (α) has the same coefficient for
αj thatα does, andsαi (α) must be positive. The only remaining case is that
α is a multiple ofαi , and thenα must beαi or 2αi , by Proposition 2.48b.

Proposition 2.62. Let � = {α1, . . . , αl} be a simple system. Then
W (�) is generated by the root reflectionssαi for αi in �. If α is any
reduced root, then there existαj ∈ � ands ∈ W (�) such thatsαj = α.

PROOF. We begin by proving a seemingly sharper form of the second
assertion. LetW ′ ⊆ W be the group generated by thesαi for αi ∈ �. We
prove that any reduced rootα > 0 is of the formsαj with s ∈ W ′. Writing
α = ∑

njαj , we proceed by induction on level(α) = ∑
nj . The case of

level one is the case ofα = αi in �, and we can takes = 1. Assume the
assertion for level< level(α), let level(α) be> 1, and writeα = ∑

njαj .
Since

0 < |α|2 =
∑

nj〈α, αj〉,
we must have〈α, αi〉 > 0 for somei = i0. By our assumptions,α is neither
αi0 nor 2αi0. Thenβ = sαi0

(α) is > 0 by Lemma 2.61 and has

β =
∑
j �=i0

njαj +
(

ci0 − 2〈α, αi0〉
|αi0|2

)
αi0.

Since〈α, αi0〉 > 0, level(β) < level(α). By inductive hypothesis,β = s ′αj

for somes ′ ∈ W ′ and some indexj . Thenα = sαi0
β = sαi0

s ′αj with sαi0
s ′

in W ′. This completes the induction.
If α < 0, then we can write−α = sαj , and it follows thatα = ssαj αj .

Thus each reduced memberα of � is of the forms ′αj for somes ′ ∈ W ′

and someαj ∈ �.
To complete the proof, we show that eachsα, for α ∈ �, is in W ′. There

is no loss of generality in assuming thatα is reduced. Writeα = sαj with
s ∈ W ′. Then (2.60) shows thatsα = ssαj s

−1, which is inW ′. SinceW is
generated by the reflectionssα for α ∈ �, W ⊆ W ′ andW = W ′.
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Theorem 2.63. If � and�′ are two simple systems for�, then there
exists one and only one elements ∈ W such thats� = �′.

PROOF OF EXISTENCE. Let �+ and�+′ be the sets of positive roots in
question. We have|�+| = |�+′| = 1

2|�|, which we write asq. Also
�+ = �+′ if and only if � = �′, and�+ �= �+′ implies� � �+′ and
�′ � �+. Let r = |�+ ∩ �+′|. We induct downward onr , the caser = q
being handled by usings = 1. Letr < q. Chooseαi ∈ � with αi /∈ �+′,
so that−αi ∈ �+′. If β is in �+ ∩�+′, thensαi β is in �+ by Lemma 2.61.
Thussαi β is in �+ ∩ sαi �

+′. Alsoαi = sαi (−αi) is in �+ ∩ sαi �
+′. Hence

|�+ ∩ sαi �
+′| ≥ r + 1. Now sαi �

+′ corresponds to the simple system
sαi �

′, and by inductive hypothesis we can findt ∈ W with t� = sαi �
′.

Thensαi t� = �′, and the induction is complete.

PROOF OF UNIQUENESS. We may assume thats� = �, and we are to
prove thats = 1. Write � = {α1, . . . , αl}, and abbreviatesαj assj . For
s = sim · · · si1, we prove by induction onm that s� = � implies s = 1.
If m = 1, thens = si1 andsαi1 < 0. If m = 2, we obtainsi2� = si1�,
whence−αi2 is in si1� and so−αi2 = −αi1, by Lemma 2.61; hences = 1.
Thus assume inductively that

(2.64) t� = � with t = sjr · · · sj1 andr < m implies t = 1,

and lets = sim · · · si1 satisfys� = � with m > 2.
Puts ′ = sim−1 · · · si1, so thats = sim s ′. Thens ′ �= 1 by (2.64) fort = sim .

Also s ′αj < 0 for some j by (2.64) applied tot = s ′. The latter fact,
together with

sim s ′αj = sαj > 0.

says that−αim = s ′αj , by Lemma 2.61. Also ifβ > 0 ands ′β < 0, then
s ′β = −cαim = s ′(cαj), so thatβ = cαj with c = 1 or 2. Thuss ′ satisfies

(i) s ′αj = −αim ,
(ii) s ′β > 0 for every positiveβ ∈ � other thanαj and 2αj .

Now sim−1 · · · si1αj = −αim < 0 by (i). Choosek so thatt = sik−1 · · · si1

satisfiestαj > 0 andsik tαj < 0. Thentαj = αik . By (2.60),tsj t−1 = sik .
Hencetsj = sik t .

Put t ′ = sim−1 · · · sik+1, so thats ′ = t ′sik t = t ′tsj . Thent ′t = s ′sj . Now
α > 0 andα �= cαj imply sjα = β > 0 with β �= cαj . Thus

t ′tα = s ′sjα = s ′β > 0 by (ii)

t ′tαj = s ′(−αj) = αim > 0 by (i).and
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Hencet ′t� = �. Now t ′t is a product ofm − 2 sj ’s. By inductive
hypothesis,t ′t = 1. Thens ′sj = 1, s ′ = sj , ands = sim s ′ = sim sj . Since
(2.64) has been proved forr = 2, we conclude thats = 1. This completes
the proof.

Corollary 2.65. In the second step of the two-step passage (2.58), the
resulting Cartan matrix is independent of the choice of positive system, up
to permutation of indices.

PROOF. Let� and�′ be the simple systems that result from two different
positive systems. By Theorem 2.63,�′ = s� for somes ∈ W (�). Then
we can choose enumerations� = {α1, . . . , αl} and�′ = {β1, . . . , βl} so
thatβj = sαj , and we have

2〈βi , βj〉
|βi |2 = 2〈sαi , sαj〉

|sαi |2 = 2〈αi , αj〉
|αi |2

sinces is orthogonal. Hence the resulting Cartan matrices match.

Consequently our use of the root-system namesAn, Bn, etc., with the
Dynkin diagrams in Figure 2.3 was legitimate. The Dynkin diagram is not
changed by changing the positive system (except that the names of roots
attached to vertices change).

This completes our discussion of the fact that the steps in the passages
(2.58) are well defined independently of the choices.

Let us take a first look at the uniqueness questions associated with (2.58).
We want to see that each step in (2.58) is one-one, up to isomorphism. The
following proposition handles the second step.

Proposition 2.66.The second step in the passage (2.58) is one-one, up
to isomorphism. That is, the Cartan matrix determines the reduced root
system up to isomorphism.

PROOF. First let us see that the Cartan matrix determines the set of simple
roots, up to a linear transformation ofV that is a scalar multiple of an
orthogonal transformation on each irreducible component. In fact, we may
assume that� is already irreducible, and we letα1, . . . , αl be the simple
roots. Lemma 2.56 and (2.53) show that the Cartan matrix determines
|α1|, . . . , |αl | up to a single proportionality constant. Supposeβ1, . . . , βl

is another simple system for the same Cartan matrix. Normalizing, we
may assume that|αj | = |βj | for all j . From the Cartan matrix we obtain
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2〈αi ,αj 〉
|αi |2 = 2〈βi ,βj 〉

|βi |2 for all i and j and hence〈αi , αj〉 = 〈βi , βj〉 for all i and j .
In other words the linear transformationL defined byLαi = βi preserves
inner products on a basis; it is therefore orthogonal.

To complete the proof, we want to see that the set{α1, . . . , αl} of simple
roots determines the set of roots. LetW ′ be the group generated by the
root reflections in the simple roots, and let�′ = ⋃l

j=1 W ′αj . Proposition
2.62 shows that�′ = � and thatW ′ = W (�). The result follows.

Before leaving the subject of Weyl groups, we prove some further handy
results. For the first result let us fix a system�+ of positive roots and the
corresponding simple system�. We say that a memberλ of V isdominant
if 〈λ, α〉 ≥ 0 for all α ∈ �+. It is enough that〈λ, αi〉 ≥ 0 for all αi ∈ �.

Proposition 2.67. If λ is in V, then there exists a simple system� for
whichλ is dominant.

PROOF. We may assumeλ �= 0. Putϕ1 = λ and extend to an orthogonal
basisϕ1, . . . , ϕl of V . Use this basis to define a lexicographic ordering and
thereby to determine a simple system�. Thenλ is dominant relative to�.

Corollary 2.68. If λ is in V and if a positive system�+ is specified,
then there is some elementw of the Weyl group such thatwλ is dominant.

PROOF. This follows from Proposition 2.67 and Theorem 2.63.

For the remaining results we assume that� is reduced. Fix a positive
system�+, and letδ be half the sum of the members of�+.

Proposition 2.69.Fix a positive system�+ for the reduced abstract root
system�. If α is a simple root, thensα(δ) = δ − α and 2〈δ, α〉/|α|2 = 1.

PROOF. By Lemma 2.61,sα permutes the positive roots other thanα and
sendsα to −α. Therefore

sα(2δ) = sα(2δ − α) + sα(α) = (2δ − α) − α = 2(δ − α),

andsα(δ) = δ − α. Using the definition ofsα, we then see that

2〈δ, α〉/|α|2 = 1.

Forw in W (�), letl(w) be the number of rootsα > 0 such thatwα < 0;
l(w) is called thelength of the Weyl group elementw relative to�. In
terms of a simple system� = {α1, . . . , αl} and its associated positive
system�+, let us abbreviatesαj assj .



6. Weyl Group 169

Proposition 2.70.Fix a simple system� = {α1, . . . , αl} for the reduced
abstract root system�. Thenl(w) is the smallest integerk such thatw can
be written as a productw = sik · · · si1 of k reflections in simple roots.

REMARKS. Proposition 2.62 tells us thatw has at least one expansion as
a product of reflections in simple roots. Therefore the smallest integerk
cited in the proposition exists. We prove Proposition 2.70 after first giving
a lemma.

Lemma 2.71. Fix a simple system� = {α1, . . . , αl} for the reduced
abstract root system�. If γ is a simple root andw is in W (�), then

l(wsγ ) =
{

l(w) − 1 if wγ < 0

l(w) + 1 if wγ > 0.

PROOF. If α is a positive root other thanγ , then Lemma 2.61 shows that
sγ α > 0, and hence the correspondencesγ α ↔ α gives

#{β > 0 | β �= γ andwsγ β < 0} = #{α > 0 | α �= γ andwα < 0}.

To obtainl(wsγ ), we add 1 to the left side ifwγ > 0 and leave the left side
alone ifwγ < 0. To obtainl(w), we add 1 to the right side ifwγ < 0 and
leave the right side alone ifwγ > 0. The lemma follows.

PROOF OFPROPOSITION2.70. Writew = sik · · · si1 as a product ofk
reflections in simple roots. Then Lemma 2.71 implies thatl(w) ≤ k.

To get the equality asserted by the proposition, we need to show that
if w sends exactlyk positive roots into negative roots, thenw can be
expressed as a product ofk factorsw = sik · · · si1. We do so by induction
on k. For k = 0, this follows from the uniqueness in Theorem 2.63.
Inductively assume the result fork − 1. If k > 0 andl(w) = k, thenw

must send some simple rootαj into a negative root. Setw′ = wsj . By
Lemma 2.71,l(w′) = k −1. By inductive hypothesis,w′ has an expansion
w′ = sik−1 · · · si1. Thenw = sik−1 · · · si1sj , and the induction is complete.

Proposition 2.72(Chevalley’s Lemma). Let the abstract root system�

be reduced. Fixv in V, and letW0 = {w ∈ W | wv = v}. ThenW0 is
generated by the root reflectionssα such that〈v, α〉 = 0.

PROOF. Choose an ordering withv first, so that〈β, v〉 > 0 implies
β > 0. Arguing by contradiction, choosew ∈ W0 with l(w) as small as
possible so thatw is not a product of elementssα with 〈v, α〉 = 0. Then
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l(w) > 0 by the uniqueness in Theorem 2.63. Letγ > 0 be a simple root
such thatwγ < 0. If 〈v, γ 〉 > 0, then

〈v, wγ 〉 = 〈wv, wγ 〉 = 〈v, γ 〉 > 0,

in contradiction with the conditionwγ < 0. Hence〈v, γ 〉 = 0. That is,sγ

is in W0. But thenwsγ is in W0 with l(wsγ ) < l(w), by Lemma 2.71. By
assumptionwsγ is a product of the required root reflections, and therefore
so isw.

Corollary 2.73. Let the abstract root system� be reduced. Fixv in V,
and suppose that some elementw �= 1 of W (�) fixesv. Then some root
is orthogonal tov.

PROOF. By Proposition 2.72,w is the product of root reflectionssα such
that〈v, α〉 = 0. Sincew �= 1, there must be such a root reflection.

7. Classification of Abstract Cartan Matrices

In this section we shall classify abstract Cartan matrices, and then we
shall show that every abstract Cartan matrix arises from a reduced abstract
root system. These results both contribute toward an understanding of the
two-step passage (2.58), the second result showing that the second step of
the passage is onto.

Recall that an abstract Cartan matrix is a square matrix satisfying prop-
erties (a) through (e) in Proposition 2.52. We continue to regard two such
matrices as isomorphic if one can be obtained from the other by permuting
the indices.

To each abstract Cartan matrix, we saw in §5 how to associate an abstract
Dynkin diagram, the only ambiguity being a proportionality constant for the
weights on each component of the diagram. We shall work simultaneously
with a given abstract Cartan matrix and its associated abstract Dynkin
diagram. Operations on the abstract Cartan matrix will correspond to
operations on the abstract Dynkin diagram, and the diagram will thereby
give us a way of visualizing what is happening. Our objective is to classify
irreducible abstract Cartan matrices, since general abstract Cartan matrices
can be obtaining by using irreducible such matrices as blocks. But we do
not assume irreducibility yet.

We first introduce two operations on abstract Dynkin diagrams. Each
operation will have a counterpart for abstract Cartan matrices, and we shall
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see that the counterpart carries abstract Cartan matrices to abstract Cartan
matrices. Therefore each of our operations sends abstract Dynkin diagrams
to abstract Dynkin diagrams:

1) Remove thei th vertex from the abstract Dynkin diagram, and remove
all edges attached to that vertex.

2) Suppose that thei th and j th vertices are connected by a single edge.
Then the weights attached to the two vertices are equal. Collapse the two
vertices to a single vertex and give it the common weight, remove the edge
that joins the two vertices, and retain all other edges issuing from either
vertex.

For Operation #1, the corresponding operation on a Cartan matrixA
is to remove thei th row and column fromA. It is clear that the new
matrix satisfies the defining properties of an abstract Cartan matrix given
in Proposition 2.52. This fact allows us to prove the following proposition.

Proposition 2.74.Let A be an abstract Cartan matrix. Ifi �= j , then

(a) Ai j Aji < 4,
(b) Ai j is 0 or−1 or−2 or−3.

PROOF.
(a) Let the diagonal matrixD of defining property (e) be given byD =

diag(d1, . . . , dl). Using Operation #1, remove all but thei th and j th rows
and columns from the abstract Cartan matrixA. Then(

di 0
0 dj

) (
2 Ai j

Aji 2

) (
d−1

i 0
0 d−1

j

)
is positive definite. So its determinant is> 0, andAi j Aji < 4.

(b) If Ai j �= 0, thenAji �= 0, by defining property (d) in Proposition
2.52. SinceAi j andAji are integers≤ 0, the result follows from (a).

We shall return presently to the verification that Operation #2 is a legit-
imate one on abstract Dynkin diagrams. First we derive some more subtle
consequences of the use of Operation #1.

Let A be anl-by-l abstract Cartan matrix, and letD = diag(d1, . . . , dl)

be a diagonal matrix of the kind in defining condition (e) of Proposition
2.52. We shall define vectorsαi ∈ Rl for 1 ≤ i ≤ l that will play the role of
simple roots. Let us writeD AD−1 = 2Q. HereQ = (Qi j) is symmetric
positive definite with 1’s on the diagonal. LetQ1/2 be its positive-definite



172 II. Complex Semisimple Lie Algebras

square root. Define vectorsϕ ∈ Rl for 1 ≤ i ≤ l by ϕi = Q1/2ei , whereei

is thei th standard basis vector ofRl . Then

〈ϕj , ϕi〉 = 〈Q1/2ej , Q1/2ei〉 = 〈Qej , ei〉 = Qi j ,

and in particularϕi is a unit vector. Put

(2.75) αi = diϕi ,

so that

(2.76) di = |αi |.
Then

(2.77)

Ai j = 2(D−1Q D)i j = 2d−1
i Qi j dj

= 2d−1
i dj〈ϕj , ϕi〉 = 2d−1

i dj〈d−1
j αj , d−1

i αi〉
= 2〈αi , αj〉

|αi |2 .

The vectorsαi are linearly independent since detA �= 0.
We shall find it convenient to refer to a vertex of the abstract Dynkin

diagram either by its indexi or by the associated vectorαi , depending on
the context. We may writeAi j or Aαi ,αi+1 for an entry of the abstract Cartan
matrix.

Proposition 2.78.The abstract Dynkin diagram associated to thel-by-l
abstract Cartan matrixA has the following properties:

(a) there are at mostl pairs of verticesi < j with at least one edge
connecting them,

(b) there are no loops,
(c) at most three edges issue from any point of the diagram.

PROOF.
(a) Withαi as in (2.75), putα = ∑l

i=1

αi

|αi | . Then

0 < |α|2 =
∑

i, j

〈
αi

|αi | ,
αj

|αj |
〉

=
∑

i

〈
αi

|αi | ,
αi

|αi |
〉
+ 2

∑
i< j

〈
αi

|αi | ,
αj

|αj |
〉

= l +
∑
i< j

2〈αi , αj〉
|αi ||αj |

= l −
∑
i< j

√
Ai j Aji .(2.79)
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By Proposition 2.74,
√

Ai j Aji is 0 or 1 or
√

2 or
√

3. When nonzero, it is
therefore≥ 1. Therefore the right side of (2.79) is

≤ l −
∑
i< j,

connected

1.

Hence the number of connected pairs of vertices is< l.
(b) If there were a loop, we could use Operation #1 to remove all vertices

except those in a loop. Then (a) would be violated for the loop.
(c) Fix α = αi as in (2.75). Consider the vertices that are connected

by edges to thei th vertex. Writeβ1, . . . , βr for theαj ’s associated to these
vertices, and let there bel1, . . . , lr edges to thei th vertex. LetU be the
(r +1)-dimensional vector subspace ofRl spanned byβ1, . . . , βr , α. Then
〈βi , βj〉 = 0 for i �= j by (b), and hence{βk/|βk|}r

k=1 is an orthonormal
set. Adjoinδ ∈ U to this set to make an orthonormal basis ofU . Then
〈α, δ〉 �= 0 since{β1, . . . , βr , α} is linearly independent. By Parseval’s
equality,

|α|2 =
∑

k

〈
α,

βk

|βk|
〉2

+ 〈α, δ〉2 >
∑

k

〈
α,

βk

|βk|
〉2

and hence

1 >
∑

k

〈α, βk〉2

|α|2|βk|2 = 1
4

∑
k

lk .

Thus
∑

k lk < 4. This completes the proof.

We turn to Operation #2, which we have described in terms of abstract
Dynkin diagrams. Let us describe the operation in terms of abstract Cartan
matrices. We assume thatAi j = Aji = −1, and we have asserted that the
weights attached to thei th and j th vertices, saywi andwj , are equal. The
weights are given bywi = d2

i andwj = d2
j . The symmetry ofD AD−1

implies that
di Ai j d

−1
j = dj Aji d

−1
i ,

hence thatd2
i = d2

j andwi = wj . Thus

(2.80) Ai j = Aji = −1 implies wi = wj .

Under the assumption thatAi j = Aji = −1, Operation #2 replaces the
abstract Cartan matrixA of sizel by a square matrix of sizel−1, collapsing
the i th and j th indices. The replacement row is the sum of thei th and j th

rows of A in entriesk /∈ {i, j}, and similarly for the replacement column.

The 2-by-2 matrix from thei th and j th indices is
(

2 −1

−1 2

)
within A and gets

replaced by the 1-by-1 matrix(2).
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Proposition 2.81. Operation #2 replaces the abstract Cartan matrixA
by another abstract Cartan matrix.

PROOF. Without loss of generality, let the indicesi and j be l − 1 and
l. DefineE to be the(l − 1)-by-l matrix

E =


1 0 · · · 0 0 0
0 1 · · · 0 0 0
...

. . .
...

0 0 · · · 1 0 0
0 0 · · · 0 1 1

 =
(

1l−2 0 0
0 1 1

)
.

The candidate for a new Cartan matrix isE AEt , and we are to verify the
five axioms in Proposition 2.52. The first four are clear, and we have to
check (e). LetP be the positive-definite matrixP = D AD−1, and define

D′ = E DEtdiag(1, . . . , 1, 1
2),

which is square of sizel − 1. Remembering from (2.80) that the weights
wi satisfywi = d2

i and thatwl−1 = wl , we see thatdl−1 = dl . Write d for
the common value ofdl−1 anddl . In block form,D is then of the form

D =
( D0 0 0

0 d 0
0 0 d

)
.

ThereforeD′ in block form is given by

D′ =
(

1l−2 0 0
0 1 1

) ( D0 0 0
0 d 0
0 0 d

) ( 1l−2 0
0 1
0 1

) (
1l−2 0
0 1

2

)
=

(
D0 0
0 d

)
.

Meanwhile

Etdiag(1, . . . , 1, 1
2)E =

( 1l−2 0
0 1
0 1

) (
1l−2 0
0 1

2

) (
1l−2 0 0
0 1 1

)

=
( 1l−2 0 0

0 1
2

1
2

0 1
2

1
2

)
,
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and it follows thatEtdiag(1, . . . , 1, 1
2)E commutes withD. Since

E Etdiag(1, . . . , 1, 1
2) = 1,

we therefore have

D′E = E DEtdiag(1, . . . , 1, 1
2)E = E Etdiag(1, . . . , 1, 1

2)E D = E D.

The same computation gives alsoD′−1E = E D−1, whose transpose is
Et D′−1 = D−1Et . Thus

D′(E AEt)D′−1 = (D′E)A(Et D′−1) = E D AD−1Et = E P Et ,

and the right side is symmetric and positive semidefinite. To see that it is
definite, let〈E P Etv, v〉 = 0. Then〈P Etv, Etv〉 = 0. SinceP is positive
definite,Etv = 0. But Et is one-one, and thereforev = 0. We conclude
that E P Et is definite.

Now we specialize to irreducible abstract Cartan matrices, which corre-
spond to connected abstract Dynkin diagrams. In five steps, we can obtain
the desired classification.

1) No abstract Dynkin diagram contains a configuration

or

or

In fact, otherwise Operation #2 would allow us to collapse all the single-line
part in the center to a single vertex, in violation of Proposition 2.78c.
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2) The following are the only possibilities left for a connected abstract
Dynkin diagram:

2a) There is a triple line. By Proposition 2.78c the only possibility is

(G2)

2b) There is a double line, but there is no triple line. Then Step 1 shows
that the diagram is

(B,C, F)

α1 αp βq β1

2c) There are only single lines. Call

δ

a triple point . If there is no triple point, then the absence of loops implies
that the diagram is

(A)

α1 α2 αl

If there is a triple point, then there is only one, by Step 1, and the diagram
is

(D, E)

βq−1 β1

α1 αp−1 δ

γr−1 γ1
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3) The following are the possibilities for weights:

3a) If thei th and j th vertices are connected by a single line, thenAi j =
Aji = −1. By (2.80) the weights satisfywi = wj . Thus in the cases(A)

and(D, E) of Step 2, all the weights are equal, and we may take them to
be 1. In this situation we shall omit the weights from the diagram.

3b) In the case(B, C, F) of Step 2, letα = αp andβ = βq . Also let us
useα andβ to denote the corresponding vertices. Possibly reversing the
roles ofα andβ, we may assume thatAαβ = −2 andAβα = −1. Then( |α| 0

0 |β|
) (

2 −2
−1 2

) ( |α|−1 0
0 |β|−1

)
is symmetric, so that−2|α||β|−1 = −1|β||α|−1 and|β|2 = 2|α|2. Apart
from a proportionality constant, we obtain the diagram

α1 αp βq β1

1 1 2 2

3c) In the case(G2) of Step 2, similar reasoning leads us to the diagram

1 3

4) In case(B, C, F) of Step 2, the only possibilities are

1 2 2

(B)

1 1 2

(C)

1 1 2 2

(F4)

Let us prove this assertion. In the notation of Step 3b, it is enough to show
that

(2.82) (p − 1)(q − 1) < 2.
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This inequality will follow by applying the Schwarz inequality to

α =
p∑

i=1

iαi and β =
q∑

j=1

jβj .

Since|α1|2 = · · · = |αp|2, we have

−1 = Aαi ,αi+1 = 2〈αi , αi+1〉
|αi |2 = 2〈αi , αi+1〉

|αp|2 .

Thus

2〈αi , αi+1〉 = −|αp|2.

2〈βj , βj+1〉 = −|βq |2.Similarly

Also

2 = Aαp,βq Aβq ,αp = 4〈αp, βq〉2

|αp|2|βq |2
and hence

〈αp, βq〉2 = 1
2|αp|2|βq |2.

Then
〈α, β〉 =

∑
i, j

〈iαi , jβj〉 = pq〈αp, βq〉,

while

|α|2 =
∑

i, j

〈iαi , jαj〉 =
p∑

i=1

i2〈αi , αi〉 + 2
p−1∑
i=1

i(i + 1)〈αi , αi+1〉

= |αp|2
( p∑

i=1

i2 −
p−1∑
i=1

i(i + 1)
)

= |αp|2
(

p2 −
p−1∑
i=1

i
)

= |αp|2(p2 − 1
2(p − 1)p) = |αp|2( 1

2 p(p + 1)).

Similarly
|β|2 = |βq |2( 1

2q(q + 1)).

Sinceα andβ are nonproportional, the Schwarz inequality gives〈α, β〉2 <

|α|2|β|2. Thus

1
2 p2q2|αp|2|βq |2 = p2q2〈αp, βq〉2 < |αp|2|βq |2( 1

4 p(p + 1)q(q + 1)).

Hence 2pq < (p + 1)(q + 1) and pq < p + q + 1, and (2.82) follows.
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5) In case(D, E) of Step 2, we may takep ≥ q ≥ r , and then the only
possibilities are

r = 2, q = 2, p arbitrary≥ 2(D)

r = 2, q = 3, p = 3 or 4 or 5.(E)

Let us prove this assertion. In the notation of Step 2c, it is enough to show
that

(2.83)
1

p
+ 1

q
+ 1

r
> 1.

This inequality will follow by applying Parseval’s equality to

α =
p−1∑
i=1

iαi , β =
q−1∑
j=1

jβj , γ =
r−1∑
k=1

kγk, and δ.

As in Step 4 (but withp replaced byp − 1), we have

2〈αi , αi+1〉 = −|δ|2 and |α|2 = |δ|2( 1
2 p(p − 1)),

and similarly forβ andγ . Also

〈α, δ〉 = 〈(p − 1)αp−1, δ〉 = (p − 1)(− 1
2|δ|2) = − 1

2(p − 1)|δ|2
and similarly forβ andγ . The spanU of {α, β, γ, δ} is 4-dimensional since
these four vectors are linear combinations of disjoint subsets of members
of a basis. Within this span the set{

α

|α| ,
β

|β| ,
γ

|γ |
}

is orthonormal. Adjoinε to this set to obtain an orthonormal basis ofU .
Sinceδ is independent of{α, β, γ }, we have〈δ, ε〉 �= 0. By the Bessel
inequality

|δ|2 ≥
〈
δ,

α

|α|
〉2

+
〈
δ,

β

|β|
〉2

+
〈
δ,

γ

|γ |
〉2

+ 〈δ, ε〉2,

with the last term> 0. Thus

1 >

(〈α, δ〉
|α||δ|

)2

+
(〈β, δ〉

|β||δ|
)2

+
(〈γ, δ〉

|γ ||δ|
)2

=
(

p−1

2

)2 1
1
2 p(p−1)

+
(

q−1

2

)2 1
1
2q(q−1)

+
(

r −1

2

)2 1
1
2r(r −1)

= 1

2

p − 1

p
+ 1

2

q − 1

q
+ 1

2

r − 1

r
.

Thus 2> 3 − (
1
p

+ 1
q

+ 1
r

)
, and (2.83) follows.
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Theorem 2.84(classification). Up to isomorphism the connected ab-
stract Dynkin diagrams are exactly those in Figure 2.4, specificallyAn for
n ≥ 1, Bn for n ≥ 2, Cn for n ≥ 3, Dn for n ≥ 4, E6, E7, E8, F4, andG2.

REMARKS.
1) The subscripts refer to the numbers of vertices in the various diagrams.
2) The namesAn, Bn, Cn, Dn, andG2 are names of root systems, and

Corollary 2.65 shows that the associated Dynkin diagrams are independent
of the ordering. As yet, the namesE6, E7, E8, andF4 are attached only
to abstract Dynkin diagrams. At the end of this section, we show that
these diagrams come from root systems, and then we may use these names
unambiguously for the root systems.

PROOF. We have seen that any connected abstract Dynkin diagram has
to be one of the ones in this list, up to isomorphism. Also we know that
An, Bn, Cn, Dn, andG2 come from abstract reduced root systems and are
therefore legitimate Dynkin diagrams. To check thatE6 E7, E8, and F4

are legitimate Dynkin diagrams, we write down the candidates for abstract
Cartan matrices and observe the first four defining properties of an abstract
Cartan matrix by inspection. For property (e) we exhibit vectors{αi} for

each case such that the matrix in question has entriesAi j = 2〈αi , αj〉
|αi |2 , and

then property (e) follows.
For F4, the matrix is

(2.85a)


2 −1 0 0

−1 2 −2 0
0 −1 2 −1
0 0 −1 2

 ,

and the vectors are the following members ofR4:

(2.85b)

α1 = 1
2(e1 − e2 − e3 − e4)

α2 = e4

α3 = e3 − e4

α4 = e2 − e3.

For reference we note that these vectors are attached to the vertices of the
Dynkin diagram as follows:

1 1 2 2

(2.85c)

α1 α2 α3 α4



7. Classification of Abstract Cartan Matrices 181

For E8, the matrix is

(2.86a)



2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0

−1 0 2 −1 0 0 0 0
0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2


,

and the vectors are the following members ofR8:

(2.86b)

α1 = 1
2(e8 − e7 − e6 − e5 − e4 − e3 − e2 + e1)

α2 = e2 + e1

α3 = e2 − e1

α4 = e3 − e2

α5 = e4 − e3

α6 = e5 − e4

α7 = e6 − e5

α8 = e7 − e6.

For reference we note that these vectors are attached to the vertices of the
Dynkin diagram as follows:

(2.86c)

α2

α8 α7 α6 α5 α4 α3 α1

For E7 or E6, the matrix is the first 7 or 6 rows and columns of (2.86a),
and the vectors are the first 7 or 6 of the vectors (2.86b).

This completes the classification of abstract Cartan matrices. The cor-
responding Dynkin diagrams are tabulated in Figure 2.4.
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An

1 2 2 2

Bn

1 1 1 2

Cn

Dn

E6

E7

E8

1 1 2 2

F4

1 3

G2

FIGURE 2.4. Classification of Dynkin diagrams
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Actually we can see without difficulty thatE6, E7, E8, andF4 are not
just abstract Cartan matrices but actually come from abstract reduced root
systems. As we remarked in connection with Theorem 2.84, we can then
use the same names for the abstract root systems as for the Cartan matrices.
The fact thatE6, E7, E8, andF4 come from abstract reduced root systems
enables us to complete our examination of the second step of the passage
(2.58) from complex semisimple Lie algebras to abstract Cartan matrices.

Proposition 2.87. The second step in the passage (2.58) is onto. That
is, every abstract Cartan matrix comes from a reduced root system.

Proof. In the case ofF4, we takeV = R4, and we let

(2.88) � =


±ei

±ei ± ej for i �= j
1
2(±e1 ± e2 ± e3 ± e4)

with all possible signs allowed. We have to check the axioms for an abstract
root system. Certainly the roots spanR4, and it is a simple matter to check
that 2〈β, α〉/|α|2 is always an integer. The problem is to check that the root
reflections carry roots to roots. The case that needs attention issαβ with
α of the third kind. Ifβ is of the first kind, thensαβ = ±sβα, and there
is no difficulty. If β is of the second kind, there is no loss of generality in
assuming thatβ = e1 + e2. Thensαβ = β unless the coefficients ofe1 and
e2 in α are equal. In this casesαβ gives plus or minus thee3, e4 part ofβ,
but without the factor of12.

Now suppose thatα andβ are both of the third kind. We need to consider
sαβ when one or three of the signs inα andβ match. In either case there is
one exceptional sign, say as coefficient ofei . Thensαβ = ±ei , and hence
the root reflections carry� to itself.

Therefore� is an abstract reduced root system. The vectorsαi in (2.85b)
are the simple roots relative to the lexicographic ordering obtained from
the ordered basise1, e2, e3, e4, and then (2.85a) is the Cartan matrix.

In the case ofE8, we takeV = R8, and we let

(2.89) � =
{ ±ei ± ej for i �= j

1
2

∑8
i=1 (−1)n(i)ei with

∑8
i=1 (−1)n(i) even.

For the first kind of root, all possible signs are allowed. Again we have
to check the axioms for an abstract root system, and again the problem
is to check that the root reflections carry roots to roots. This time all
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roots have the same length. Thus whenα andβ are nonorthogonal and
nonproportional, we havesαβ = ±sβα. Hence matters come down to
checking the case thatα andβ are both of the second kind.

In this case we need to considersαβ when two or six of the signs inα and
β match. In either case there are two exceptional signs, say as coefficients
of ei andej . We readily check thatsαβ = ±ei ± ej for a suitable choice of
signs, and hence the root reflections carry� to itself.

Therefore� is an abstract reduced root system. The vectorsαi in (2.86b)
are the simple roots relative to the lexicographic ordering obtained from
the ordered basise8, e7, e6, e5, e4, e3, e2, e1, and then (2.86a) is the Cartan
matrix.

In the case ofE7, we takeV to be the subspace of the space forE8

orthogonal toe8 + e7, and we let� be the set of roots forE8 that are in this
space. SinceE8 is a root system, it follows thatE7 is a root system. All the
αi for E8 exceptα8 are roots forE7, and they must remain simple. Since
there are 7 such roots, we see thatα1, . . . , α7 must be all of the simple roots.
The associated Cartan matrix is then the part of (2.86a) that excludesα8.

In the case ofE6, we takeV to be the subspace of the space forE8

orthogonal toe8 + e7 ande8 + e6, and we let� be the set of roots forE8

that are in this space. SinceE8 is a root system, it follows thatE6 is a root
system. All theαi for E8 exceptα7 andα8 are roots forE6, and they must
remain simple. Since there are 6 such roots, we see thatα1, . . . , α6 must
be all of the simple roots. The associated Cartan matrix is then the part of
(2.86a) that excludesα7 andα8.

8. Classification of Nonreduced Abstract Root Systems

In this section we digress from considering the two-step passage (2.58)
from complex semisimple Lie algebras to abstract Cartan matrices. Our
topic will be nonreduced abstract root systems. Abstract root systems that
are not necessarily reduced arise in the structure theory of real semisimple
Lie algebras, as presented in Chapter VI; the root systems in question are the
systems of “restricted roots” of the Lie algebra. In order not to attach special
significance later to those real semisimple Lie algebras whose systems of
restricted roots turn out to be reduced, we shall give a classification now
of nonreduced abstract root systems. There is no loss of generality in
assuming that such a system is irreducible.

An example arises by forming the union of the root systemsBn andCn
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given in (2.43). The union is called(BC)n and is given as follows:

(BC)n V = { ∑n
i=1 ai ei

}
� = {±ei ± ej | i �= j} ∪ {±ei} ∪ {±2ei}.

(2.90)

A diagram of all of the roots of(BC)2 appears in Figure 2.2.
In contrast with Proposition 2.66, the simple roots of an abstract root

system that is not necessarily reduced do not determine the root system.
For example, ifBn and(BC)n are taken to have the sets of positive roots as
in (2.50), then they have the same sets of simple roots. Thus it is not helpful
to associate an unadorned abstract Cartan matrix and Dynkin diagram to
such a system. But we can associate the slightly more complicated diagram
in Figure 2.5 to(BC)n, and it conveys useful unambiguous information.

(BC)n
2 2 2 2 1,4

e1 − e2 e2 − e3 e3 − e4 en−1 − en en, 2en

FIGURE 2.5. Substitute Dynkin diagram for(BC)n

Now let � be any abstract root system in an inner product spaceV .
Recall that ifα is a root and1

2α is not a root, we say thatα is reduced.

Lemma 2.91. The reduced rootsα ∈ � form a reduced abstract root
system�s in V . The rootsα ∈ � such that 2α /∈ � form a reduced abstract
root system�l in V . The Weyl groups of�, �s , and�l coincide.

PROOF. It follows immediately from the definitions that�s and �l

are abstract root systems. Also it is clear that�s and�l are reduced. The
reflections for�, �s , and�l coincide, and hence the Weyl groups coincide.

Proposition 2.92.Up to isomorphism the only irreducible abstract root
systems� that are not reduced are of the form(BC)n for n ≥ 1.

PROOF. We impose a lexicographic ordering, thereby fixing a system
of simple roots. Also we form�s as in Lemma 2.91. Since� is not
reduced, there exists a rootα such that 2α is a root. By Proposition 2.62,
α is conjugate via the Weyl group to a simple root. Thus there exists a
simple rootβ such that 2β is a root. Evidentlyβ is simple in�s , and�s
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is irreducible. Letγ �= β be any simple root of�s such that〈β, γ 〉 �= 0.
Then

2〈γ, β〉
|β|2 and

2〈γ, 2β〉
|2β|2 = 1

2

2〈γ, β〉
|β|2

are negative integers, and it follows that 2〈γ, β〉/|β|2 = −2. Referring to
the classification in Theorem 2.84, we see that�s is of typeBn, with β as
the unique short simple root. Any Weyl group conjugateβ ′ of β has 2β ′

in �, and the rootsβ ′ with 2β ′ in � are exactly those with|β ′| = |β|. The
result follows.

9. Serre Relations

We return to our investigation of the two-step passage (2.58), first from
complex semisimple Lie algebras to reduced abstract root systems and then
from reduced abstract root systems to abstract Cartan matrices. We have
completed our investigation of the second step, showing that that step is
independent of the choice of ordering up to isomorphism, is one-one up
to isomorphism, and is onto. Moreover, we have classified the abstract
Cartan matrices.

For the remainder of this chapter we concentrate on the first step. Theo-
rem 2.15 enabled us to see that the passage from complex semisimple Lie
algebras to reduced abstract root systems is well defined up to isomorphism,
and we now want to see that it is one-one and onto, up to isomorphism. First
we show that it is one-one. Specifically we shall show that an isomorphism
between the root systems of two complex semisimple Lie algebras lifts to
an isomorphism between the Lie algebras themselves. More than one
such isomorphism of Lie algebras exists, and we shall impose additional
conditions so that the isomorphism exists and is unique. The result, known
as the Isomorphism Theorem, will be the main result of the next section
and will be the cornerstone of our development of structure theory for real
semisimple Lie algebras and Lie groups in Chapter VI. The technique will
be to use generators and relations, realizing any complex semisimple Lie
algebra as the quotient of a “free Lie algebra” by an ideal generated by
some “relations.”

Thus letg be a complex semisimple Lie algebra, fix a Cartan subalgebra
h, let � be the set of roots, letB be a nondegenerate symmetric invariant
bilinear form ong that is positive definite on the real form ofh where
the roots are real, let� = {α1, . . . , αl} be a simple system, and letA =
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(Ai j)
l
i, j=1 be the Cartan matrix. For 1≤ i ≤ l, let

(2.93)

hi = 2

|αi |2 Hαi

ei = nonzero root vector forαi

fi = nonzero root vector for−αi with B(ei , fi) = 2/|αi |2.

Proposition 2.94. The setX = {hi , ei , fi}l
i=1 generatesg as a Lie

algebra.

REMARK. We callX a set ofstandard generatorsof g relative toh, �,
B, �, andA = (Ai j)

l
i, j=1.

PROOF. The linear span of thehi ’s is all of h since theαi form a basis
of h∗. Let α be a positive root, and leteα be a nonzero root vector. If
α = ∑

i niαi , we show by induction on the level
∑

i ni thateα is a multiple
of an iterated bracket of theei ’s. If the level is 1, thenα = αj for some j ,
andeα is a multiple ofej . Assume the result for level< n and let the level
of α ben > 1. Since

0 < |α|2 =
∑

i

ni〈α, αi〉,

we must have〈α, αj〉 > 0 for somej . By Proposition 2.48e,β = α − αj

is a root, and Proposition 2.49 shows thatβ is positive. Ifeβ is a nonzero
root vector forβ, then the induction hypothesis shows thateβ is a multiple
of an iterated bracket of theei ’s. Corollary 2.35 shows thateα is a multiple
of [eβ, ej ], and the induction is complete.

Thus all the root spaces for positive roots are in the Lie subalgebra of
g generated byX . A similar argument with negative roots, using thefi ’s,
shows that the root spaces for the negative roots are in this Lie subalgebra,
too. ThereforeX generates all ofg.

Proposition 2.95. The setX = {hi , ei , fi}l
i=1 satisfies the following

properties withing:

(a) [hi , hj ] = 0,
(b) [ei , f j ] = δi j hi ,
(c) [hi , ej ] = Ai j ej ,
(d) [hi , f j ] = −Ai j f j ,
(e) (adei)

−Ai j +1ej = 0 wheni �= j ,
(f) (ad fi)

−Ai j +1 f j = 0 wheni �= j .
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REMARK. Relations (a) through (f) are called theSerre relationsfor g.
We shall refer to them by letter.

PROOF.
(a) The subalgebrah is abelian.
(b) For i = j , we use Lemma 2.18a. Wheni �= j , αi − αj cannot be a

root, by Proposition 2.49.
(c, d) We observe that [hi , ej ] = αj(hi)ej = 2

|αi |2 αj(Hαi )ej = Ai j ej , and
we argue similarly for [hi , f j ].

(e, f) Wheni �= j , theαi string containingαj is

αj , αj + αi , . . . , αj + qαi sinceαj − αi /∈ �.

Thus p = 0 for the root string, and

−q = p − q = 2〈αj , αi〉
|αi |2 = Ai j .

Hence 1− Ai j = q +1, andαj +(1− Ai j)αi is not a root. Then (e) follows,
and (f) is proved similarly.

Now we look at (infinite-dimensional) complex Lie algebras with no
relations. Afree Lie algebra on a setX is a pair(F, ι) consisting of a
Lie algebraF and a functionι : X → F with the following universal
mapping property: Wheneverl is a complex Lie algebra andϕ : X → l is
a function, then there exists a unique Lie algebra homomorphismϕ̃ such
that the diagram

F

ι ϕ̃

X −−−−−−−−−−−−→
ϕ

l

commutes.

Proposition 2.96. If X is a nonempty set, then there exists a free Lie
algebraF on X , and the image ofX in F generatesF. Any two free Lie
algebras onX are canonically isomorphic.

REMARK. The proof is elementary but uses the Poincar´e–Birkhoff–Witt
Theorem, which will be not be proved until Chapter III. We therefore
postpone the proof of Proposition 2.96 until that time.
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Now we can express our Lie algebra in terms of generators and relations.
With g, h, �, B, �, and A = (Ai j)

l
i, j=1 as before, letF be the free Lie

algebra on the setX = {hi , ei , fi}l
i=1, and letR be the ideal inF generated

by the Serre relations (a) through (f), i.e., generated by the differences of
the left sides and right sides of all equalities (a) through (f) in Proposition
2.95. We set up the diagram

F

(2.97)

X −−−−−−−−−−−−→ g

and obtain a Lie algebra homomorphism ofF into g. This homomorphism
carriesR to 0 as a consequence of Proposition 2.95, and therefore it
descends to a Lie algebra homomorphism

F/R −→ g

that is ontog by Proposition 2.94 and is one-one on the linear span of
X = {hi , ei , fi}l

i=1. We call this map thecanonical homomorphismof
F/R ontog relative to{hi , ei , fi}l

i=1.

Theorem 2.98(Serre). Letg be a complex semisimple Lie algebra, and
let X = {hi , ei , fi}l

i=1 be a set of standard generators. LetF be the free Lie
algebra on 3l generatorshi , ei , fi with 1 ≤ i ≤ l, and letR be the ideal
generated inF by the Serre relations (a) through (f). Then the canonical
homomorphism ofF/R ontog is an isomorphism.

REMARK. The proof will be preceded by two lemmas that will play a
role both here and in §11.

Lemma 2.99.Let A = A = (Ai j)
l
i, j=1 be an abstract Cartan matrix, let

F be the free Lie algebra on 3l generatorshi , ei , fi with 1 ≤ i ≤ l, and let
R̃ be the ideal generated inF by the Serre relations (a) through (d). Define
g̃ = F/R̃, and writehi , ei , fi also for the images of the generators ing̃. In
g̃, put

h̃ = span{hi}, an abelian Lie subalgebra

ẽ = Lie subalgebra generated by allei

f̃ = Lie subalgebra generated by allfi .
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Then
g̃ = h̃ ⊕ ẽ ⊕ f̃.

PROOF. Proposition 2.96 shows thatX generatesF, and consequently
the image ofX in g̃ generates̃g. Thereforẽg is spanned by iterated brackets
of elements fromX . In g̃, each generator fromX is an eigenvector under
adhi , by Serre relations (a), (c), and (d). Hence so is any iterated bracket,
the eigenvalue for an iterated bracket being the sum of the eigenvalues from
the factors.

To see that

(2.100) g̃ = h̃ + ẽ + f̃,

we observe thatX is contained in the right side of (2.100). Thus it is enough
to see that the right side is invariant under the operation adx for eachx ∈ X .
Each of̃h, ẽ, f̃ is invariant under adhi , from the previous paragraph. Also
h̃ + ẽ is invariant under adei . We prove that(ad fi )̃e ⊆ h̃ + ẽ. We do so
by treating the iterated brackets that spanẽ, proceeding inductively on the
number of factors. When we have one factor, Serre relation (b) gives us

(ad fi)ej = −δi j hi ∈ h̃ + ẽ.

When we have more than one factor, let the iterated bracket fromẽ be [x, y]
with n factors, wherex andy have< n factors. Then(ad fi)x and(ad fi)y
are iñh + ẽ by inductive hypothesis, and hence

(ad fi)[x, y] = [(ad fi)x, y] + [x, (ad fi)y] ∈ [̃h + ẽ, ẽ] + [̃e, h̃ + ẽ] ⊆ ẽ.

Therefore(adx )̃e ⊆ h̃+ ẽ+ f̃ for eachx ∈ X . Similarly(adx )̃f ⊆ h̃+ ẽ+ f̃

for eachx ∈ X , and we obtain (2.100).
Now let us prove that the sum (2.100) is direct. As we have seen, each

term on the right side of (2.100) is spanned by simultaneous eigenvectors
for ad̃h. Let us be more specific. As a result of Serre relation (c), an
iterated bracket iñe involving ej1, . . . , ejk has eigenvalue under adhi given
by

Ai j1 + · · · + Ai jk =
l∑

j=1

mj Ai j with mj ≥ 0 an integer.

If an eigenvalue for̃e coincides for alli with an eigenvalue for̃h + f̃, we
obtain an equation

∑l
j=1 mj Ai j = − ∑l

j=1 nj Ai j for all i with mj ≥ 0,

nj ≥ 0, and not allmj equal to 0. Consequently
∑l

i=1(mj + nj)Ai j = 0 for
all i . Since(Ai j) is nonsingular,mj + nj = 0 for all j . Thenmj = nj = 0
for all j , contradiction. Therefore the sum (2.100) is direct.
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Lemma 2.101. Let A = (Ai j)
l
i, j=1 be an abstract Cartan matrix, letF

be the free Lie algebra on 3l generatorshi , ei , fi with 1 ≤ i ≤ l, and let
R be the ideal generated inF by the Serre relations (a) through (f). Define
g′ = F/R, and suppose that span{hi}l

i=1 maps one-one fromF into g′.
Write hi also for the images of the generatorshi in g′. Theng′ is a (finite-
dimensional) complex semisimple Lie algebra, the subspaceh′ = span{hi}
is a Cartan subalgebra, the linear functionalsαj ∈ h′∗ given byαj(hi) = Ai j

form a simple system within the root system, and the Cartan matrix relative
to this simple system is exactlyA.

PROOF. Use the notationei and fi also for the images of the generators
ei and fi in g′. Let us observe that under the quotient map fromF to g′,
all the ei ’s and fi ’s map to nonzero elements ing′. In fact, {hi} maps to
a linearly independent set by hypothesis, and hence the images of thehi ’s
are nonzero. Then Serre relation (b) shows that [ei , fi ] = hi �= 0 in g′, and
henceei and fi are nonzero ing′, as asserted..

Because thehi are linearly independent ing, we can defineαj ∈ h′∗ by
αj(hi) = Ai j . These linear functionals are a basis ofh′∗. Forϕ ∈ h′∗, put

g
′
ϕ = {x ∈ g

′ | (adh)x = ϕ(h)x for all h ∈ h
′}.

We callϕ a root if ϕ �= 0 andg′
ϕ �= 0, and we callg′

ϕ the corresponding
root space. The Lie algebrag′ is a quotient of the Lie algebrãg of Lemma
2.99, and it follows from Lemma 2.99 that

g
′ = h

′ ⊕
⊕
ϕ=root

g
′
ϕ

and that all roots are of the formϕ = ∑
njαj with all nonzeronj given as

integers of the same sign. Let�′ be the set of all roots,�′+ the set of all
roots with allnj ≥ 0, and�′− the set of all roots with allnj ≤ 0. We have
just established that

(2.102) �′ = �′+ ∪ �′−.

Let us show thatg′
ϕ is finite dimensional for each rootϕ. First consider

ϕ = ∑
njαj in �′+. Lemma 2.99 shows thatg′

ϕ is spanned by the images
of all iterated brackets ofei ’s in g̃ involving nj instances ofej , and there are
only finitely many such iterated brackets. Thereforeg′

ϕ is finite dimensional
whenϕ is in �′+. Similarly g′

ϕ is finite dimensional whenϕ is in �′−, and
it follows from (2.102) thatg′

ϕ is finite dimensional for each rootϕ.
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The vectorsei and fi , which we have seen are nonzero, are in the
respective spacesg′

αi
andg′

−αi
, and hence eachαi and−αi is a root. For

these roots the root spaces have dimension 1.
Next let us show for eachϕ ∈ h′∗ that

(2.103) dimg
′
ϕ = dimg

′
−ϕ and hence �′− = −�′+.

In fact, we set up the diagram
F

ι η̃

X −−−−−−−−−−−−→
η

F

whereη is the functionη(ei) = fi , η( fi) = ei , andη(hi) = −hi . By the
universal mapping property ofF, η extends to a Lie algebra homomorphism
η̃ of F into itself. If we next observe that̃η2 is an extension of the inclusion
ι of X into F in the diagram

F

ι η̃2

X −−−−−−−−−−−−→
ι

F

then we conclude from the uniqueness of the extension thatη̃2 = 1. We
readily check that̃η(R) ⊆ R, and hencẽη descends to a homomorphism
η̃ : g′ → g′ that is−1 onh′ and interchangesei with fi for all i . Moreover
η̃2 = 1. Sincẽη is −1 onh′ and is invertible, we see that̃η(g′

ϕ) = g′
−ϕ for

all ϕ ∈ h′∗, and then (2.103) follows.
We shall introduce an inner product on the real form ofh′∗ given by

h′
0
∗ = ∑

Rαi . We saw in (2.75) and (2.77) how to construct vectors
βi ∈ Rl for 1 ≤ i ≤ l such that

(2.104) Ai j = 2〈βi , βj〉/|βi |2.
We define a linear mapRl → h′

0
∗ by βi �→ αi , and we carry the inner

product fromRl to h′
0
∗. Then we have

αj(hi) = Ai j = 2〈βi , βj〉
|βi |2 = 2〈αi , αj〉

|αi |2 = αj

(
2Hαi

|αi |2
)

for all j , and it follows that

(2.105) hi = 2Hαi

|αi |2
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in this inner product.
Next we define a Weyl group. For 1≤ i ≤ l, let sαi : h′

0
∗ → h′

0
∗ be the

linear transformation given by

sαi (ϕ) = ϕ − ϕ(hi)αi = ϕ − 2〈ϕ, αi〉
|αi |2 αi .

This is an orthogonal transformation onh′
0
∗. Let W ′ be the group of

orthogonal transformations generated by thesαi , 1 ≤ i ≤ l.
Let us prove thatW ′ is a finite group. From the correspondence of

reduced abstract root systems to abstract Cartan matrices established in §7,
we know that the membersβi ∈ Rl in (2.104) have reflections generating
a finite groupW such that� = ⋃l

i=1 Wβi is the reduced abstract root
system associated to the abstract Cartan matrixA. Under the isomorphism
βi �→ αi , W is identified withW ′, and� is identified with the subset⋃l

i=1 Wαi of h′
0
∗. SinceW ∼= W ′, W ′ is finite.

We now work toward the conclusion thatg′ is finite dimensional. Fixi ,
and letsli be the span of{hi , ei , fi} within g′. This is a Lie subalgebra of
g′ isomorphic tosl(2, C). We shall first show that every element ofg′ lies
in a finite-dimensional subspace invariant undersli .

If j �= i , consider the subspace ofg′ spanned by

f j , (ad fi) f j , . . . , (ad fi)
−Ai j f j .

These vectors are eigenvectors for adhi with respective eigenvalues

αj(hi), αj(hi) − 2, . . . , αj(hi) + 2Ai j ,

and hence the subspace is invariant under adhi . It is invariant under adfi

since (ad fi)
−Ai j +1 f j = 0 by Serre relation (f). Finally it is invariant

under adei by induction, starting from the fact that(adei) f j = 0 (Serre
relation (b)). Thus the subspace is invariant undersli .

Similarly for j �= i , the subspace ofg′ spanned by

ej , (adei)ej , . . . , (adei)
−Ai j ej

is invariant undersli , by Serre relations (e) and (b). And also span{hi , ei , fi}
is invariant undersli . Therefore a generating subset ofg′ lies in a finite-
dimensional subspace invariant undersli .

Now consider the set of all elements ing′ that lie in some finite-
dimensional space invariant undersli . Sayr ands are two such elements,
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lying in spacesR and S. Form the finite-dimensional subspace [R, S]
generated by all brackets fromR andS. If x is in sli , then

(adx)[ R, S] ⊆ [(adx)R, S] + [ R, (adx)S] ⊆ [ R, S],

and hence [r, s] is such an element ofg′. We conclude that every element
of g′ lies in a finite-dimensional subspace invariant undersli .

Continuing toward the conclusion thatg′ is finite dimensional, let us
introduce an analog of the root string analysis done in §4. Fixi , let ϕ be
in �′ ∪ {0}, and consider the subspace

⊕
n∈Z g′

ϕ+nαi
of g′. This is invariant

undersli , and what we have just shown implies that every member of it lies
in a finite-dimensional subspace invariant undersli . By Corollary 1.73 it
is the direct sum of irreducible invariant subspaces. LetU be one of the
irreducible summands. SinceU is invariant under adhi , we have

U =
q⊕

n=−p

(U ∩ g
′
ϕ+nαi

)

with U ∩ g′
ϕ−pαi

�= 0 andU ∩ g′
ϕ+qαi

�= 0. By Corollary 1.72,

(ϕ + qαi)(hi) = −(ϕ − pαi)(hi)

and hence

(2.106) p − q = ϕ(hi).

Moreover Theorem 1.66 shows thatU ∩ g′
ϕ+nαi

has dimension 1 for
−p ≤ n ≤ q and has dimension 0 otherwise.

In our direct sum decomposition of
⊕

n∈Z g′
ϕ+nαi

into irreducible sub-
spacesU , suppose that the root spaceg′

ϕ+nαi
has dimensionm. Then it

meets a collection of exactlym suchU ’s, sayU1, . . . , Um. The root space

g
′
sαi (ϕ+nαi )

= g
′
ϕ−(n+ϕ(hi ))αi

must meet the sameU1, . . . , Um since (2.106) shows that

−p ≤ n ≤ q implies− p ≤ −n − ϕ(hi) = −n + q − p ≤ q.

We conclude that

(2.107) dimg
′
ϕ = dimg

′
sαi ϕ

.
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From (2.107), we see thatW ′�′ ⊆ �′. SinceW ′ mirrors for h′
0
∗ the

action ofW onRl , the linear extension of the mapβi �→ αi carries� into
�′. Since dimg′

αi
= 1 for all i , we see that dimg′

ϕ = 1 for every rootϕ in

the finite set
⋃l

i=1 W ′αi .
To complete the proof of finite dimensionality ofg′, we show that every

root lies in
⋃l

i=1 W ′αi . Certainly
⋃l

i=1 W ′αi is closed under negatives, since
it is generated by theαi ’s and contains the−αi ’s. Arguing by contradiction,
assume that

⋃l
i=1 W ′αi does not exhaust�′. By (2.103) there is some

α = ∑l
j=1 njαj in �′+ not in

⋃l
i=1 W ′αi , and we may assume that

∑l
j=1 nj

is as small as possible. From

0 < |α|2 =
l∑

j=1

nj〈α, αj〉,

we see that there is somek such thatnk > 0 and〈α, αk〉 > 0. Then

sαk (α) = α − 2〈α, αk〉
|αk|2 αk =

∑
j �=k

njαj +
(

nk − 2〈α, αk〉
|αk|2

)
αk .

We must havenj > 0 for some j �= k since otherwiseα = nkαk , from
which we obtainnk = 1 since [ek, ek ] = 0. Thussαk (α) is in �′+. Since
the sum of coefficients forsαk (α) is less than

∑l
j=1 nj , we conclude by

minimality thatsαk (α) is in
⋃l

i=1 W ′αi . But then so isα, contradiction. We
conclude that�′ = ⋃l

i=1 W ′αi and hence that�′ is finite andg′ is finite
dimensional.

Now thatg′ is finite dimensional, we prove that it is semisimple and has
the required structure. In fact, radg′ is adh′ invariant and therefore satisfies

radg
′ = (h′ ∩ radg

′) ⊕
⊕
ϕ∈�′

(g′
ϕ ∩ radg

′).

Supposeh �= 0 is in h ∩ radg′. Choosej with αj(h) �= 0. Since radg′ is
an ideal,ej = αj(h)−1[h, ej ] and f j = −αj(h)−1[h, f j ] are in radg′, and
so ishj = [ej , f j ]. Thus radg′ contains the semisimple subalgebraslj ,
contradiction. We conclude thath′ ∩ radg′ = 0.

Since the root spaces are 1-dimensional, we obtain

radg
′ =

⊕
ϕ∈�′

0

g
′
ϕ



196 II. Complex Semisimple Lie Algebras

for some subset�′
0 of �′. The Lie algebrag′/radg′ is semisimple, accord-

ing to Proposition 1.14, and we can write it as

g
′/radg

′ = h ⊕
⊕

ϕ∈�′−�′
0

g
′
ϕ mod (radg

′).

From this decomposition we see thath is a Cartan subalgebra ofg′/radg′

and that the root system is�′ − �′
0. On the other hand, noαj is in �′

0

sinceslj is semisimple. Thus�′ − �′
0 contains eachαj , and these are

the simple roots. We have seen that the simple roots determine�′ as the
corresponding abstract root system. Thus�′

0 is empty. It follows thatg′ is
semisimple, and then the structural conclusions aboutg′ are obvious. This
completes the proof of Lemma 2.101.

PROOF OFTHEOREM 2.98. In the diagram (2.97),X maps to a linearly
independent subset ofg, and hence the embedded subsetX of F maps to
a linearly independent subset ofg. Since the mapF → g factors through
g′ = F/R, span{hi}l

i=1 maps one-one fromF tog′ and one-one fromg′ tog.
Since span{hi}l

i=1 maps one-one fromF to g′, Lemma 2.101 is applicable
and shows thatg′ is finite-dimensional semisimple and thath′ = span{hi}l

i=1

is a Cartan subalgebra.
The mapF → g is onto by Proposition 2.94, and hence the mapg′ → g

is onto. Thusg is isomorphic with a quotient ofg′. If a is a simple ideal
in g′, it follows from Proposition 2.13 thath′ ∩ a is a Cartan subalgebra of
g′. Sinceh′ maps one-one under the quotient map fromg′ to g, h′ ∩ a does
not map to 0. Thusa does not map to 0. Hence the map ofg′ ontog has 0
kernel and is an isomorphism.

10. Isomorphism Theorem

Theorem 2.98 enables us to lift isomorphisms of reduced root systems to
isomorphisms of complex semisimple Lie algebras with little effort. The
result is as follows.

Theorem 2.108(Isomorphism Theorem). Letg and g′ be complex
semisimple Lie algebras with respective Cartan subalgebrash andh′ and
respective root systems� and�′. Suppose that a vector space isomorphism
ϕ : h → h′ is given with the property that its transposeϕt : h′∗ → h∗ has
ϕt(�′) = �. For α in �, write α′ for the member(ϕt)−1(α) of �′. Fix
a simple system� for �. For eachα in �, select nonzero root vectors
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Eα ∈ g for α andEα′ ∈ g′ for α′. Then there exists one and only one Lie
algebra isomorphism̃ϕ : g → g′ such that̃ϕ|h = ϕ andϕ̃(Eα) = Eα′ for
all α ∈ �.

PROOF OF UNIQUENESS. If ϕ̃1 andϕ̃2 are two such isomorphisms, then
ϕ̃0 = ϕ̃−1

2 ϕ̃1 is an automorphism ofg fixing h and the root vectors for
the simple roots. If{hi , ei , fi} is a triple associated to the simple rootαi

by (2.93), theñϕ0( fi) must be a root vector for−αi and hence must be a
multiple of fi , sayci fi . Applying ϕ̃0 to the relation [ei , fi ] = hi , we see
thatci = 1. Thereforẽϕ0 fixes allhi , ei , and fi . By Proposition 2.94,̃ϕ0 is
the identity ong.

PROOF OF EXISTENCE. The linear map(ϕt)−1 is given by(ϕt)−1(α) =
α′ = α ◦ ϕ−1. By assumption this map carries� to �′, hence root strings
to root strings. Proposition 2.29a therefore gives

(2.109)
2〈β, α〉

|α|2 = 2〈β ′, α′〉
|α′|2 for all α, β ∈ �.

Write � = {α1, . . . , αl}, and let�′ = (ϕt)−1(�) = {α′
1, . . . , α

′
l}.

Definehi andh ′
i to be the respective members ofh andh′ with αj(hi) =

2〈β, α〉/|α|2 andα′
j(h

′
i) = 2〈β ′, α′〉/|α′|2. These are the elements of the

Cartan subalgebras appearing in (2.93). By (2.109),α′
j(h

′
i) = αj(hi) and

hence(ϕt)−1(αj)(h ′
i) = αj(hi) andαj(ϕ

−1(h ′
i)) = αj(hi). Therefore

(2.110) ϕ(hi) = h ′
i for all i .

Takeei in (2.93) to beEαi , and lete′
i = Eα′

i
. Define fi ∈ g to be a root

vector for−αi with [ei , fi ] = hi , and definef ′
i ∈ g′ to be a root vector for

−α′
i with [e′

i , f ′
i ] = h ′

i . ThenX = {hi , ei , fi}l
i=1 and X ′ = {h ′

i , e′
i , f ′

i }l
i=1

are standard sets of generators forg andg′ as in (2.93) and Proposition
2.94.

Let F andF′ be the free Lie algebras onX and X ′, and letR andR′

be the ideals inF andF′ generated by the Serre relations (a) through (f) in
Theorem 2.98. Let us defineψ : X → F′ by ψ(hi) = h ′

i , ψ(ei) = e′
i , and

ψ( fi) = f ′
i . Setting up the diagram

F

ψ̃

X −−−−−−−−−−−−→
ψ

F
′
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we see from the universal mapping property ofF thatψ extends to a Lie
algebra homomorphism̃ψ : F → F′. By (2.109),ψ̃(R) ⊆ R′. Therefore
ψ̃ descends to Lie algebra homomorphismF/R → F′/R′, and we denote
this homomorphism bỹψ as well.

Meanwhile the canonical maps̃ϕ1 : F/R → g and ϕ̃2 : F′/R′ → g′,
which are isomorphisms by Theorem 2.98, satisfy

ϕ̃−1
1 (hi) = hi mod R and ϕ̃−1

1 (Eαi ) = ei mod R,

ϕ̃2(h
′
i modR

′) = h ′
i and ϕ̃2(e

′
i modR

′) = Eα′
i
.

Thereforẽϕ = ϕ̃2 ◦ ψ̃ ◦ ϕ̃−1
1 is a Lie algebra homomorphism fromg to g′

with ϕ̃(hi) = h ′
i andϕ̃(Eαi ) = Eα′

i
for all i . By (2.110),̃ϕ|h = ϕ.

To see that̃ϕ is an isomorphism, we observe thatϕ̃ : h → h′ is an
isomorphism. By the same argument as in the last paragraph of §9, it
follows thatϕ̃ : g → g′ is one-one. Finally

dimg = dimh + |�| = dimh
′ + |�′| = dimg

′,

and we conclude that̃ϕ is an isomorphism.

EXAMPLES.

1) One-oneness of first step in (2.58). We are to show that ifg andg′

are two complex semisimple Lie algebras with isomorphic root systems,
theng andg′ are isomorphic. To do so, we apply Theorem 2.108, mapping
the root vectorEα for each simple rootα to any nonzero root vector for
the corresponding simple root forg′. We conclude that the first step of the
two-step passage (2.58) is one-one, up to isomorphism.

2) Automorphisms of Dynkin diagram. Letg,h,�, and� ={α1, . . . , αl}
be arbitrary. Suppose thatσ is an automorphism of the Dynkin diagram, i.e.,
a permutation of the indices 1, . . . , l such that the Cartan matrix satisfies
Ai j = Aσ(i)σ ( j). Defineϕ : h → h to be the linear extension of the map
hi → hσ(i), and apply Theorem 2.108. The result is an automorphismϕ̃

of g that normalizesh, maps the set of positive roots to itself, and has the
effectσ on the Dynkin diagram.

3) An automorphism constructed earlier. Withg, h, and� given, define
ϕ = −1 on h. Then� gets carried to�, and henceϕ extends to an
automorphism̃ϕ of g. This automorphism has already been constructed
directly (as̃η in the course of the proof of Lemma 2.101).
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11. Existence Theorem

We have now shown that the first step in the passage (2.58), i.e., the step
from complex semisimple Lie algebras to abstract reduced root systems, is
well defined independently of the choice of Cartan subalgebra and is one-
one up to isomorphism. To complete our discussion of (2.58), we show
that this step is onto, i.e., that any reduced abstract root system is the root
system of a complex semisimple Lie algebra.

The Existence Theorem accomplishes this step, actually showing that
any abstract Cartan matrix comes via the two steps of (2.58) from a complex
semisimple Lie algebra. However, the theorem does not substitute for our
case-by-case argument in §7 that the second step of (2.58) is onto. The
fact that the second step is onto was used critically in the proof of Lemma
2.101 to show thatW ′ is a finite group.

The consequence of the Existence Theorem is that there exist complex
simple Lie algebras with root systems of the five exceptional typesE6, E7,
E8, F4, andG2. We shall have occasion to use these complex Lie algebras
in Chapter VI and then shall refer to them as complex simple Lie algebras
of typesE6, etc.

Theorem 2.111(Existence Theorem). IfA = (Ai j)
l
i, j=1 is an abstract

Cartan matrix, then there exists a complex semisimple Lie algebrag whose
root system hasA as Cartan matrix.

PROOF. Let F be the free Lie algebra on the setX = {hi , ei , fi}l
i=1, and

letR be the ideal inF generated by the Serre relations (a) through (f) given
in Proposition 2.95. Putg = F/R. According to Lemma 2.101,g will be
the required Lie algebra if it is shown that span{hi}l

i=1 maps one-one from
F to its image inF/R.

We shall establish this one-one behavior by factoring the quotient map
into two separate maps and showing that span{hi}l

i=1 maps one-one in each
case. The first map is fromF to F/R̃, whereR̃ is the ideal inF generated
by the Serre relations (a) through (d). Writehi , ei , fi also for the images
of the generators inF/R̃. Definẽh, ẽ, and̃e as in the statement of Lemma
2.99. The lemma says that

(2.112) F/R̃ = h̃ ⊕ ẽ ⊕ f̃,

but it does not tell us how largẽh is.
To get at the properties of the first map, we introduce anl-dimensional

complex vector spaceV with basis{v1, . . . , vl}, and we letT (V ) be the
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tensor algebra overV . (Appendix A gives the definition and elementary
properties ofT (V ).) We drop tensor signs in writing products withinT (V )

in order to simplify the notation. In view of the diagram

F

ι ψ̃

X −−−−−−−−−−−−→
ψ

EndC(T (V ))

we can construct a homomorphism̃ψ : F → EndC(T (V )) by telling how
x acts inT (V ) for eachx in X . Dropping the notationψ from the action,
we define

hi(1) = 0

hi(vj1 · · · vjk ) = −(Ai j1 + · · · + Ai jk )vj1 · · · vjk

fi(1) = vi

fi(vj1 · · · vjk ) = vivj1 · · · vjk

ei(1) = 0

ei(vj) = 0

ei(vj1 · · · vjk ) = vj1 ·ei(vj2 · · · vjk ) − δi j1(Ai j2 + · · · + Ai jk )vj2 · · · vjk .

(The last three lines, defining the action ofei , are made recursively on the
order of the tensor.)

We show that this homomorphism defined onF descends to a homo-
morphismF/R̃ → EndC(T (V )) by showing that the generators of̃R act
by 0. We check the generators of types (a), (d), (b), and (c) in turn.

For (a) the generator is [hi , hj ]. The span of thehi ’s acts diagonally, and
thus

ψ̃ [hi , hj ] = [ψ̃(hi), ψ̃(hj)] = ψ̃(hi)ψ̃(hj) − ψ̃(hj)ψ̃(hi) = 0.

For (d) the generator is [hi , f j ] + Ai j f j , and we have

ψ̃([hi , f j ] + Ai j f j) = ψ̃(hi)ψ̃( f j) − ψ̃( f j)ψ̃(hi) + Ai j ψ̃( f j).

On 1, the right side gives

ψ̃(hi)vj − 0 + Ai jvj = 0.
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Onvj1 · · · vjk , the right side gives

− (Ai j + Ai j1 + · · · + Ai jk )vjvj1 · · · vjk

+ (Ai j1 + · · · + Ai jk )vjvj1 · · · vjk + Ai jvjvj1 · · · vjk = 0.

For (b) the generator is [ei , f j ] − δi j hi , and we have

ψ̃([ei , f j ] − δi j hi) = ψ̃(ei)ψ̃( f j) − ψ̃( f j)ψ̃(ei) − δi j ψ̃(hi).

On 1, each term on the right side acts as 0. On a monomialvj2 · · · vjk , the
right side gives

ei(vjvj2 · · · vjk ) − vj ·ei(vj2 · · · vjk ) + δi j(Ai j2 + · · · + Ai jk )vj2 · · · vjk ,

and this is 0 by the recursive definition of the action ofei .
For (c) the generator is [hi , ej ] − Ai j ej . Let us observe by induction on

k that

(2.113) hi ej(vj1 · · · vjk ) = −(Ai j1 + · · · + Ai jk − Ai j)ej(vj1 · · · vjk ).

Formula (2.113) is valid fork = 0 andk = 1 sinceej acts as 0 on monomials
of degrees 0 and 1. For generalk, the recursive definition of the action ofei

and the inductive hypothesis combine to show that the left side of (2.113)
is

hi ej(vj1 · · · vjk ) = hi(vj1 ·ej(vj2 · · · vjk ))−δj j1(Aj j2 +· · ·+ Aj jk )hi(vj2 · · · vjk )

= −(Ai j1 + · · · + Ai jk − Ai j)vj1 · ej(vj2 · · · vjk )

+ δj j1(Aj j2 + · · · + Aj jk )(Ai j2 + · · · + Ai jk )vj2 · · · vjk ,

and that the right side of (2.113) is

− (Ai j1 + · · · + Ai jk − Ai j)ej(vj1 · · · vjk )

= −(Ai j1 + · · · + Ai jk − Ai j)vj1 ·ej(vj2 · · · vjk )

+ (Ai j1 + · · · + Ai jk − Ai j)δj j1(Aj j2 + · · · + Aj jk )vj2 · · · vjk .

Subtraction shows that the difference of the left side and the right side
of (2.113) is

= −δj j1(Ai j1 − Ai j)(Aj j2 + · · · + Aj jk )vj2 · · · vjk = 0.
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The induction is complete, and (2.113) is established. Returning to our
generator, we have

ψ̃([hi , ej ] − Ai j ej) = ψ̃(hi)ψ̃(ej) − ψ̃(ej)ψ̃(hi) − Ai j ψ̃(ej).

On 1, each term on the right side acts as 0. Onvj1 · · · vjk , (2.113) shows
that the effect of the right side is

= −(Ai j1 + · · · + Ai jk − Ai j)ej(vj1 · · · vjk )

+ (Ai j1 + · · · + Ai jk )ej(vj1 · · · vjk ) − Ai j ej(vj1 · · · vjk ) = 0.

Thusψ̃ descends toF/R̃.
Now we can prove that span{hi}l

i=1 maps one-one fromF to F/R̃. If a
nontrivial

∑
ci hi maps to 0, then we have

0 = ( ∑
i

ci hi

)
(vj) = −( ∑

i

ci Ai j

)
vj

for all j . Hence
∑

i ci Ai j = 0 for all j , in contradiction with the linear
independence of the rows of(Ai j). We conclude that span{hi}l

i=1 maps
one-one fromF to F/R̃.

Now we bring in Serre relations (e) and (f), effectively imposing them
directly onF/R̃ to obtaing as quotient. Definẽg = F/R̃. Let R′ be the
ideal in g̃ generated by all

(adei)
−Ai j +1ej and all (ad fi)

−Ai j +1 f j for i �= j.

Then indeedg ∼= g̃/R′.
We define subalgebras̃h, ẽ, and̃f of g̃ as in the statement of Lemma

2.99. Let̃e′ be the ideal iñe generated by all(adei)
−Ai j +1ej , and let̃f′ be

the ideal iñf generated by all(ad fi)
−Ai j +1 f j . Then

(2.114) (generators ofR′) ⊆ ẽ
′ + f̃

′ ⊆ ẽ + f̃.

We shall prove that̃e′ is actually an ideal iñg. We observe that̃e′ is
invariant under all adhk (since the generators of̃e′ are eigenvectors) and
all ek (sincẽe′ ⊆ ẽ). Thus we are to show that

(ad fk)(adei)
−Ai j +1ej

is in ẽ′ if i �= j . In fact, we show it is 0.
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If k �= i , then [fk, ei ] = 0 shows that adfk commutes with adei . Thus
we are led to

(adei)
−Ai j +1[ fk, ej ].

If k �= j , this is 0 by Serre relation (b). Ifk = j , it is

(2.115) = −(adei)
−Ai j +1hj = Aji(adei)

−Ai j ei .

If Ai j < 0, then the right side of (2.115) is 0 since [ei , ei ] = 0; if Ai j = 0,
then the right side of (2.115) is 0 because the coefficientAji is 0.

If k = i , we are to consider

(ad fi)(adei)
−Ai j +1ej .

Now

(ad fi)(adei)
nej = −(adhi)(adei)

n−1ej + (adei)(ad fi)(adei)
n−1ej .

Since(ad fi)ej = 0, an easy induction with this equation shows that

(ad fi)(adei)
nej = −n(Ai j + n − 1)(adei)

n−1ej .

Forn = −Ai j +1, the right side is 0, as asserted. This completes the proof
that̃e′ is an ideal iñg.

Similarly f̃′ is an ideal iñg, and so is the sum̃e′ + f̃′. From (2.114) we
therefore obtain

R
′ ⊆ ẽ

′ + f̃
′ ⊆ ẽ + f̃.

In view of the direct sum decomposition (2.112),R′ ∩ h̃ = 0. Therefore
span{hi}l

i=1 maps one-one from̃g to g̃/R′ ∼= g, and the proof of the theorem
is complete.

12. Problems

1. According to Problem 13 in Chapter I, the trace form is a multiple of the
Killing form for sl(n + 1, C) if n ≥ 1, for so(2n + 1, C) if n ≥ 2, sp(n, C)

if n ≥ 3, andso(2n, C) if n ≥ 4. Find the multiple in each case.

2. Since the Dynkin diagrams ofA1 ⊕ A1 and D2 are isomorphic, the Isomor-
phism Theorem predicts thatsl(2, C)⊕ sl(2, C) is isomorphic withso(4, C).
Using the explicit root-space decomposition forso(4, C) found in §1, exhibit
two 3-dimensional ideals inso(4, C), proving that they are indeed ideals.
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3. Letg be the 2-dimensional complex Lie algebra with a basis{X, Y } such that
[ X, Y ] = Y .
(a) Identify the regular elements.
(b) Prove thatCX is a Cartan subalgebra but thatCY is not.
(c) Find the weight-space decomposition ofg relative to the Cartan subalge-

braCX .

4. Letg = h⊕⊕
α∈� gα be a root-space decomposition for a complex semisimple

Lie algebra, and let�′ be a subset of� that forms a root system inh∗
0.

(a) Show by example thats = h ⊕ ⊕
α∈�′ gα need not be a subalgebra ofg.

(b) Suppose that�′ ⊆ � is a root subsystem with the following property.
Wheneverα andβ are in�′ andα +β is in �, thenα +β is in �′. Prove
thats = h ⊕ ⊕

α∈�′ gα is a subalgebra ofg and that it is semisimple.

5. Exhibit complex semisimple Lie algebras of dimensions 8, 9, and 10. Deduce
that there are complex semisimple Lie algebras of every dimension≥ 8.

6. Using results from §§4–5 but not the classification, show that there are no
complex semisimple Lie algebras of dimensions 4, 5, or 7.

7. Let � be a root system, and fix a simple system�. Show that any positive
root can be written in the form

α = αi1 + αi2 + · · · + αik

with eachαi j in � and with each partial summand from the left equal to a
positive root.

8. Let� be a root system, and fix a lexicographic ordering. Show that the largest
rootα0 has〈α0, α〉 ≥ 0 for all positive rootsα. If � is of typeBn with n ≥ 2,
find a positive rootβ0 other thanα0 with 〈β0, α〉 ≥ 0 for all positive rootsα.

9. Write down the Cartan matrices forAn, Bn, Cn, andDn.

10. The root systemG2 is pictured in Figure 2.2. According to Theorem 2.63,
there are exactly 12 simple systems for this root system.
(a) Identify them in Figure 2.2.
(b) Fix one of them, letting the short simple root beα and the long simple

root beβ. Identify the positive roots, and express each of them as a linear
combination ofα andβ.

11. (a) Prove that two simple roots in a Dynkin diagram that are connected by a
single edge are in the same orbit under the Weyl group.

(b) For an irreducible root system, prove that all roots of a particular length
form a single orbit under the Weyl group.
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12. In a reduced root system with a positive system imposed, letα andβ be distinct
simple roots connected byn edges (0≤ n ≤ 3) in the Dynkin diagram, and
let sα andsβ be the corresponding reflections in the Weyl group. Show that

(sαsβ)k = 1, wherek =


2 if n = 0

3 if n = 1

4 if n = 2

6 if n = 3.

13. (a) Prove that any element of order 2 in a Weyl group is the product of
commuting root reflections.

(b) Prove that the only reflections in a Weyl group are the root reflections.

14. Let� be an abstract root system inV, and fix an ordering. Suppose thatλ is
in V andw is in the Weyl group. Prove that ifλ andwλ are both dominant,
thenwλ = λ.

15. Verify the following table of values for the number of roots, the dimension of
g, and the order of the Weyl group for the classical irreducible reduced root
systems:

Type of� |�| dimg |W |
An n(n + 1) n(n + 2) (n + 1)!

Bn 2n2 n(2n + 1) n!2n

Cn 2n2 n(2n + 1) n!2n

Dn 2n(n − 1) n(2n − 1) n!2n−1

16. Verify the following table of values for the number of roots and the dimension
of g for the exceptional irreducible reduced root systems. These systems are
described explicitly in Figure 2.2 and Proposition 2.87:

Type of� |�| dimg

E6 72 78

E7 126 133

E8 240 248

F4 48 52

G2 12 14

17. If � is an abstract root system andα is in �, let α∨ = 2|α|−2α. Define
�∨ = {α∨ | α ∈ �}.
(a) Prove that�∨ is an abstract root system with the same Weyl group as�.
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(b) If � is a simple system for�, prove that�∨ = {α∨ | α ∈ �} is a simple
system for�∨.

(c) For any reduced irreducible root system� other thanBn andCn, show
from the classification that�∨ ∼= �. For Bn andCn, show that(Bn)

∨ ∼=
Cn and(Cn)

∨ ∼= Bn.

18. Let� be a simple system in a root system�, and let�+ be the corresponding
set of positive roots.
(a) Prove that the negatives of the members of� form another simple system,

and deduce that there is a unique memberw0 of the Weyl group sending
�+ to −�+.

(b) Prove that−w0 gives an automorphism of the Dynkin diagram, and
conclude that−1 is in the Weyl group forBn, Cn, E7, E8, F4, andG2.

(c) Prove that−1 is not in the Weyl group ofAn for n ≥ 2.
(d) Prove that−1 is in the Weyl group ofDn if n ≥ 2 is even but not ifn ≥ 3

is odd.

19. Using the classification theorems, show that Figure 2.2 exhibits all but two of
the root systems in 2-dimensional spaces, up to isomorphism. What are the
two that are missing?

20. Let g be a complex semisimple Lie algebra, leth be a Cartan subalgebra,
let � be the roots, letW be the Weyl group, and letw be in W . Using
the Isomorphism Theorem, prove that there is a member of AutC g whose
restriction toh is w.

Problems 21–24 concern the length functionl(w) on the Weyl groupW . Fix a
reduced root system� and an ordering, and letl(w) be defined as in §6 before
Proposition 2.70.

21. Prove thatl(w) = l(w−1).

22. (a) Define sgnw = (−1)l(w). Prove that the function sgn carryingW to {±1}
is a homomorphism.

(b) Prove that sgnw = detw for all w ∈ W .
(c) Prove thatl(sα) is odd for any root reflectionsα.

23. Forw1 andw2 in W , prove that

l(w1w2) = l(w1) + l(w2) − 2#{β ∈ � | β > 0, w1β < 0, w−1
2 β < 0}.

24. If α is a root, prove thatl(wsα) < l(w) if wα < 0 and thatl(wsα) > l(w) if
wα > 0.

Problems 25–30 compute the determinants of all irreducible Cartan matrices.

25. LetMl be anl-by-l Cartan matrix whose first two rows and columns look like
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( 2 −1 0
−1 2 −1

0 −1 ∗

)
,

the other entries in those rows and columns being 0. LetMl−1 be the Cartan
matrix obtained by deleting the first row and column fromMl , and letMl−2 be
the Cartan matrix obtained by deleting the first row and column fromMl−1.
Prove that

detMl = 2 detMl−1 − detMl−2.

26. Reinterpret the condition on the Cartan matrixMl in Problem 25 as a condition
on the corresponding Dynkin diagram.

27. Calculate explicitly the determinants of the irreducible Cartan matrices of
typesA1, A2, B2, B3, C3, andD4, showing that they are 2, 3, 2, 2, 2, and 4,
respectively.

28. Using the inductive formula in Problem 25 and the initial data in Problem 27,
show that the determinants of the irreducible Cartan matrices of typesAn for
n ≥ 1, Bn for n ≥ 2, Cn for n ≥ 3, andDn for n ≥ 4 aren + 1, 2, 2, and 4,
respectively.

29. Using the inductive formula in Problem 25 and the initial data forA4 andD5

computed in Problem 28, show that the determinants of the irreducible Cartan
matrices of typesE6, E7, andE8 are 3, 2, and 1, respectively.

30. Calculate explicitly the determinants of the Cartan matrices forF4 andG2,
showing that they are both 1.

Problems 31–34 compute the order of the Weyl group for the root systemsF4, E6,
E7, andE8. In each case the idea is to identify a transitive group action by the
Weyl group, compute the number of elements in an orbit, compute the order of the
subgroup fixing an element, and multiply.

31. The root systemF4 is given explicitly in (2.88).
(a) Show that the long roots form a root system of typeD4.
(b) By (a) the Weyl groupWD of D4 is a subgroup of the Weyl groupWF

of F4. Show that every element ofWF leaves the systemD4 stable and
therefore carries an ordered system of simple roots forD4 to another
ordered simple system. Conclude that|WF/WD| equals the number of
symmetries of the Dynkin diagram ofD4 that can be implemented by
WF .

(c) Show that reflection ine4 and reflection in1
2(e1 − e2 − e3 − e4) are

members ofWF that permute the standard simple roots ofD4 as given in
(2.50), and deduce that|WF/WD| = 6.

(d) Conclude that|WF | = 27 · 32.
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32. The root system� = E6 is given explicitly in the proof of Proposition 2.87.
Let W be the Weyl group.
(a) Why is the orbit of12(e8 − e7 − e6 + e5 + e4 + e3 + e2 + e1) underW

equal exactly to�?
(b) Show that the subset of� orthogonal to the root in (a) is a root system

of type A5.
(c) The element−1 is not in the Weyl group ofA5. Why does it follow from

this fact and (b) that−1 is not in the Weyl group ofE6?
(d) Deduce from (b) that the subgroup ofW fixing the root in (a) is isomorphic

to the Weyl group ofA5.

(e) Conclude that|W | = 27 · 34 · 5.

33. The root system� = E7 is given explicitly in the proof of Proposition 2.87.
Let W be the Weyl group.
(a) Why is the orbit ofe8 − e7 underW equal exactly to�?
(b) Show that the subset of� orthogonal toe8 − e7 is a root system of type

D6.
(c) Deduce from (b) that the subgroup ofW fixing e8 − e7 is isomorphic to

the Weyl group ofD6.

(d) Conclude that|W | = 210 · 34 · 5 · 7.

34. The root system� = E8 is given explicitly in (2.89). LetW be the Weyl
group.
(a) Why is the orbit ofe8 + e7 underW equal exactly to�?
(b) Show that the subset of� orthogonal toe8 + e7 is a root system of type

E7.
(c) Deduce from (b) that the subgroup ofW fixing e8 + e7 is isomorphic to

the Weyl group ofE7.

(d) Conclude that|W | = 214 · 35 · 52 · 7.

Problems 35–37 exhibit an explicit isomorphism ofsl(4, C)with so(6, C). Such an
isomorphism is predicted by the Isomorphism Theorem since the Dynkin diagrams
of A3 andD3 are isomorphic.

35. LetI3,3 be the 6-by-6 diagonal matrix defined in Example 3 in §I.8, and define
g = {X ∈ gl(6, C) | Xt I3,3 + I3,3X = 0}. Let S = diag(i, i, i, 1, 1, 1). For
X ∈ g, let Y = SX S−1. Prove that the mapX �→ Y is an isomorphism ofg
ontoso(6, C).

36. Any member ofsl(4, C) acts on the 6-dimensional complex vector space of
alternating tensors of rank 2 byM(ei ∧ ej ) = Mei ∧ ej + ei ∧ Mej , where
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{ei }4
i=1 is the standard basis ofC4. Using

(e1 ∧ e2) ± (e3 ∧ e4), (e1 ∧ e3) ± (e2 ∧ e4), (e1 ∧ e4) ± (e2 ∧ e3)

in some particular order as an ordered basis for the alternating tensors, show
that the action ofM is given by an element of the Lie algebra ofg in Problem 35.

37. The previous two problems combine to give a Lie algebra homomorphism of
sl(4, C) into so(6, C). Show that no nonzero element ofsl(4, C) acts as the
0 operator on alternating tensors, and deduce from the simplicity ofsl(4, C)

that the homomorphism is an isomorphism.

Problems 38–39 exhibit an explicit isomorphism ofsp(2, C) with so(5, C). Such
an isomorphism is predicted by the Isomorphism Theorem since the Dynkin dia-
grams ofC2 andB2 are isomorphic.

38. The composition of the inclusionsp(2, C) ↪→ sl(4, C) followed by the map-
ping of Problem 36 gives a homomorphism ofsp(2, C) into the Lie algebrag
of Problem 35. Show that there is some indexi , 1 ≤ i ≤ 6, such that thei th

row and column of the image ing are always 0.

39. Deduce that the composition of the homomorphism of Problem 38 followed
by the isomorphismg ∼= so(6, C) of Problem 35 may be regarded as an
isomorphism ofsp(2, C) with so(5, C).

Problems 40–42 give an explicit construction of a simple complex Lie algebra of
typeG2.

40. Let� be the root system of typeB3 given in a spaceV as in (2.43). Prove that
the orthogonal projection of� on the subspace ofV orthogonal toe1+e2+e3

is a root system of typeG2.

41. Letg be a simple complex Lie algebra of typeB3. Leth be a Cartan subalgebra,
let the root system be as in Problem 40, and letB be the Killing form. Prove
that the centralizer ofHe1+e2+e3 is the direct sum ofCHe1+e2+e3 and a simple
complex Lie algebra of typeA2 and dimension 8.

42. In Problem 41 normalize root vectorsXα so thatB(Xα, X−α) = 1. From the
two vectors [Xe1, Xe2] + 2X−e3 and [X−e1, X−e2] − 2Xe3, obtain four more
vectors by permuting the indices cyclically. Letg′ be the 14-dimensional
linear span of these six vectors and theA2 Lie subalgebra of Problem 41.
Prove thatg′ is a Lie subalgebra ofg of typeG2.

Problems 43–48 give an alternative way of viewing the three classes of Lie algebras
so(2n + 1, C), sp(n, C), andso(2n, C) that stresses their similarities. This point
of view is useful in the study of automorphic forms. WithAt denoting the usual
transpose of a square matrixA, define thebackwards transposetA as transpose
about the opposite diagonal from usual or equivalently as(tA)i j = An+1− j,n+1−i

if A is ann-by-n matrix. The mappingA �→ tA is linear, reverses the order of
multiplication, leaves determinant unchanged, sends the identity to itself, maps
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inverses to inverses, and maps exponentials to exponentials. Then-by-n matrices
At andtA are related bytA = L At L−1, whereL is 1 along the opposite diagonal
from usual (i.e., hasLi,n+1−i = 1 for 1 ≤ i ≤ n) and is 0 otherwise.

43. Prove thePrincipal-axis Theoremconcerning symmetric matrices over any
field k of characteristic�= 2, namely that ifA is a square matrix overk with
At = A, then there exists a nonsingular square matrixM over k such that
Mt AM is diagonal. The proof is to proceed by induction on the sizen,

replacing a matrix
(

a b
bt d

)
in block form with a of size(n − 1)-by-(n − 1)

andd of size 1-by-1 by
(

1 x
0 1

) (
a b
bt d

) (
1 0
xt 1

)
if d �= 0 and replacing

(
a b
bt d

)
by

(
1 0
y 1

) (
a b
bt 0

) (
1 yt

0 1

)
if d = 0.

44. Prove a version of the result in Problem 43 for skew-symmetric matrices,
namely that ifA is a square matrix overk with At = −A, then there exists a
nonsingular square matrixM overk such thatMt AM is block diagonal with
diagonal blocks that are 2-by-2 or 1-by-1 and are skew-symmetric. The proof
is to proceed by induction on the size as in Problem 43, except thatd is a
2-by-2 skew-symmetric matrix chosen to be nonzero after a permutation of
the coordinates.

45. Prove concerning square matrices overC:
(a) If A is nonsingular withAt = A, then there exists a nonsingular square

matrix M such thatMt AM = 1.
(b) If A is nonsingular withAt = −A, then the size is even and there exists

a nonsingular square matrixM such thatMt AM = J , whereJ is as in
§I.8.

46. LetA be ann-by-n nonsingular matrix that is symmetric or skew-symmetric,
and defineG A = {x ∈ GL(n, C) | x−1 = Axt A−1 and detx = 1}.
(a) Prove that the linear Lie algebra ofG A is

gA = {X ∈ gl(n, C) | AXt A−1 + X = 0}.
(b) Prove that ifA and B are nonsingular symmetricn-by-n matrices, then

there existsg ∈ GL(n, C) such thatG B = gG Ag−1.
(c) Prove that ifA andB are nonsingular skew-symmetricn-by-n matrices,

thenn is even and there existsg ∈ GL(n, C) such thatG B = gG Ag−1.
(d) Let SO ′(n, C) = {x ∈ GL(n, C) | x−1 = tx and detx = 1}. Prove that

SO ′(n, C) is isomorphic toSO(n, C) as a complex Lie group and that
the linear Lie algebra ofSO ′(n, C) is

so
′(n, C) = {X ∈ gl(n, C) | tX + X = 0}.
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(e) Prove thatSp(n, C) = {x ∈ GL(2n, C) | x−1 = In,n
tx In,n, detx = 1},

where In,n is the diagonal matrix
(

1 0
0 −1

)
defined in §I.8, and that the

definition of the Lie algebrasp(n, C) may be written as

sp(n, C) = {X ∈ gl(2n, C) | tX In,n + In,n X = 0},

47. Letg beso′(n, C) or sp(n, C) as in Problem 46.
(a) Show that the diagonal subalgebra ofg is a Cartan subalgebra.
(b) Using the formula [H, Ei j ] = (ei (H) − ej (H))Ei j valid in sl(N , C) for

diagonalH , compute the root spaces ing and show that the positive roots
may be taken to be those whose root vectors are upper triangular matrices.

48. Prove thatSO ′(N , C) ∩ GL(N , R) is isomorphic to SO(n + 1, n) if
N = 2n + 1, or toSO(n, n) if N = 2n.





CHAPTER III

Universal Enveloping Algebra

Abstract. For a complex Lie algebrag, the universal enveloping algebraU (g) is an
explicit complex associative algebra with identity having the property that any Lie algebra
homomorphism ofg into an associative algebraA with identity “extends” to an associative
algebra homomorphism ofU (g) into A and carrying 1 to 1. The algebraU (g) is a quotient
of the tensor algebraT (g) and is a filtered algebra as a consequence of this property. The
Poincaré–Birkhoff–Witt Theorem gives a vector-space basis ofU (g) in terms of an ordered
basis ofg.

One consequence of this theorem is to identify the associated graded algebra forU (g)

as canonically isomorphic to the symmetric algebraS(g). This identification allows the
construction of a vector-space isomorphism called “symmetrization” fromS(g) ontoU (g).
Wheng is a direct sum of subspaces, the symmetrization mapping exhibitsU (g) canonically
as a tensor product.

Another consequence of the Poincar´e–Birkhoff–Witt Theorem is the existence of a free
Lie algebra on any setX . This is a Lie algebraF with the property that any function from
X into a Lie algebra extends uniquely to a Lie algebra homomorphism ofF into the Lie
algebra.

1. Universal Mapping Property

Throughout this chapter we suppose thatg is a complex Lie algebra.
We shall be interested only in Lie algebras whose dimension is at most
countable, but our discussion will apply in general. Usually, but not always,
g will be finite dimensional. When we are studying a Lie groupG with
Lie algebrag0, g will be the complexification ofg0.

If we have a (complex-linear) representationπ of g on a complex vector
spaceV, then the investigation of invariant subspaces in principle involves
writing down all iteratesπ(X1)π(X2) · · · π(Xn) for members ofg, applying
them to members ofV, and seeing what elements ofV result. In the course
of computing the resulting elements ofV, one might be able to simplify an
expression by using the identityπ(X)π(Y ) = π(Y )π(X)+π [ X, Y ]. This
identity really has little to do withπ , and our objective in this section will
be to introduce a setting in which we can make such calculations without

213
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reference toπ ; to obtain an identity for the representationπ , one simply
appliesπ to both sides of a universal identity.

For a first approximation of what we want, we can use the tensor algebra
T (g) = ⊕∞

k=0 T k(g). (Appendix A gives the definition and elementary
properties ofT (g).) The representationπ is a linear map ofg into the
associative algebra EndC V and extends to an algebra homomorphism
π̃ : T (g) → EndC V with π̃(1) = 1. Thenπ(X1)π(X2) · · · π(Xn) can
be replaced bỹπ(X1 ⊗ X2 ⊗ · · · ⊗ Xn). The difficulty with usingT (g) is
that it does not take advantage of the Lie algebra structure ofg and does
not force the identityπ(X)π(Y ) = π(Y )π(X) + π [ X, Y ] for all X andY
in g and allπ . Thus instead of the tensor algebra, we use the following
quotient ofT (g):

(3.1a) U (g) = T (g)/J,

where

(3.1b) J =
( two-sided ideal generated by all

X ⊗ Y − Y ⊗ X − [ X, Y ] with X
andY in T 1(g)

)
.

The quotientU (g) is an associative algebra with identity and is known
as theuniversal enveloping algebraof g. Products inU (g) are written
without multiplication signs.

The canonical mapg → U (g) given by embeddingg into T 1(g) and
then passing toU (g) is denotedι. Because of (3.1),ι satisfies

(3.2) ι[ X, Y ] = ι(X)ι(Y ) − ι(Y )ι(X) for X andY in g.

The algebraU (g) is harder to work with than the exterior algebra
∧

(g)

or the symmetric algebraS(g), which are both quotients ofT (g) and are
discussed in Appendix A. The reason is that the ideal in (3.1b) is not
generated by homogeneous elements. Thus, for example, it is not evident
that the canonical mapι : g → U (g) is one-one. However, wheng
is abelian, U (g) reduces toS(g), and we have a clear notion of what to
expect ofU (g). Even wheng is nonabelian,U (g) andS(g) are still related,
and we shall make the relationship precise later in this chapter.

Let Un(g) be the image ofTn(g) = ⊕n
k=0 T k(g) under the passage to

the quotient in (3.1). ThenU (g) = ⋃∞
n=0 Un(g). Since{Tn(g)} exhibits
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T (g) as a filtered algebra,{Un(g)} exhibitsU (g) as a filtered algebra. Ifg
is finite dimensional, eachUn(g) is finite dimensional.

Proposition 3.3.The algebraU (g) and the canonical mapι : g → U (g)

have the following universal mapping property: WheneverA is a complex
associative algebra with identity andπ : g → A is a linear mapping such
that

(3.4) π(X)π(Y ) − π(Y )π(X) = π [ X, Y ] for all X andY in g,

then there exists a unique algebra homomorphismπ̃ : U (g) → A such
thatπ̃(1) = 1 and the diagram

U (g)

ι π̃(3.5)

g −−−−−−−−−−−−→
π

A

commutes.

REMARKS.
1) We regard̃π as an “extension” ofπ . This notion will be more

appropriate after we prove thatι is one-one.
2) This proposition allows us to make an alternative definition of

universal enveloping algebrafor g. It is a pair(U (g), ι) such thatU (g)

is an associative algebra with identity,ι : g → U (g) is a linear mapping
satisfying (3.2), and wheneverπ : g → A is a linear mapping satisfying
(3.4), then there exists a unique algebra homomorphismπ̃ : U (g) → A
such that̃π(1) = 1 and the diagram (3.5) commutes. The proposition says
that the constructedU (g) has this property, and we can use this property to
see that any other candidate, say(U ′(g), ι′), hasU ′(g) canonically isomor-
phic with the constructedU (g). In fact, if we use (3.5) withA = U ′(g) and
π = ι′, we obtain an algebra map̃ι′ : U (g) → U ′(g). Reversing the roles
of U (g) andU ′(g) yields̃ι : U ′(g) → U (g). To see that̃ι ◦ ι̃′ = 1U (g), we
use the uniqueness of the extensionπ̃ in (3.5) whenA = U (g) andπ = 1.
Similarly ι̃′ ◦ ι̃ = 1U ′(g).

PROOF. Uniqueness follows from the fact that 1 andι(g) generateU (g).
For existence letπ1 : T (g) → A be the extension given by the universal
mapping property ofT (g) in Proposition A.14. To obtaiñπ , we are to
show thatπ1 annihilates the idealJ in (3.1b). It is enough to considerπ1
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on a typical generator ofJ , where we have

π1(ιX ⊗ ιY − ιY ⊗ ιX − ι[ X, Y ])

= π1(ιX)π1(ιY ) − π1(ιY )π1(ιX) − π1(ι[ X, Y ])

= π(X)π(Y ) − π(Y )π(X) − π [ X, Y ]

= 0.

Corollary 3.6. Representations ofg on complex vector spaces stand in
one-one correspondence with unital leftU (g) modules (under the corre-
spondenceπ → π̃ of Proposition 3.3).

REMARK. Unital means that 1 operates as 1.

PROOF. If π is a representation ofg on V, we apply Proposition 3.3 to
π : g → EndC V, and thenV becomes a unital leftU (g) module under
uv = π̃(u)v for u ∈ U (g) and v ∈ V . Conversely ifV is a unital
left U (g) module, thenV is already a complex vector space with scalar
multiplication given by the action of the scalar multiples of 1 inU (g). If
we defineπ(X)v = (ιX)v, then (3.2) implies thatπ is a representation
of g. The two constructions are inverse to each other sinceπ̃ ◦ ι = π in
Proposition 3.3.

Proposition 3.7. There exists a unique antiautomorphismu �→ ut of
U (g) such thatι(X)t = −ι(X) for all X ∈ g.

REMARK. The map( · )t is calledtranspose.

PROOF. It is unique sinceι(g) and 1 generateU (g). Let us prove
existence. For eachn ≥ 1, the map

(X1, . . . , Xn) �→ (−1)n Xn ⊗ · · · ⊗ X1

is n-multilinear fromg × · · · × g into T n(g) and hence extends to a linear
map ofT n(g) into itself with

X1 ⊗ · · · ⊗ Xn �→ (−1)n Xn ⊗ · · · ⊗ X1.

Taking the direct sum of these maps asn varies, we obtain a linear map
x �→ xt of T (g) into itself sending 1 into 1. It is clear that this map is
an antiautomorphism and extendsX �→ −X in T 1(g). Composing with
passage to the quotient byJ , we obtain an antihomomorphism ofT (g) into
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U (g). Its kernel is an ideal. To show that the map descends toU (g), it is
enough to show that each generator

X ⊗ Y − Y ⊗ X − [ X, Y ]

maps to 0. But this element maps inT (g) to itself and then maps to 0 in
U (g). Hence the transpose map descends toU (g). It is clearly of order
two and thus is one-one onto.

The transpose mapu �→ ut allows us to regard leftU (g) modulesV also
as rightU (g) modules, and vice versa: To convert a leftU (g) module into
a rightU (g) module, we just definevu = utv for u ∈ U (g) andv ∈ V .
Conversion in the opposite direction is accomplished byuv = vut .

2. Poincaré–Birkhoff–Witt Theorem

The main theorem aboutU (g) gives a basis forU (g) as a vector space.
Let {Xi}i∈A be a basis ofg. A set such asA always admits asimple
ordering, i.e., a partial ordering in which every pair of elements is compa-
rable. In cases of interest, the dimension ofg is at most countable, and we
can think of this ordering as quite elementary. For example, it might be the
ordering of the positive integers, or it might be something quite different
but still reasonable.

Theorem 3.8(Poincaré–Birkhoff–Witt). Let {Xi}i∈A be a basis ofg,
and suppose a simple ordering has been imposed on the index setA. Then
the set of all monomials

(ιXi1)
j1 · · · (ιXin)

jn

with i1 < · · · < in and with all jk ≥ 0, is a basis ofU (g). In particular the
canonical mapι : g → U (g) is one-one.

REMARKS.
1) If A is finite, sayA = {1, . . . , N }, the basis consists of all monomials

(ιX1)
j1 · · · (ιX N ) jN with all jk ≥ 0.

2) The proof will be preceded by two lemmas, which will essentially
establish the spanning. The main step will be to prove the linear indepen-
dence. For this we have to prove thatU (g) is suitably large. The motivation
for carrying out this step comes from assuming the theorem to be true. Then



218 III. Universal Enveloping Algebra

we might as well dropι from the notation, and monomialsX j1
i1

· · · X jn
in

with
i1 < · · · < in will form a basis. These same monomials, differently
interpreted, are a basis ofS(g). Thus the theorem is asserting a particular
vector-space isomorphismU (g) → S(g). SinceU (g) is naturally a unital
leftU (g)module, this isomorphism suggests thatS(g)should be a left unital
U (g) module. By Corollary 3.6 we should look for a natural representation
of g on S(g) consistent with left multiplication ofg onU (g) and consistent
with the particular isomorphismU (g) → S(g). The proof consists of
constructing this representation, and then the linear independence follows
easily. Actually the proof will make use of a polynomial algebra, but the
polynomial algebra is canonically isomorphic toS(g) once a basis ofg has
been specified.

Lemma 3.9. Let Z1, . . . , Zp be in g, and letσ be a permutation of
{1, . . . , p}. Then

(ιZ1) · · · (ιZp) − (ιZσ(1)) · · · (ιZσ(p))

is in Up−1(g).

PROOF. Without loss of generality, letσ be the transposition ofj with
j + 1. Then the lemma follows from

(ιZj)(ιZj+1) − (ιZj+1)(ιZj) = ι[Zj , Zj+1]

by multiplying through on the left by(ιZ1) · · · (ιZj−1) and on the right by
(ιZj+2) · · · (ιZp).

For the remainder of the proof of Theorem 3.8, we shall use the following
notation: Fori ∈ A, let Yi = ιXi . For any tupleI = (i1, . . . , ip) of
members ofA, we say thatI is increasing if i1 ≤ · · · ≤ ip. Whether
or not I is increasing, we writeYI = Yi1 · · · Yip . Also i ≤ I means
i ≤ min{i1, . . . , ip}.

Lemma 3.10. TheYI , for all increasing tuples fromA of length≤ p,
spanUp(g).

PROOF. If we useall tuples of length≤ p, we certainly have a spanning
set, since the obvious preimages inT (g) spanTp(g). Lemma 3.9 then
implies inductively that the increasing tuples suffice.
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PROOF OFTHEOREM3.8. LetP be the polynomial algebra overC in the
variableszi , i ∈ A, and letPp be the subspace of members of total degree
≤ p. For a tupleI = (i1, . . . , ip), definezI = zi1 · · · zip as a member of
Pp. We shall construct a representationπ of g on P such that

(3.11) π(Xi)zI = zi z I if i ≤ I.

Let us see that the theorem follows from the existence of such a represen-
tation. In fact, let us use Corollary 3.6 to regardP as a unital leftU (g)

module. Then (3.11) and the identityπ(X)v = (ιX)v imply that

Yi zI = zi z I if i ≤ I.

If i1 ≤ · · · ≤ ip, then as a consequence we obtain

(Yi1 · · · Yip)1 = (Yi1 · · · Yip−1)Yip 1

= (Yi1 · · · Yip−1)zip

= (Yi1 · · · Yip−2)Yip−1zip

= (Yi1 · · · Yip−2)(zip−1zip)

= · · · = zi1 · · · zip .

Thus the set{YI 1 | I increasing} is linearly independent withinP, and
{YI | I increasing} must be independent inU (g). The independence in
Theorem 3.8 follows, and the spanning is given in Lemma 3.10.

Thus we have to constructπ satisfying (3.11). We shall define linear
mapsπ(X) : Pp → Pp+1 for X in g, by induction onp so that they are
compatible and satisfy

(Ap) π(Xi)zI = zi z I for i ≤ I andzI in Pp ,
(Bp) π(Xi)zI − zi z I is in Pp for all I with zI in Pp ,
(Cp) π(Xi)(π(X j)zJ ) = π(X j)(π(Xi)zJ ) + π [ Xi , X j ]zJ for all J with

zJ in Pp−1.

With π(X) defined onP as the union of its definitions on thePp’s, π will
be a representation by(Cp) and will satisfy (3.11) by(Ap). Hence we will
be done.

For p = 0, we defineπ(Xi)1 = zi . Then(A0) holds,(B0) is valid, and
(C0) is vacuous.

Inductively assume thatπ(X) has been defined onPp−1 for all X ∈ g

in such a way that(Ap−1), (Bp−1), and (Cp−1) hold. We are to define
π(Xi)zI for each increasing sequenceI of p indices in such a way that
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(Ap), (Bp), and(Cp) hold. If i ≤ I , we make the definition according to
(Ap). Otherwise we can write in obvious notationI = ( j, J ) with j < i ,
j ≤ J , |J | = p − 1. We are forced to define

π(Xi)zI = π(Xi)(zj z J )

= π(Xi)π(X j)zJ sinceπ(X j)zJ is already
defined by(Ap−1)

= π(X j)π(Xi)zJ + π [ Xi , X j ]zJ by (Cp)

= π(X j)(zi z J + w) + π [ Xi , X j ]zJ with w in Pp−1 by (Bp−1)

= zj zi z J + π(X j)w + π [ Xi , X j ]zJ by (Ap)

= zi z I + π(X j)w + π [ Xi , X j ]zJ .

We make this definition, and then(Bp) holds. Thereforeπ(Xi)zI has now
been defined in all cases onPp, and we have to show that(Cp) holds.

Our construction above was made so that(Cp) holds if j < i , j ≤ J ,
|J | = p − 1. Since [X j , Xi ] = −[ Xi , X j ], it holds also ifi < j , i ≤ J ,
|J | = p −1. Also(Cp) is trivial if i = j . Thus it holds wheneveri ≤ J or
j ≤ J . So we may assume thatJ = (k, K ), wherek ≤ K , k < i , k < j ,
|K | = p − 2. We know that

π(X j)zJ = π(X j)zkzK

= π(X j)π(Xk)zK

= π(Xk)π(X j)zK + π [ X j , Xk ]zK by (Cp−1)(3.12)

= π(Xk)(zj zK + w) + π [ X j , Xk ]zK

for a certain elementw in Pp−2 given by(Bp−2), which is assumed valid
since(Bp−2) ⊆ (Bp−1). We applyπ(Xi) to both sides of this equation,
calling the three terms on the rightT1, T2, andT3. We can use what we
already know for(Cp) to handleπ(Xi) of T1 becausek ≤ ( j, K ), and we
can use(Cp−1) with π(Xi) of T2 and T3. ReassemblingT1 and T2 as in
line (3.12), we conclude that we can use known cases of(Cp) with the sum
π(Xi)π(Xk)π(X j)zK , and we can use(Cp−1) with π(Xi) of T3. Thus we
have

π(Xi)π(X j)zJ = π(Xi)π(Xk)π(X j)zK + π(Xi)π [ X j , Xk ]zK from (3.12)

= π(Xk)π(Xi)π(X j)zK + π [ Xi , Xk ]π(X j)zK

+ π [ X j , Xk ]π(Xi)zK + π [ Xi , [ X j , Xk ]] zK

by known cases of(Cp)
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= T ′
1 + T ′

2 + T ′
3 + T ′

4.

Interchangingi and j and subtracting, we see that the terms of typeT ′
2 and

T ′
3 cancel and that we get

π(Xi)π(X j)zJ − π(X j)π(Xi)zJ

= π(Xk){π(Xi)π(X j)zK − π(X j)π(Xi)zK }
+ {π [ Xi , [ X j , Xk ]] − π [ X j , [ Xi , Xk ]]}zK

= π(Xk)π [ Xi , X j ]zK + π [[ Xi , X j ], Xk ]zK by (Cp−1) and Jacobi

= π [ Xi , X j ]π(Xk)zK by (Cp−1)

= π [ Xi , X j ]zkzK

= π [ Xi , X j ]zJ .

We have obtained(Cp) in the remaining case, and the proof of Theorem
3.8 is complete.

Now thatι is known to be one-one, there is no danger in dropping it from
the notation. We shall freely use Corollary 3.6, identifying representations
of g with unital left U (g) modules. Moreover we shall feel free either
to drop the name of a representation from the notation (to emphasize the
module structure) or to include it even when the argument is inU (g) (to
emphasize the representation structure).

The Poincar´e–Birkhoff–Witt Theorem appears in a number of guises.
Here is one such.

Corollary 3.13. If h is a Lie subalgebra ofg, then the associative
subalgebra ofU (g) generated by 1 andh is canonically isomorphic to
U (h).

PROOF. If ρ : h → g denotes inclusion, thenρ yields an inclusion (also
denotedρ) of h into U (g) such thatρ(X)ρ(Y ) − ρ(Y )ρ(X) = ρ[ X, Y ]
for X andY in h. By the universal mapping property ofU (h), we obtain a
corresponding algebra map̃ρ : U (h) → U (g) with ρ̃(1) = 1. The image
of ρ̃ is certainly the subalgebra ofU (g) generated by 1 andρ(h). Theorem
3.8 says that monomials in an ordered basis ofh spanU (h), and a second
application of the theorem says that these monomials inU (g) are linearly
independent. Thus̃ρ is one-one and the corollary follows.



222 III. Universal Enveloping Algebra

If g happens to be the vector-space direct sum of two Lie subalgebrasa

andb, then it follows that we have a vector-space isomorphism

(3.14) U (g) ∼= U (a) ⊗C U (b).

Namely we obtain a linear map from right to left from the inclusions in
Corollary 3.13. To see that the map is an isomorphism, we apply Theorem
3.8 to a basis ofa followed by a basis ofb. The monomials in the separate
bases are identified withinU (g) as bases forU (a) andU (b), respectively,
by Corollary 3.13, while the joined-together bases give both a basis of the
tensor product and a basis ofU (g), again by Theorem 3.8. Thus our map
sends basis to basis and is an isomorphism.

3. Associated Graded Algebra

If A is a complex associative algebra with identity and ifA is filtered in
the sense of Appendix A, say asA = ∪∞

n=0 An, then Appendix A shows how
to define the associated graded algebra grA = ⊕∞

n=0(An/An−1), where
A−1 = 0. In this section we shall compute grU (g), showing that it is
canonically isomorphic with the symmetric algebraS(g). Then we shall
derive some consequences of this isomorphism.

The idea is to use the Poincar´e–Birkhoff–Witt Theorem. The theorem
implies that a basis ofUn(g)/Un−1(g) is all monomial cosets

X j1
i1

· · · X jk
ik

+ Un−1(g)

for which the indices havei1 < · · · < ik and the sum of the exponents is
exactlyn. The monomialsX j1

i1
· · · X jk

ik
, interpreted as inS(g), are a basis of

Sn(g), and the linear map that carries basis to basis ought to be the desired
isomorphism. In fact, this statement is true, but this approach does not
conveniently show that the isomorphism is independent of basis. We shall
therefore proceed somewhat differently.

We shall construct the map in the opposite direction without using the
Poincaré–Birkhoff–Witt Theorem, appeal to the theorem to show that we
have an isomorphism, and then compute what the map is in terms of a basis.
Let Tn(g) = ⊕n

k=0 T k(g) be thenth member of the usual filtration ofT (g).
We have definedUn(g) to be the image inU (g) of Tn(g) under the passage
T (g) → T (g)/J . Thus we can form the composition

Tn(g) → (Tn(g) + J )/J = Un(g) → Un(g)/Un−1(g).
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This composition is onto and carriesTn−1(g) to 0. SinceT n(g) is a vector-
space complement toTn−1(g) in Tn(g), we obtain an onto linear map

T n(g) → Un(g)/Un−1(g).

Taking the direct sum overn gives an onto linear map

ψ̃ : T (g) → grU (g)

that respects the grading.
Appendix A uses the notationI for the two-sided ideal inT (g) such that

S(g) = T (g)/I :

(3.15) I =
( two-sided ideal generated by all

X ⊗ Y − Y ⊗ X with X andY in
T 1(g)

)
.

Proposition 3.16. The linear mapψ̃ : T (g) → grU (g) respects
multiplication and annihilates the defining idealI for S(g). Therefore
ψ descends to an algebra homomorphism

(3.17) ψ : S(g) → grU (g)

that respects the grading. This homomorphism is an isomorphism.

PROOF. Let x be inT r(g) and lety be inT s(g). Thenx + J is in Ur(g),
and we may regard̃ψ(x) as the cosetx + Tr−1(g) + J in Ur(g)/Ur−1(g),
with 0 in all other coordinates of grU (g) sincex is homogeneous. Arguing
in a similar fashion withy andxy, we obtain

ψ̃(x) = x + Tr−1(g) + J, ψ̃(y) = y + Ts−1(g) + J,

and ψ̃(xy) = xy + Tr+s−1(g) + J.

SinceJ is an ideal,̃ψ(x)ψ̃(y) = ψ̃(xy). General membersx andy of T (g)

are sums of homogeneous elements, and henceψ̃ respects multiplication.
Consequently ker̃ψ is a two-sided ideal. To show that kerψ̃ ⊇ I , it is

enough to show that ker̃ψ contains all generatorsX ⊗ Y − Y ⊗ X . We
have

ψ̃(X ⊗ Y − Y ⊗ X) = X ⊗ Y − Y ⊗ X + T1(g) + J

= [ X, Y ] + T1(g) + J

= T1(g) + J,
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and thus̃ψ maps the generator to 0. Henceψ̃ descends to a homomorphism
ψ as in (3.17).

Now let {Xi} be an ordered basis ofg. The monomialsX j1
i1

· · · X jk
ik

in
S(g) with i1 < · · · < ik and with

∑
m jm = n form a basis ofSn(g). Let

us follow the effect of (3.17) on such a monomial. A preimage of this
monomial inT n(g) is the element

Xi1 ⊗ · · · ⊗ Xi1 ⊗ · · · ⊗ Xik ⊗ · · · ⊗ Xik ,

in which there arejm factors ofXim for 1 ≤ m ≤ k. This element maps to
the monomial inUn(g) that we have denotedX j1

i1
· · · X jk

ik
, and then we pass

to the quotientUn(g)/Un−1(g). Theorem 3.8 shows that such monomials
moduloUn−1(g) form a basis ofUn(g)/Un−1(g). Consequently (3.17) is an
isomorphism.

Inspecting the proof of Proposition 3.16, we see that ifi1 < · · · < ik

and
∑

m jm = n, then

(3.18a) ψ(X j1
i1

· · · X jk
ik
) = X j1

i1
· · · X jk

ik
+ Un−1(g).

Hence

(3.18b) ψ−1(X j1
i1

· · · X jk
ik

+ Un−1(g)) = X j1
i1

· · · X jk
ik
,

as asserted in the second paragraph of this section. Note that the restriction
i1 < · · · < ik can be dropped in (3.18) as a consequence of Lemma 3.9.

Corollary 3.19. Let W be a subspace ofT n(g), and suppose that the
quotient mapT n(g) → Sn(g) sendsW isomorphically ontoSn(g). Then
the image ofW in Un(g) is a vector-space complement toUn−1(g).

PROOF. Consider the diagram

T n(g) −−−→ Un(g)	 	
Sn(g)

ψ−−−→ Un(g)/Un−1(g)

The fact that this diagram is commutative is equivalent with the conclusion
in Proposition 3.16 that̃ψ : T n(g) → Un(g)/Un−1(g) descends to a map
ψ : Sn(g) → Un(g)/Un−1(g). The proposition says thatψ on the bottom
of the diagram is an isomorphism, and the hypothesis is that the map on
the left, when restricted toW , is an isomorphism ontoSn(g). Therefore
the composition of the map on the top followed by the map on the right is
an isomorphism when restricted toW , and the corollary follows.
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We apply Corollary 3.19 to the spacẽSn(g) of symmetrized tensors
within T n(g). As in §A.2, S̃n(g) is the linear span, for alln-tuples
X1, . . . , Xn from g, of the elements

1

n!

∑
τ∈Sn

Xτ(1) · · · Xτ(n),

whereSn is the symmetric group onn letters. According to Proposition
A.25, we have a direct sum decomposition

(3.20) T n(g) = S̃n(g) ⊕ (T n(g) ∩ I ).

We shall use this decomposition to investigate a map known as “sym-
metrization.”

For n ≥ 1, define a symmetricn-multilinear map

σn : g × · · · × g → U (g)

σn(X1, . . . , Xn) = 1

n!

∑
τ∈Sn

Xτ(1) · · · Xτ(n).by

By Proposition A.20a we obtain a corresponding linear map, also denoted
σn, from Sn(g) intoU (g). The image ofSn(g) in U (g) is clearly the same as
the image of the subspacẽSn(g) of T n(g) in Un(g). By (3.20) and Corollary
3.19,σn is one-one fromSn(g) onto a vector-space complement toUn−1(g)

in Un(g), i.e.,

(3.21) Un(g) = σn(Sn(g)) ⊕ Un−1(g).

The direct sum of the mapsσn for n ≥ 0 (with σ0(1) = 1) is a linear
mapσ : S(g) → U (g) such that

σ(X1 · · · Xn) = 1

n!

∑
τ∈Sn

Xτ(1) · · · Xτ(n).

The mapσ is calledsymmetrization.

Lemma 3.22. The symmetrization mapσ : S(g) → U (g) has associ-
ated graded mapψ : S(g) → grU (g), with ψ as in (3.17).

REMARK. The “associated graded map” is defined in §A.4.
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PROOF. Let {Xi} be a basis ofg, and letX j1
i1

· · · X jk
ik

, with
∑

m jm = n, be
a basis vector ofSn(g). Underσ , this vector is sent to a symmetrized sum,
but each term of the sum is congruent modUn−1(g) to (n!)−1X j1

i1
· · · X jk

ik
,

by Lemma 3.9. Hence the image ofX j1
i1

· · · X jk
ik

under the associated graded
map is

= X j1
i1

· · · X jk
ik

+ Un−1(g) = ψ(X j1
i1

· · · X jk
ik
),

as asserted.

Proposition 3.23.Symmetrizationσ is a vector-space isomorphism of
S(g) ontoU (g) satisfying

(3.24) Un(g) = σ(Sn(g)) ⊕ Un−1(g).

PROOF. Formula (3.24) is a restatement of (3.21), and the other conclu-
sion follows by combining Lemma 3.22 and Proposition A.39.

The canonical decomposition ofU (g) from g = a⊕ b whena andb are
merely vector spaces is given in the following proposition.

Proposition 3.25.Supposeg = a⊕b and supposea andb are subspaces
of g. Then the mappinga ⊗ b �→ σ(a)σ (b) of S(a) ⊗C S(b) into U (g) is
a vector-space isomorphism onto.

PROOF. The vector spaceS(a) ⊗C S(b) is graded consistently for the
given mapping, thenth space of the grading being

⊕n
p=0 S p(a)⊗C Sn−p(b).

The given mapping operates on an element of this space by

n∑
p=0

ap ⊗ bn−p �→
n∑

p=0

σ(ap)σ (bn−p),

and the image of this under the associated graded map is

=
n∑

p=0

σ(ap)σ (bn−p) + Un−1(g).

In turn this is

= σ
( n∑

p=0

ap ⊗ bn−p

) + Un−1(g)

by Lemma 3.9. In other words the associated graded map is just the same
as forσ . Hence the result follows by combining Propositions 3.23 and
A.39.
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Corollary 3.26. Suppose thatg = k ⊕ p and thatk is a Lie subalgebra
of g. Then the mapping(u, p) �→ uσ(p) of U (k) ⊗C S(p) into U (g) is a
vector-space isomorphism onto.

PROOF. The composition

(k, p) �→ (σ (k), p) �→ σ(k)σ (p),

sending
S(k) ⊗C S(p) → U (k) ⊗C S(p) → U (g),

is an isomorphism by Proposition 3.25, and the first map is an isomorphism
by Proposition 3.23. Therefore the second map is an isomorphism, and
the notation corresponds to the statement of the corollary when we write
u = σ(k).

Proposition 3.27. If g is finite dimensional, then the ringU (g) is left
Noetherian.

PROOF. The associated graded algebra forU (g) is isomorphic toS(g),
according to Proposition 3.16, andS(g) is a commutative Noetherian ring
by the Hilbert Basis Theorem (Theorem A.45) and the examples that follow
it. By Proposition A.47,U (g) is left Noetherian.

Corollary 3.28. If g is finite dimensional andI1, . . . , Im are left ideals
of finite codimension inU (g), then the product idealI1 · · · Im is of finite
codimension inU (g).

REMARK. The product ideal by definition consists of all finite sums of
productsx1 · · · xm with eachxj in Ij .

PROOF. By induction it is enough to handlem = 2. The vector space
U (g)/I1 is finite dimensional by assumption, and we letx1+ I1, . . . , xr + I1

be a vector-space basis. SinceU (g) is left Noetherian by Proposition 3.27,
Proposition A.44 shows that the left idealI2 is finitely generated, say with
y1, . . . , ys as generators.

The claim is that{xi yj + I1I2} is a spanning set for the vector space
I2/I1I2. In fact, anyx in I2 is of the formx = ∑s

j=1 uj yj with uj in
U (g). For eachj , write uj + I1 = ∑r

i=1 ci j xi + I1 with ci j ∈ C. Then
uj yj + I1I2 = ∑r

i=1 ci j xi yj + I1I2, and the claim follows when we sum on
j .

Thus I2/I1I2 is finite dimensional. Since dimU (g)/I1I2 is equal
to dimU (g)/I2 + dim I2/I1I2, we conclude thatU (g)/I1I2 is finite
dimensional.
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4. Free Lie Algebras

Using the Poincar´e–Birkhoff–Witt Theorem, we can establish the exis-
tence of “free Lie algebras.” Afree Lie algebraon a setX is a pair(F, ι)

consisting of a Lie algebraF and a functionι : X → F with the following
universal mapping property: Wheneverl is a complex Lie algebra and
ϕ : X → l is a function, there exists a unique Lie algebra homomorphism
ϕ̃ such that the diagram

F

ι ϕ̃(3.29)

X −−−−−−−−−−−−→
ϕ

l

commutes. We regard̃ϕ as an extension ofϕ.
Let us construct such a Lie algebra. LetV consist of all formal complex

linear combinations of the members ofX , so thatV can be regarded as a
complex vector space withX as basis. We embedV in its tensor algebra
via ιV : V → T (V ), obtainingT 1(V ) = ιV (V ) as usual. SinceT (V )

is an associative algebra, we can regard it as a Lie algebra in the manner
of Example 2 in §I.1. LetF be the Lie subalgebra ofT (V ) generated by
T 1(V ).

In the setting of (3.29), we are to construct a Lie algebra homomorphism
ϕ̃ so that (3.29) commutes, and we are to show thatϕ̃ is unique. Extend
ϕ : X → l to a linear mapϕ : V → l, and letιl : l → U (l) be the canonical
map. The universal mapping property ofT (V ) allows us in the diagram

T (V )

ιV a

V −−−−−−−−−−−−→
ιl ◦ ϕ

U (l)

to extendιl ◦ ϕ to an associative algebra homomorphisma with a(1) = 1.
For x ∈ X , the commutativity of this diagram implies that

(3.30) a(ιV (x)) = ιl(ϕ(x)).

Let us think ofa as a Lie algebra homomorphism in (3.30). The right side
of (3.30) is in imageιl, and it follows thata(F) ⊆ imageιl.

Now we use the Poincar´e–Birkhoff–Witt Theorem, which implies that
ιl : l → imageιl is one-one. We writeι−1

l
for the inverse of this Lie algebra
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isomorphism, and we put̃ϕ = ι−1
l

◦ a. Thenϕ̃ is the required Lie algebra
homomorphism making (3.29) commute.

To see that̃ϕ is unique whenF is defined this way, we observe that (3.29)
forcesϕ̃(ιV (x)) = ϕ(x) for all x ∈ X . Since the elementsιV (x) generate
F and sincẽϕ is a Lie algebra homomorphism,̃ϕ is completely determined
on all ofF. This proves the first statement in the following proposition.

Proposition 3.31. If X is a nonempty set, then there exists a free Lie
algebraF on X , and the image ofX in F generatesF. Any two free Lie
algebras onX are canonically isomorphic.

REMARK. This result was stated in Chapter II as Proposition 2.96, and
the proof was deferred until now.

PROOF. Existence ofF was proved before the statement of the proposi-
tion. We still have to prove thatF is unique up to canonical isomorphism.
Let (F, ι) and(F′, ι′) be two free Lie algebras onX . We set up the diagram
(3.29) withl = F′ andϕ = ι′ and invoke existence to obtain a Lie algebra
homomorphism̃ι′ : F → F′. Reversing the roles ofF andF′, we obtain a
Lie algebra homomorphism̃ι : F′ → F. To see that̃ι ◦ ι̃′ = 1F, we set up
the diagram (3.29) withl = F andϕ = ιX to see that̃ι ◦ ι̃′ is an extension
of ι. By uniqueness of the extension,ι̃ ◦ ι̃′ = 1F. Similarly ι̃′ ◦ ι̃ = 1F′ .

5. Problems

1. Forg = sl(2, C), let� be the member ofU (g) given by� = 1
2h2 + e f + f e,

whereh, e, and f are as in (1.5).
(a) Prove that� is in the center ofU (g).
(b) Let π be a representation ofsl(2, C) on a complex vector spaceV, and

regardV as aU (g) module. Show that� acts inV by the operatorZ of
Lemma 1.65.

2. Letg be a finite-dimensional complex Lie algebra, and define adX on U (g)

for X ∈ g by (adX)u = Xu − u X . Prove that ad is a representation ofg and
that each element ofU (g) lies in a finite-dimensional space invariant under
adg.

3. Let U (g) be the universal enveloping algebra of a complex Lie algebrag.
Prove thatU (g) has no zero divisors.

4. (a) Identify a free Lie algebra on a set consisting of one element.
(b) Prove that a free Lie algebra on a set consisting of two elements is infinite

dimensional.
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5. LetF be a free Lie algebra on the set{X1, X2, X3}, and letg be the quotient
obtained by setting to 0 all brackets involving three or more members ofF.
(a) Prove that dimg = 6 and thatg is nilpotent but not abelian.
(b) DefineB(Xi , X j ) = 0, B([ Xi , X j ], [ Xi ′ , X j ′ ] = 0, and

B(X3, [ X1, X2]) = B(X2, [ X3, X1]) = B(X1, [ X2, X3]) = 1.

Prove thatB extends to a nondegenerate symmetric invariant bilinear
form ong.

6. Say that a complex Lie algebrah is two-step nilpotent if [h, [h, h]] = 0. Prove
for each integern ≥ 1 that that there is a finite-dimensional two-step nilpotent
Lie algebrag such that every two-step nilpotent Lie algebra of dimension≤ n
is isomorphic to a homomorphic image ofg.

7. The construction of a free Lie algebraF on X in §4 first built a complex vector
spaceV with X as basis. ThenF was obtained as the Lie algebra generated
by V within T (V ). Prove thatU (F) can be identified withT (V ).

Problems 8–10 concern the diagonal mapping for a universal enveloping algebra.
Fix a complex Lie algebrag and its universal enveloping algebraU (g).

8. Use the 4-multilinear map(u1, u2, u3, u4) �→ u1u2 ⊗ u3u4 of U (g)×U (g)×
U (g) × U (g) into U (g) ⊗C U (g) to define a multiplication inU (g) ⊗C U (g).
Prove thatU (g) ⊗C U (g) becomes an associative algebra with identity.

9. Prove that there exists a unique associative algebra homomorphism	 from
U (g) into U (g) ⊗C U (g) such that	(X) = X ⊗ 1+ 1⊗ X for all X ∈ g and
such that	(1) = 1.

10. If ϕ1 andϕ2 are in the dual spaceU (g)∗, thenϕ1 ⊗ ϕ2 is well defined as a
linear functional onU (g) ⊗C U (g) sinceC ⊗C C ∼= C canonically. Define a
productϕ1ϕ2 in U (g)∗ by

(ϕ1ϕ2)(u) = (ϕ1 ⊗ ϕ2)(	(u)),

where	 is as in Problem 9. Prove that this product makesU (g)∗ into a
commutative associative algebra (without necessarily an identity).

Problems 11–13 identifyU (g) with an algebra of differential operators. LetG be
a Lie group, letg0 be the Lie algebra, and letg be the complexification ofg0. For
X ∈ g0, let X̃ be the left-invariant vector field onG corresponding toX , regarded
as acting in the spaceC∞(G) of all complex-valued functions onG. The vector
field X̃ is a left-invariant differential operator in the sense that it is a member
D of EndC(C∞(G)) commuting with left translations such that, for eachg ∈ G,
there is a chart(ϕ, V ) aboutg, sayϕ = (x1, . . . , xn), and there are functionsak1···kn
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in C∞(V ) with the property that

D f (x) =
∑

bounded

ak1···kn (x)
∂k1+···+kn f

∂xk1
1 · · · ∂xkn

n

(x)

for all x ∈ V and f ∈ C∞(G). Such operators form a complex subalgebraD(G)

of EndC(C∞(G)) containing the identity. Moreover, anyD of this kind has such
an expansion in any chart aboutx .

11. Prove that the mapX �→ X̃ extends to an algebra homomorphism ofU (g)

into D(G) sending 1 to 1.

12. Prove that the map in Problem 11 is onto.

13. LetX1, . . . , Xn be a basis ofg0.
(a) For each tuple(i1, . . . , in) of integers≥ 0, prove that there is a function

f ∈ C∞(G) with the property that(X̃1)
j1 · · · (X̃n)

jn f (1) equals 1 if
j1 = i1, . . . , jn = in, and equals 0 if not.

(b) Deduce that the map in Problem 11 is one-one.

Problems 14–22 concern the Weyl algebra and a higher-dimensional version of
the Heisenberg Lie algebra discussed in Problems 25–27 in Chapter I. LetV be
a real finite-dimensional vector space, and let〈 · , · 〉 be a nondegenerate skew-
symmetric bilinear form onV × V . TheHeisenberg Lie algebraH(V ) on V
is the Lie algebraV ⊕ RX0 in which X0 is central andV brackets with itself by
[u, v] = 〈u, v〉X0. The complexWeyl algebra W (V C) on V is the quotient of
T (V C) by the two-sided ideal generated by allu ⊗ v − v ⊗ u −〈u, v〉1 with u and
v in V .

14. Using Problem 45b of Chapter II, prove that the Heisenberg algebra and the
Weyl algebra onV are determined up to isomorphism by the dimension ofV ,
which must be even, say 2n.

15. Verify that an example of a 2n-dimensionalV with its form〈 · , · 〉 is V = Cn

with 〈u, v〉 = Im(u, v), where( · , · ) is the usual Hermitian inner product on
Cn. For thisV , exhibit an isomorphism ofH(V ) with the Lie algebra of all

complex(n + 1)-by-(n + 1) matrices of the form

(
0 z̄t ir
0 0 z
0 0 0

)
with z ∈ Cn and

r ∈ R.

16. Show that the linear mapι(v + cX0) = v + c1 is a Lie algebra homomor-
phism of H(V ) into W (V C) and that its extension to an associative algebra
homomorphism̃ι : U (H(V )C) → W (V C) is onto and has kernel equal to the
two-sided ideal generated byX0 − 1.

17. Prove thatW (V C) has the following universal mapping property: For any
Lie algebra homomorphismπ of H(V ) into a complex associative algebraA
with identity such thatX0 maps to 1, there exists a unique associative algebra
homomorphism̃π of W (V C) into A such thatπ = π̃ ◦ ι.
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18. Let v1, . . . , v2n be any vector space basis ofV . Prove that the elements

v
k1
1 · · · vk2n

2n with integer exponents≥ 0 spanW (V C).

19. If dimR V = 2n, prove thatV is the vector-space direct sumV = V + ⊕ V −

of two n-dimensional subspaces on which〈 · , · 〉 is identically 0. Show that it
is possible to choose basesp1, . . . , pn of V + andq1, . . . , qn of V − such that
〈pi , qj 〉 = δi j .

20. LetSbe the space of all complex-valued functionsP(x)e−π |x |2, whereP(x) =
P(x1, . . . , xn) is a polynomial inn variables. Show thatS is mapped into itself
by the linear operators∂/∂xi andmj = (multiplication-by-xj ).

21. In the notation of Problems 19 and 20, letϕ be the linear map ofV into
EndCS given byϕ(pi ) = ∂/∂xi andϕ(qj ) = mj . Use Problem 17 to extend
ϕ to an algebra homomorphism̃ϕ of W (V C) into EndCS with ϕ̃(1) = 1,
and use Problem 16 to obtain a representation ofH(V ) of S. Prove that this
representation is irreducible.

22. In Problem 21 prove that the algebra homomorphismϕ̃ : W (V C) → EndC S
is one-one. Conclude that the elementsv

k1
1 · · · vk2n

2n of Problem 18 form a
vector space basis ofW (V C).



CHAPTER IV

Compact Lie Groups

Abstract. This chapter is about structure theory for compact Lie groups, and a certain
amount of representation theory is needed for the development. The first section gives
examples of group representations and shows how to construct new representations from
old ones by using tensor products and the symmetric and exterior algebras.

In the abstract representation theory for compact groups, the basic result is Schur’s
Lemma, from which the Schur orthogonality relations follow. A deeper result is the
Peter–Weyl Theorem, which guarantees a rich supply of irreducible representations. From
the Peter–Weyl Theorem it follows that any compact Lie group can be realized as a group
of real or complex matrices.

The Lie algebra of a compact Lie group admits an invariant inner product, and conse-
quently such a Lie algebra is reductive. From Chapter I it is known that a reductive Lie
algebra is always the direct sum of its center and its commutator subalgebra. In the case of
the Lie algebra of a compact connected Lie group, the analytic subgroups corresponding to
the center and the commutator subalgebra are closed. Consequently the structure theory of
compact connected Lie groups in many respects reduces to the semisimple case.

If T is a maximal torus of a compact connected Lie groupG, then each element ofG is
conjugate to a member ofT . It follows that the exponential map forG is onto and that the
centralizer of a torus is always connected. The analytically defined Weyl groupW (G, T )

is the quotient of the normalizer ofT by the centralizer ofT , and it coincides with the Weyl
group of the underlying root system.

Weyl’s Theorem says that the fundamental group of a compact semisimple Lie groupG
is finite. Hence the universal covering group ofG is compact.

1. Examples of Representations

The subject of this chapter is structure theory for compact Lie groups,
but the structure theory is closely tied with representation theory. In fact,
one of several equivalent formulations of the first main structure theorem
says that the exponential map for a compact connected Lie group is onto.
In our treatment this theorem makes critical use of the fact that any compact
Lie group is a matrix group, and this is a theorem of representation theory.

We shall begin with the representation theory, providing some examples
and constructions of representations in this section. We are interested in

233
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representations of both a Lie group and its Lie algebra; all representations
for us will be finite dimensional.

A compact group is a topological group whose underlying topology is
compact Hausdorff. Afinite-dimensional representationof a compact
groupG on a finite-dimensional complex vector spaceV is a continuous
homomorphism� of G into GLC(V ). If G is a Lie group, as it always will
be in this section, then� is automatically smooth (§I.10). The differential
at the identity provides us with a representation of the (real) Lie algebrag0

of G on the spaceV .
For anyG the trivial representation of G on V is the representation

� of G for which �(g) = 1 for all g ∈ G. Sometimes when the term
“trivial representation” is used, it is understood thatV = C; sometimes
the caseV = C is indicated by referring to the “trivial 1-dimensional
representation.”

Let us now consider specific examples.

EXAMPLES FORG = U (n) OR SU (n).

1) Let V = Cn, and letG act onCn by matrix multiplication, i.e.,

�(g)

 z1
...

zn

 = g

 z1
...

zn

 .

The result is what is called thestandard representationof G. If on the
right side of this equationg is replaced by(gt)−1 = ḡ, then the result is the
contragredient or conjugateof the standard representation.

2) Let V consist of all polynomials inz1, . . . , zn, z̄1, . . . , z̄n homoge-
neous of degreeN , and let

�(g)P(

 z1
...

zn

 ,

 z̄1
...

z̄n

) = P(g−1

 z1
...

zn

 , ḡ−1

 z̄1
...

z̄n

).

The subspaceV ′ of holomorphic polynomials (those with noz̄’s) is carried
to itself by all�(g), and therefore we callV ′ aninvariant subspace. The
restriction of the�(g)’s to V ′ is thus itself a representation. WhenN = 1,
this representation is essentially the contragredient of the standard repre-
sentation. When antiholomorphic polynomials are used (those with noz’s)
andN is taken to be 1, the result is essentially the standard representation
itself.
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3) Let V = ∧kCn. This vector space is discussed in §A.3. A basis over
C of

∧kCn consists of all alternating tensorsεi1∧· · ·∧εik with i1 < · · · < ik ,
where{εj}n

j=1 is the standard basis ofCn. If we define

�(g)(εi1 ∧ · · · ∧ εik ) = gεi1 ∧ · · · ∧ gεik ,

then we can see that�(g) extends to a linear map of
∧kCn into itself, and

� is a representation. What we should do to get a construction that does
not use a basis is first to definẽ�(g) on T k(Cn) by

�̃(g) = g ⊗ · · · ⊗ g

as in (A.7). The result is multiplicative ing by (A.8), and the continuity
follows by examining the effect on a basis. Hence we have a representation
of G on T k(Cn). Next we easily check that each̃�(g) carriesT k(Cn) ∩ I ′

to itself, whereI ′ is the defining ideal (A.26b) for the exterior algebra.
Consequentlỹ�(g) descends to a linear transformation�(g) from

∧kCn

to itself, and� is a representation on
∧kCn.

4) For G = SU (2), let V be the space of homogeneous holomorphic
polynomials of degreeN in z1 and z2, let � be the representation as in
Example 2, and letV ′ be the space of all holomorphic polynomials inz of
degreeN with

�′
(

α β

−β̄ ᾱ

)
Q(z) = (β̄z + α)N Q

(
ᾱz − β

β̄z + α

)
.

Define E : V → V ′ by (E P)(z) = P

(
z
1

)
. Then E is an invertible

linear mapping and satisfiesE�(g) = �′(g)E for all g, and we say that
E exhibits� and�′ asequivalent (i.e., isomorphic).

EXAMPLES FORG = O(n) OR SO(n).

1) Let V = Cn, and letG act onCn by matrix multiplication, i.e.,

�(g)

 z1
...

zn

 = g

 z1
...

zn

 .

The result is what is called thestandard representationof G.
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2) LetV consist of all polynomials inx1, . . . , xn homogeneous of degree
N , and let

�(g)P(

 x1
...

xn

) = P(g−1

 x1
...

xn

).

Then� is a representation. When we want to emphasize the degree, let us
write �N andVN . Define the Laplacian operator by

� = ∂2

∂x2
1

+ · · · + ∂2

∂x2
n

.

This carriesVN to VN−2 and satisfies��N (g) = �N−2(g)�. This com-
mutativity property implies that the kernel of� is an invariant subspace of
VN , the space of homogeneous harmonic polynomials of degreeN .

3) Let V = ∧kCn. For g ∈ G, if we define

�(g)(εi1 ∧ · · · ∧ εik ) = gεi1 ∧ · · · ∧ gεik ,

then we can see that�(g) extends to a linear map of
∧kCn into itself, and�

is a representation. Unlike the case withG = SU (n), the representations
in

∧kCn and
∧n−kCn are equivalent whenG = SO(n).

Now let us consider matters more generally. Fix a compact groupG. If
� is a finite-dimensional representation ofG onV, then thecontragredient
�c takes place on the dual spaceV ∗ and is given by

(4.1) 〈�c(g)v∗, v〉 = 〈v∗, �(g)−1v〉 for v∗ ∈ V ∗ andv ∈ V .

Here〈 · , · 〉 is the natural pairing ofV ∗ andV .
If �1 and�2 are finite-dimensional representations onV1 andV2, then

their tensor product is the representation�1 ⊗ �2 of G given onV1 ⊗C V2

by

(4.2) (�1 ⊗ �2)(g) = �1(g) ⊗ �2(g).

Then(�1⊗�2)(g) is multiplicative ing by (A.8), and the continuity follows
by examining the effect on a basis. Hence�1 ⊗ �2 is a representation.

If � is a finite-dimensional representation onV, we can define repre-
sentations on the spacesSk(V ) and

∧k
(V ) of symmetric and alternating

tensors for everyk ≥ 0. The argument is just as in Example 3 forU (n)
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andSU (n) above. In the case ofSk(V ), we start with the representation
on thek-fold tensor productT k(V ). If I is the defining ideal (A.18b) for
S(V ), the representation onT k(V ) will descend toSk(V ) if it is shown that
T k(V ) ∩ I is an invariant subspace. The spaceT k(V ) ∩ I is spanned by
vectors

x ⊗ u ⊗ v ⊗ y − x ⊗ v ⊗ u ⊗ y

with x ∈ T r(V ), u andv in T 1(V ), andy ∈ T s(V ), wherer + 2 + s = k.
When we applyg to this element, we get the element

gx ⊗ gu ⊗ gv ⊗ gy − gx ⊗ gv ⊗ gu ⊗ gy,

which another element of the spanning set forT k(V ) ∩ I . Hence the
representation onT k(V ) descends toSk(V ). To get a representation on∧k

(V ), we argue similarly. The descent fromT k(V ) to
∧k

(V ) is possible
sinceT k(V ) ∩ I ′, with I ′ as in (A.26b), is spanned by elements

x ⊗ v ⊗ v ⊗ y

with x ∈ T r(V ), v ∈ T 1(V ), andy ∈ T s(V ), and sinceg of this element
is another element of this form.

The motivation for the definitions of Lie algebra representations comes
from thinking ofG as a closed linear group and differentiating the Lie group
formulas. For example, if�1 and�2 are finite-dimensional representations
on V1 andV2, then we have

(�1 ⊗ �2)(g)(v1 ⊗ v2) = �1(g)v1 ⊗ �2(g)v2.

If c(t) is a curve inG with c(0) = 1 andc′(0) = X , then the product rule
for differentiation gives

d(�1 ⊗ �2)(X)(v1 ⊗ v2) = d�1(X)v1 ⊗ v2 + v1 ⊗ d�2(X)v2

for X in the real Lie algebrag0 of G. It will be convenient to pass to the
complexification ofg0, thereby obtaining a (complex-linear) representation
of (g0)

C on V1 ⊗C V2. Once we have formulas for representations of this
particular kind of complex Lie algebra, we may as well make our definitions
for all complex Lie algebras.

Thus letg be a finite-dimensional complex Lie algebra. Ifϕ1 andϕ2

are representations ofg on vector spacesV1 and V2, then we define a
representationϕ1 ⊗ ϕ2 on V1 ⊗C V2 by

(4.3) (ϕ1 ⊗ ϕ2)X = ϕ1(X) ⊗ 1 + 1 ⊗ ϕ2(X).
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A little calculation using (A.8) shows that indeedϕ1⊗ϕ2 is a representation.
In a similar fashion we can define the tensor product ofn representations

of g. Also in a similar fashion ifϕ is a representation ofg on V, the
contragredient is the representationϕc of g on V ∗ given by

(4.4) 〈ϕc(X)v∗, v〉 = −〈v∗, ϕ(X)v〉.
If ϕ is a representation ofg on V, we can construct corresponding

representations onSk(V ) and
∧k

(V ). We start with the representations of
g on T k(E) and show thatX of a member ofT k(V ) ∩ I or T k(V ) ∩ I ′

is a member of the same space. Then the representation ofg on T k(V )

descends toSk(V ) or
∧k

(V ).

2. Abstract Representation Theory

Let us be more systematic about some of the definitions in §1. Afinite-
dimensional representationof a topological groupG is a continuous
homomorphism� of G into the groupGLC(V ) of invertible linear trans-
formations on a finite-dimensional complex vector spaceV . The continuity
condition means that in any basis ofV the matrix entries of�(g) are
continuous forg ∈ G. It is equivalent to say thatg �→ �(g)v is a
continuous function fromG into V for eachv in V .

An equivalent definition of finite-dimensional representation is that�

is a continuous group action ofG on a finite-dimensional complex vec-
tor spaceV by linear transformations. In this case the assertion about
continuity is that the mapG × V → V is continuous jointly, rather
than continuous only as a function of the first variable. To deduce the
joint continuity from continuity in the first variable, it is enough to verify
continuity of G × V → V at g = 1 andv = 0. Let dimC V = n. We
fix a basisv1, . . . , vn and recall that the map{ci}n

i=1 �→ ∑n
i=1 civi is a

homeomorphism ofCn onto V . Put‖ ∑n
i=1 civi‖ = ( ∑n

i=1 c2
i

)1/2
. Given

ε > 0, choose for eachi between 1 andn a neighborhoodUi of 1 in G such
that‖�(g)vi − vi‖ < 1 for g ∈ Ui . If g is in

⋂n
i=1 Ui and if v = ∑

i civi

has‖v‖ < ε, then

‖�(g)v‖ ≤ ‖�(g)
( ∑

civi

) − ( ∑
civi

)‖ + ‖v‖
≤

∑
|ci |‖�(g)vi − vi‖ + ‖v‖

≤ ( ∑
|ci |2

)1/2
n1/2 + ‖v‖ by the Schwarz inequality

≤ (n1/2 + 1)ε.
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An invariant subspacefor such a� is a vector subspaceU such that
�(g)(U ) ⊆ U for all g ∈ G. A representation on a nonzero vector space
V is irreducible if it has no invariant subspaces other than 0 andV .

A representation� on the finite-dimensional complex vector spaceV is
calledunitary if a Hermitian inner product has been specified forV and if
each�(g) is unitary relative to that inner product (i.e., has�(g)∗�(g) = 1
for all g ∈ G). For a unitary representation the orthogonal complement
U⊥ of an invariant subspace is an invariant subspace because

(4.5)
〈�(g)u⊥, u〉 = 〈u⊥, �(g)−1u〉 ∈ 〈u⊥, U 〉 = 0 for u⊥ ∈ U⊥, u ∈ U.

Two representations ofG, � onV and�′ onV ′ areequivalentif there is
a linear invertibleE : V → V ′ such that�′(g)E = E�(g) for all g ∈ G.

Now let us suppose that the topological groupG is compact. One of the
critical properties of such a group for representation theory is that it has a
left Haar measure, i.e., a nonzero regular Borel measure that is invariant
under left translation. We shall take for granted this existence; it may
be proved by techniques of functional analysis or, in the case of compact
Lie groups, by an argument using differential forms. Letµl be a left Haar
measure. ThenG possesses also a right Haar measure in the obvious sense,
for exampleµr(E) = µl(E−1), whereE−1 denotes the set of inverses of
elements of the setE . Let A be a set in theσ -algebra generated by the
compact subsets ofG that are countable intersections of open sets, and let
IA be the characteristic function ofA. Fubini’s Theorem is applicable to
the function(x, y) �→ IA(xy), and we have

µl(G)µr(A) =
∫

G

[ ∫
G

IA(x) dµr(x)
]
dµl(y)

=
∫

G

[ ∫
G

IA(xy) dµr(x)
]
dµl(y)

=
∫

G

[ ∫
G

IA(xy) dµl(y)
]
dµr(x)

=
∫

G

[ ∫
G

IA(y) dµl(y)
]
dµr(x)

= µr(G)µl(A).

Sinceµl andµr are regular as Borel measures, this equality extends to
be valid for all Borel setsA. In other words any left Haar measure is
proportional to any right Haar measure. Consequently there is only one



240 IV. Compact Lie Groups

left Haar measure up to a proportionality constant, and it is a right Haar
measure. We may thus speak of aHaar measure, understanding that it is
two-sided invariant. Let us normalize it so that it has total measure 1. Since
the normalized measure is unambiguous, we write integrals with respect
to normalized Haar measure by expressions like

∫
G f (x) dx , droppingµ

from the notation.

Proposition 4.6. If � is a representation ofG on a finite-dimensional
V, thenV admits a Hermitian inner product such that� is unitary.

PROOF. Let 〈 · , · 〉 be any Hermitian inner product onV, and define

(u, v) =
∫

G

〈�(x)u, �(x)v〉 dx .

It is straightforward to see that( · , · ) has the required properties.

Corollary 4.7. If � is a representation ofG on a finite-dimensionalV,
then� is the direct sum of irreducible representations. In other words,
V = V1 ⊕ · · · ⊕ Vk , with eachVj an invariant subspace on which� acts
irreducibly.

PROOF. Form( · , · ) as in Proposition 4.6. Find an invariant subspace
U �= 0 of minimal dimension and take its orthogonal complementU⊥.
Then (4.5) shows thatU⊥ is invariant. Repeating the argument withU⊥

and iterating, we obtain the required decomposition.

Proposition 4.8 (Schur’s Lemma). Suppose� and�′ are irreducible
representations ofG on finite-dimensional vector spacesV andV ′, respec-
tively. If L : V → V ′ is a linear map such that�′(g)L = L�(g) for all
g ∈ G, thenL is one-one onto orL = 0.

PROOF. We see easily that kerL and imageL are invariant subspaces of
V andV ′, respectively, and then the only possibilities are the ones listed.

Corollary 4.9. Suppose� is an irreducible representation ofG on a
finite-dimensionalV . If L : V → V is a linear map such that�(g)L =
L�(g) for all g ∈ G, thenL is scalar.

PROOF. Let λ be an eigenvalue ofL. Then L − λI is not one-one
onto, but it does commute with�(g) for all g ∈ G. By Proposition 4.8,
L − λI = 0.
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EXAMPLE. If G is abelian, then it follows from Corollary 4.9 (applied
to L = �(g0)) that every irreducible finite-dimensional representation of
G is 1-dimensional. For the circle groupS1 = {eiθ}, the 1-dimensional
representations are parametrized byn ∈ Z, thenth representation being

eiθ �→ multiplication byeinθ .

Corollary 4.10 (Schur orthogonality relations).

(a) Let� and�′ be inequivalent irreducible unitary representations ofG
on finite-dimensional spacesV andV ′, respectively, and let the understood
Hermitian inner products be denoted( · , · ). Then∫

G

(�(x)u, v)(�′(x)u ′, v′) dx = 0 for all u, v ∈ V andu ′, v′ ∈ V .

(b) Let� be an irreducible unitary representation on a finite-dimensional
V, and let the understood Hermitian inner product be denoted( · , · ). Then∫

G

(�(x)u1, v1)(�(x)u2, v2) dx = (u1, u2)(v1, v2)

dim V
for u1, v1, u2, v2 ∈ V .

PROOF.
(a) Letl : V ′ → V be linear and form

L =
∫

G

�(x)l�′(x−1) dx .

(This integration can be regarded as occurring for matrix-valued functions
and is to be handled entry-by-entry.) Then it follows that�(y)L�′(y−1) =
L, so that�(y)L = L�′(y) for all y ∈ G. By Proposition 4.8,L = 0.
Thus(Lv′, v) = 0. Choosel(w′) = (w′, u ′)u, and then we have

0 = (Lv′, v)

=
∫

G

(�(x)l�′(x−1)v′, v) dx

=
∫

G

(�(x)(�′(x−1)v′, u ′)u, v) dx

=
∫

G

(�(x)u, v)(�′(x−1)v′, u ′) dx,

and (a) results.
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(b) We proceed in the same way, starting froml : V → V and obtain
L = λI from Corollary 4.9. Taking the trace of both sides, we find

λ dim V = Tr L = Tr l,

so thatλ = (Tr l)/ dim V . Thus

(Lv2, v1) = Tr l

dim V
(v1, v2).

Choosingl(w) = (w, u2)u1, we have

(u1, u2)(v1, v2)

dim V
= Tr l

dim V
(v1, v2)

= (Lv2, v1)

=
∫

G

(�(x)l�(x−1)v2, v1) dx

=
∫

G

(�(x)u1, v1)(�(x−1)v2, u2) dx,

and (b) results.

We can interpret Corollary 4.10 as follows. Let{�(α)} be a maximal set
of mutually inequivalent finite-dimensional irreducible unitary representa-
tions ofG. For each�(α), choose an orthonormal basis for the underlying
vector space, and let�

(α)

i j (x) be the matrix of�(α)(x) in this basis. Then the
functions{�(α)

i j (x)}i, j,α form an orthogonal set in the spaceL2(G) of square
integrable functions onG. In fact, if d (α) denotes thedegreeof �(α) (i.e.,
the dimension of the underlying vector space), then{(d (α))1/2�

(α)

i j (x)}i, j,α is
an orthonormal set inL2(G). The Peter–Weyl Theorem in the next section
will show that this orthonormal set is an orthonormal basis.

We can use Schur orthogonality to get a qualitative idea of the de-
composition into irreducibles in Corollary 4.7 when� is a given finite-
dimensional representation ofG. By Proposition 4.6 there is no loss of
generality in assuming that� is unitary. If� is a unitary finite-dimensional
representation ofG, amatrix coefficient of � is any function onG of the
form (�(x)u, v). Thecharacter of � is the function

(4.11) χ�(x) = Tr �(x) =
∑

i

(�(x)ui , ui),

where{ui} is an orthonormal basis. This function depends only on the
equivalence class of� and satisfies
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(4.12) χ�(gxg−1) = χ�(x) for all g, x ∈ G.

If a finite-dimensional� is the direct sum of representations�1, . . . , �n,
then

(4.13) χ� = χ�1 + · · · + χ�n .

The corresponding formulas for characters of contragredients and tensor
products are

χ�c = χ�(4.14)

χ�⊗�′ = χ�χ�′ .(4.15)

Corollary 4.16. If G is a compact group, then the characterχ of
an irreducible finite-dimensional representation hasL2 norm satisfying
‖χ‖2 = 1. If χ andχ ′ are characters of inequivalent irreducible finite-
dimensional representations, then

∫
G χ(x)χ ′(x) dx = 0.

PROOF. These formulas are immediate from Corollary 4.10 since char-
acters are sums of matrix coefficients.

Now let� be a given finite-dimensional representation ofG, and write
� as the direct sum of irreducible representations�1, . . . , �n. If τ is an ir-
reducible finite-dimensional representation ofG, then (4.13) and Corollary
4.16 show that

∫
G χ�(x)χτ (x) dx is the number of summands�i equivalent

with τ . Evidently this integer is independent of the decomposition of�

into irreducible representations. We call it themultiplicity of τ in �.
To make concrete use of characters in determining reducibility, it is

helpful to have explicit formulas for characters. Formula (4.12) says
that characters are constant on conjugacy classes and therefore need to
be determined only on one representative of each conjugacy class. The
Weyl Character Formula in Chapter V will provide the required character
formulas whenG is a compact connected Lie group.

3. Peter–Weyl Theorem

The goal of this section is to establish the more analytic parts of the
abstract representation theory of compact groups. At the end of this section
we deduce the important consequence that any compact Lie group can be
realized as a group of complex matrices.
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By way of preliminaries, let us see that the setC(G) of continuous
functions is dense inL2(G). This fact is valid forL2 with respect to
any regular Borel measure and is not a special property of Haar measure.
Arguing by contradiction, suppose thatC(G) is not dense. Then there exists
a nonzeroL2 functionh such that

∫
G f h dx = 0 for every continuousf .

By a passage to the limit,
∫

G f h dx = 0 wheneverf is the characteristic
function of a compact set that is the countable intersection of open sets,
then wheneverf is the characteristic function of an open set, and finally
wheneverf is the characteristic function of any Borel set. Applying this
conclusion successively when the Borel set is the set where Reh > 0, the
set where Reh < 0, the set where Imh > 0, and the set where Imh < 0,
we conclude thath is 0 almost everywhere, contradiction.

Lemma 4.17. If G is a compact group andh is in L2(G), then the
function y �→ h(y−1x) of G into L2(G) is continuous.

PROOF. Givenε > 0, we shall produce an open neighborhoodU of 1
in G such that‖h(y−1

1 x) − h(y−1
2 x)‖2,x < ε whenevery−1

1 y2 is in U . Let
h ∈ L2(G) be given, and find, by the remarks above, a continuous function
c such that‖h − c‖2 < ε/3. The functionc, being continuous onG, is
uniformly continuous. Thus we can find an open neighborhoodU of 1 in
G such that

|c(y−1
1 x) − c(y−1

2 x)| < ε/3

for all x ∈ G whenevery−1
1 y2 is in U . Then

‖h(y−1
1 x) − h(y−1

2 x)‖2,x ≤ ‖h(y−1
1 x) − c(y−1

1 x)‖2,x

+ ‖c(y−1
1 x) − c(y−1

2 x)‖2,x

+ ‖c(y−1
2 x) − h(y−1

2 x)‖2,x

= 2‖h − c‖2 + ‖c(y−1
1 x) − c(y−1

2 x)‖2,x

≤ 2‖h − c‖2 + sup
x∈G

|c(y−1
1 x) − c(y−1

2 x)|
< 2ε/3 + ε/3 = ε.

Lemma 4.18. Let G be a compact group, and leth be in L2(G). For
anyε > 0, there exist finitely manyyi ∈ G and Borel setsEi ⊆ G such
that theEi disjointly coverG and

‖h(y−1x) − h(y−1
i x)‖2,x < ε for all i and for ally ∈ Ei .
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PROOF. By Lemma 4.17 choose an open neighborhoodU of 1 so that
‖h(gx) − h(x)‖2,x < ε wheneverg is in U . For eachz0 ∈ G, we have
‖h(gz0x) − h(z0x)‖2,x < ε wheneverg is in U . The setU z0 is an open
neighborhood ofz0, and such sets coverG as z0 varies. Find a finite
subcover, sayU z1, . . . , U zn, and letUi = U zi . DefineFj = Uj −

⋃ j−1
i=1 Ui .

Then the lemma follows withyi = z−1
i andEi = F−1

i .

Lemma 4.19.Let G be a compact group, letf be inL1(G), and leth be
in L2(G). Put F(x) = ∫

G f (y)h(y−1x) dy. ThenF is the limit in L2(G)

of a sequence of functions, each of which is a finite linear combination of
left translates ofh.

PROOF. Given ε > 0, chooseyi and Ei as in Lemma 4.18, and put
ci = ∫

Ei
f (y) dy. Then∥∥∥ ∫

G

f (y)h(y−1x) dy −
∑

i

ci h(y−1
i x)

∥∥∥
2,x

≤
∥∥∥ ∑

i

∫
Ei

| f (y)||h(y−1x) − h(y−1
i x)| dy

∥∥∥
2,x

≤
∑

i

∫
Ei

| f (y)| ‖h(y−1x) − h(y−1
i x)‖2,x dy

≤
∑

i

∫
Ei

| f (y)|ε dy = ε‖ f ‖1.

Theorem 4.20(Peter–Weyl Theorem). IfG is a compact group, then the
linear span of all matrix coefficients for all finite-dimensional irreducible
unitary representations ofG is dense inL2(G).

PROOF. If h(x) = (�(x)u, v) is a matrix coefficient, then the following
functions ofx are also matrix coefficients for the same representation:

h(x−1) = (�(x)v, u)

h(gx) = (�(x)u, �(g−1)v)

h(xg) = (�(x)�(g)u, v).

Then the closureU in L2(G) of the linear span of all matrix coefficients
of all finite-dimensional irreducible unitary representations is stable under
h(x) �→ h(x−1) and under left and right translation. Arguing by contra-
diction, supposeU �= L2(G). ThenU⊥ �= 0 andU⊥ is closed under
h(x) �→ h(x−1) and under left and right translation.
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We first prove that there is a nonzero continuous function inU⊥. Thus
let H �= 0 be inU⊥. For each open neighborhoodN of 1, we define

FN (x) = 1

|N |
∫

G

IN (y)H(y−1x) dy,

whereIN is the characteristic function ofN and|N | is the Haar measure of
N . Use of the Schwarz inequality and the fact thatIN andH are inL2(G)

shows thatFN is continuous. AsN shrinks to{1}, the functionsFN tend to
H in L2; hence someFN is not 0. Finally each linear combination of left
translates ofH is in U⊥, and henceFN is in U⊥ by Lemma 4.19.

ThusU⊥ contains a nonzero continuous function. Using translations
and scalar multiplications, we can adjust this function so that it becomes a
continuousF1 in U⊥ with F1(1) real and nonzero. Set

F2(x) =
∫

G

F1(yxy−1) dy.

ThenF2 is continuous and is inU⊥, F2(gxg−1) = F2(x) for all g ∈ G, and
F2(1) = F1(1) is real and nonzero. Finally put

F(x) = F2(x) + F2(x−1).

Then F is continuous and is inU⊥, F(gxg−1) = F(x) for all g ∈ G,
F(1) = 2F2(1) is real and nonzero, andF(x) = F(x−1). In particular,F
is not the 0 function inL2(G).

Form the functionk(x, y) = F(x−1y) and the integral operator

T f (x) =
∫

G

k(x, y) f (y) dy =
∫

G

F(x−1y) f (y) dy for f ∈ L2(G).

Then k(x, y) = k(y, x) and
∫

G×G |k(x, y)|2 dx dy < ∞, and henceT
is a Hilbert–Schmidt operator fromL2(G) into itself. Also T is not 0
sinceF �= 0. According to the Hilbert–Schmidt Theorem (Riesz–Nagy
[1955], p. 242), such an operator has a real nonzero eigenvalueλ and the
corresponding eigenspaceVλ ⊆ L2(G) is finite dimensional.

Let us see that the subspaceVλ is invariant under left translation byg,
which we write as(L(g) f )(x) = f (g−1x). In fact, f in Vλ implies

T L(g) f (x) =
∫

G

F(x−1y) f (g−1y) dy =
∫

G

F(x−1gy) f (y) dy

= T f (g−1x) = λ f (g−1x) = λL(g) f (x).
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By Lemma 4.17,g �→ L(g) f is continuous, and thereforeL is a repre-
sentation ofG in the finite-dimensional spaceVλ. By Corollary 4.7,Vλ

contains an irreducible invariant subspaceWλ �= 0.
Let f1, . . . , fn be an orthonormal basis ofWλ. The matrix coefficients

for Wλ are

hi j(x) = (L(x) f j , fi) =
∫

G

fj(x−1y) fi(y) dy

and by definition are inU . SinceF is in U⊥, we have

0 =
∫

G

F(x)hii(x) dx

=
∫

G

∫
G

F(x) fi(x−1y) fi(y) dy dx

=
∫

G

∫
G

F(x) fi(x−1y) fi(y) dx dy

=
∫

G

∫
G

F(yx−1) fi(x) fi(y) dx dy

=
∫

G

[∫
G

F(x−1y) fi(y) dy

]
fi(x) dx sinceF(gxg−1) = F(x)

=
∫

G

[T fi(x)] fi(x) dx

= λ

∫
G

| fi(x)|2 dx

for all i , in contradiction with the fact thatWλ �= 0. We conclude that
U⊥ = 0 and therefore thatU = L2(G).

EXAMPLE. For S1 = {eiθ}, we observed after Corollary 4.9 that the
irreducible finite-dimensional representations are 1-dimensional. The ma-
trix coefficients are just the functionseinθ . For this group the Peter–Weyl
Theorem says that the finite linear combinations of these functions are dense
in L2(S1). An equivalent formulation of this result is that{einθ}∞

n=−∞ is an
orthonormal basis ofL2(S1). This equivalent formulation is generalized in
Corollary 4.21 below.

Corollary 4.21. If {�(α)} is a maximal set of mutually inequivalent
finite-dimensional irreducible unitary representations of a compact group
G and if{(d (α))1/2�

(α)

i j (x)}i, j,α is a corresponding orthonormal set of matrix
coefficients, then{(d (α))1/2�

(α)

i j (x)}i, j,α is an orthonormal basis ofL2(G).
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PROOF. The linear span of the functions in question is the linear span
considered in the theorem. Then the theorem and general Hilbert space
theory imply the corollary.

Now we specialize to Lie groups. Recall from §I.10 that any continuous
homomorphism between Lie groups is automatically smooth. Therefore
the Lie algebra of a Lie group is an important tool in working with arbitrary
finite-dimensional representations of the group. This idea will be used
implicitly in the proof of the next corollary and more explicitly in the
proofs in the next section.

Corollary 4.22. Any compact Lie groupG has a one-one finite-
dimensional representation and hence is isomorphic to a closed linear
group.

PROOF. It follows from Theorem 4.20 that for eachx �= 1 in G, there
is a finite-dimensional representation�x of G such that�x(x) �= 1. If the
identity componentG0 is not{1}, pickx1 �= 1 in the identity componentG0.
ThenG1 = ker�x1 is a closed subgroup ofG, and its identity component
is a proper subgroup ofG0. If (G1)0 �= {1}, pick x2 �= 1 in (G1)0. Then
G2 = ker(�x1⊕�x2) is a closed subgroup ofG1, and its identity component
is a proper subgroup of(G1)0. Continuing in this way and using the finite
dimensionality ofG, we see that we can find a finite-dimensional repre-
sentation�0 of G such that ker�0 is 0-dimensional. Then ker�0 is finite,
being a compact 0-dimensional Lie group. Say ker�0 = {y1, . . . , yn}.
Then

� = �0 ⊕
n⊕

j=1

�yj

is a one-one finite-dimensional representation ofG.

4. Compact Lie Algebras

Let g be a real Lie algebra. We say thatg is acompact Lie algebraif
the group Intg is compact. More generally letk be a Lie subalgebra ofg,
and let Intg(k) be the analytic subgroup ofGL(g) with Lie algebra adg(k).
We say thatk is compactly embeddedin g if Intg(k) is compact.

Proposition 4.23. If G is a Lie group with Lie algebrag and if K
is a compact subgroup with corresponding Lie subalgebrak, thenk is a
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compactly embedded subalgebra ofg. In particular, the Lie algebra of a
compact Lie group is always a compact Lie algebra.

PROOF. SinceK is compact, so is the identity componentK0. Then
Adg(K0) must be compact, being the continuous image of a compact group.
The groups Adg(K0) and Intg(k) are both analytic subgroups ofGL(g)

with Lie algebra adg(k) and hence are isomorphic as Lie groups. Therefore
Intg(k) is compact.

The next proposition and its two corollaries give properties of compact
Lie algebras.

Proposition 4.24. Let G be a compact Lie group, and letg be its Lie
algebra. Then the real vector spaceg admits an inner product( · , · ) that is
invariant under Ad(G): (Ad(g)u, Ad(g)v) = (u, v). Relative to this inner
product the members of Ad(G) act by orthogonal transformations, and the
members of adg act by skew-symmetric transformations.

PROOF. Proposition 4.6 applies to complex vector spaces, but the
same argument can be used here to obtain the first conclusion. Then
Ad(G) acts by orthogonal transformations. Differentiating the identity
(Ad(expt X)u, Ad(expt X)v) = (u, v)att = 0, we see that((adX)u, v) =
−(u, (adX)v) for all X ∈ g. In other words, adX is skew symmetric.

Corollary 4.25. Let G be a compact Lie group, and letg be its Lie
algebra. Theng is reductive, and henceg = Zg ⊕ [g, g], whereZg is the
center and where [g, g] is semisimple.

PROOF. Define( · , · ) as in Proposition 4.24. The invariant subspaces
of g under adg are the ideals ofg. If a is an ideal, thena is an invariant
subspace. By (4.5),a⊥ relative to this inner product is an invariant subspace,
and thusa⊥ is an ideal. Since( · , · ) is definite,g = a ⊕ a⊥. Hencea has
a⊥ as a complementary ideal, andg is reductive. The rest follows from
Corollary 1.56.

Corollary 4.26. If G is a compact Lie group with Lie algebrag, then
the Killing form of g is negative semidefinite.

REMARKS. Starting in the next section, we shall bring roots into the
analysis ofg, and we shall want the theory in the semisimple case to be
consistent with the theory in Chapter II. Recall from the remarks with
Corollary 2.38 that the Killing form can be replaced in the theory of
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Chapter II by any nondegenerate invariant symmetric bilinear form that
yields a positive-definite form on the real subspace of the Cartan subalgebra
where the roots are real valued. Once we see from (4.32) below that this
space is contained inig0, Corollary 4.26 will imply that the negative of
the invariant inner product, rather than the inner product itself, is a valid
substitute for the Killing form in the semisimple case.

PROOF. Define( · , · ) as in Proposition 4.24. By the proposition, adX
is skew symmetric forX ∈ g. The eigenvalues of adX are therefore purely
imaginary, and the eigenvalues of(adX)2 must be≤ 0. If B is the Killing
form, then it follows thatB(X, X) = Tr((adX)2) is ≤ 0.

The next proposition provides a kind of converse to Corollary 4.26.

Proposition 4.27.If the Killing form of a real Lie algebrag is negative
definite, theng is a compact Lie algebra.

PROOF. By Cartan’s Criterion for Semisimplicity (Theorem 1.45),g is
semisimple. By Propositions 1.120 and 1.121, Intg = (AutR g)0. Conse-
quently Intg is a closed subgroup ofGL(g). On the other hand, the negative
of the Killing form is an inner product ong in which every member of adg
is skew symmetric. Therefore the corresponding analytic group Intg acts
by orthogonal transformations. Since Intg is then exhibited as a closed
subgroup of the orthogonal group, Intg is compact.

Lemma 4.28.Any 1-dimensional representation of a semisimple Lie al-
gebra is 0. Consequently any 1-dimensional representation of a semisimple
Lie group is trivial.

REMARK. Recall that semisimple Lie groups are connected by definition.

PROOF. Let g be the Lie algebra. A 1-dimensional representation of
g is a Lie algebra homomorphism ofg into the abelian real Lie algebra
C. Commutators must map to commutators, which are 0 inC. Thus
[g, g] maps to 0. But [g, g] = g by Corollary 1.55, and thusg maps
to 0. The conclusion about groups follows from the conclusion about
Lie algebras, since any continuous homomorphism between Lie groups is
smooth (§I.10).

Theorem 4.29. Let G be a compact connected Lie group with center
ZG , letg be its Lie algebra, and letGss be the analytic subgroup ofG with
Lie algebra [g, g]. Then Gss has finite center,(ZG)0 andGss are closed
subgroups, andG is the commuting productG = (ZG)0Gss .
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PROOF. By Corollary 4.25 we haveg = Zg ⊕ [g, g]. If (ZG)∼
0 andG∼

ss

denote simply connected covers of(ZG)0 andGss , then(ZG)∼
0 × G∼

ss is a
simply connected group with Lie algebrag and hence is a covering group̃G
of G. The covering homomorphism carries̃G ontoG, (ZG)∼

0 onto(ZG)0,
andG∼

ss ontoGss . SinceG̃ = (ZG)∼
0 G∼

ss , it follows thatG = (ZG)0Gss .
Since(ZG)0 is the identity component of the center and since the center

is closed,(ZG)0 is closed.
Let us show that the centerZss of Gss is finite. By Corollary 4.22,G

has a one-one representation� on some finite-dimensional complex vector
spaceV . By Corollary 4.7 we can writeV = V1 ⊕ · · · ⊕ Vn with G acting
irreducibly on eachVj . Let dj = dim Vj , and put�j(g) = �(g)|Vj . Since
G = (ZG)0Gss , the members ofZss are central inG, and Corollary 4.9
shows that�j(x) is a scalar operator for eachx ∈ Zss . On the other hand,
Lemma 4.28 shows that det�j(x) = 1 for all x ∈ Gss . Thus�j(x) for
x ∈ Zss acts onVj by a scalar that is a power of exp 2π i/dj . Therefore
there are at most

∏n
j=1 dj possibilities for the operator�(x) whenx is in

Zss . Since� is one-one,Zss has at most
∏n

j=1 dj elements.
Finally we prove thatGss is closed. By Corollary 4.26 the Killing form

of g is negative semidefinite. The Killing form of an ideal is obtained
by restriction, and thus the Killing form of [g, g] is negative semidefi-
nite. But [g, g] is semisimple, and Cartan’s Criterion for Semisimplicity
(Theorem 1.45) says that the Killing form of [g, g] is nondegenerate. Con-
sequently the Killing form of [g, g] is negative definite. By Proposition
4.27, [g, g] is a compact Lie algebra. That is, Int([g, g]) is compact. But
Int([g, g]) ∼= Ad(Gss). Since, as we have seen,Gss has finite center, the
coveringGss → Ad(Gss) is a finite covering. ThereforeGss is a compact
group. ConsequentlyGss is closed as a subgroup ofG.

5. Centralizers of Tori

Throughout this section,G will denote a compact connected Lie group,
g0 will be its Lie algebra, andg will be (g0)

C. Fix an invariant inner
productg0 as in Proposition 4.24, and, in accordance with the remarks
with Corollary 4.26, writeB for its negative.

A torus is a product of circle groups. From Corollary 1.103 we know
that every compact connected abelian Lie group is a torus.

Within G we can look for tori as subgroups. These are ordered by
inclusion, and any torus is contained in a maximal torus just by dimen-
sional considerations. A key role in the structure theory forG is played
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by maximal tori, and we begin by explaining their significance. In the
discussion we shall make use of the following proposition without specific
reference.

Proposition 4.30. The maximal tori inG are exactly the analytic sub-
groups corresponding to the maximal abelian subalgebras ofg0.

PROOF. If T is a maximal torus andt0 is its Lie algebra, we show thatt0

is maximal abelian. Otherwise leth0 be a strictly larger abelian subalgebra.
The corresponding analytic subgroupH will be abelian and will strictly
containT . HenceH will be a torus strictly containingT .

Conversely ift0 is maximal abelian ing0, then the corresponding analytic
subgroupT is abelian. IfT were not closed, thenT would have a strictly
larger abelian Lie algebra thant0, in contradiction with maximality. Hence
T is closed and is a torus, clearly maximal.

EXAMPLES.

1) ForG = SU (n), g0 is su(n) andg is sl(n, C). Let

T = diag(eiθ1, . . . , eiθn).

The Lie algebra ofT is

t0 = diag(iθ1, . . . , iθn),

and the complexification is the Cartan subalgebra ofg that was denoted
h in Example 1 of §II.1. Thenh is maximal abelian ing, and hencet0 is
maximal abelian ing0. By Proposition 4.30,T is a maximal torus ofG.

2) For G = SO(2n + 1), g0 is so(2n + 1) andg is so(2n + 1, C).
Referring to Example 2 of §II.1 and using Proposition 4.30, we see that

T =





(
cosθ1 sinθ1

− sinθ1 cosθ1

)
. . . (

cosθn sinθn

− sinθn cosθn

)
1




is a maximal torus ofG.
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3) ForG = Sp(n, C)∩U (2n), g0 is sp(n, C)∩u(2n) andg is sp(n, C).
Referring to Example 3 of §II.1 and using Proposition 4.30, we see that

T = diag(eiθ1, . . . , eiθn , e−iθ1, . . . , e−iθn)

is a maximal torus ofG. From Proposition 1.139 we know thatG ∼= Sp(n).

4) For G = SO(2n), g0 is so(2n) andg is so(2n, C). Referring to
Example 4 of §II.1 and using Proposition 4.30, we see that

T =




(

cosθ1 sinθ1

− sinθ1 cosθ1

)
. . . (

cosθn sinθn

− sinθn cosθn

)



is a maximal torus ofG.

Let T be a maximal torus inG, and lett0 be its Lie algebra. By Corollary
4.25 we know thatg0 = Zg0 ⊕ [g0, g0] with [g0, g0] semisimple. Sincet0 is
maximal abelian ing0, t0 is of the formt0 = Zg0 ⊕ t′0, wheret′0 is maximal
abelian in [g0, g0]. Dropping subscripts 0 to indicate complexifications,
we haveg = Zg ⊕ [g, g] with [g, g] semisimple. Alsot = Zg ⊕ t′ with
t′ maximal abelian in [g, g]. The members of adg0(t0) are diagonable over
C by Proposition 4.24, and hence the members of adg(t) are diagonable.
Consequently the members of ad[g,g](t

′) are diagonable. By Proposition
2.13,t′ is a Cartan subalgebra of the complex semisimple Lie algebra [g, g].

Using the root-space decomposition of [g, g], we can write

g = Zg ⊕ t
′ ⊕

⊕
α∈�([g,g],t′)

[g, g]α.

From this decomposition and the definition of Cartan subalgebra, it is clear
thatt is a Cartan subalgebra ofg. If we extend the membersα of�([g, g], t′)
to t by defining them to be 0 onZg, then the weight-space decomposition
of g relative to adt may be written

(4.31) g = t ⊕
⊕

α∈�(g,t)

gα.

Here, as in the semisimple case,gα is given by

gα = {X ∈ g | [H, X ] = α(H)X for all H ∈ t},
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and we say thatα is a root if gα �= 0 andα �= 0. The members ofgα are
the root vectors for the rootα, and we refer to (4.31) as theroot-space
decompositionof g relative tot. The set�(g, t) has all the usual properties
of roots except that the roots do not span the dual oft.

In general for a real reductive Lie algebrag′
0, we call a Lie subalgebra of

g′
0 a Cartan subalgebra if its complexification is a Cartan subalgebra of

g′. The dimension of the Cartan subalgebra is called therank of g′
0 and of

any corresponding analytic group. In this terminology the Lie algebrat0

of the maximal torusT of the compact connected Lie groupG is a Cartan
subalgebra ofg0, and the rank ofg0 and ofG is the dimension oft0.

Because of the presence of the groupsG andT , we get extra informa-
tion about the root-space decomposition (4.31). In fact, Ad(T ) acts by
orthogonal transformations ong0 relative to our given inner product. If
we extend this inner product ong0 to a Hermitian inner product ong, then
Ad(T ) acts ong by a commuting family of unitary transformations. Such a
family must have a simultaneous eigenspace decomposition, and it is clear
that (4.31) is that eigenspace decomposition. The action of Ad(T ) on the
1-dimensional spacegα is a 1-dimensional representation ofT , necessarily
of the form

(4.32) Ad(t)X = ξα(t)X for t ∈ T,

whereξα : T → S1 is a continuous homomorphism ofT into the group of
complex numbers of modulus 1. We callξα a multiplicative character .
From (4.32) the differential ofξα is α|t0. In particular,α|t0 is imaginary
valued, and the roots are real valued onit0.

Although we can easily deduce from Theorem 2.15 that the Cartan
subalgebrast of g obtained from all maximal tori are conjugate via Intg,
we need a separate argument to get the conjugacy of thet0’s to take place
within g0.

Lemma 4.33.Let T be a maximal torus inG, let t be its complexified
Lie algebra, and let� be the set of roots. IfH ∈ t hasα(H) �= 0 for all
α ∈ �, then the centralizerZg(H) is justt.

PROOF. Let X be in Zg(H), and let X = H ′ + ∑
α∈� Xα be the

decomposition ofX according to (4.31). Then

0 = [H, X ] = 0 +
∑
α∈�

[H, Xα] =
∑
α∈�

α(H)Xα,

and it follows thatα(H)Xα = 0 for all α ∈ �. Sinceα(H) �= 0, Xα = 0.
ThusX = H ′ is in t.
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Theorem 4.34.For a compact connected Lie groupG, any two maximal
abelian subalgebras ofg0 are conjugate via Ad(G).

PROOF. Let t0 andt′0 be maximal abelian subalgebras withT andT ′ the
corresponding maximal tori. There are only finitely many roots relative to
t′, and the union of their kernels therefore cannot exhaustt′. By Lemma
4.33 we can findX ∈ t′0 such thatZg(X) = t′. Similarly we can findY ∈ t0

such thatZg(Y ) = t. Remembering thatB is defined to be the negative of
the invariant inner product ong0, chooseg0 in G such thatB(Ad(g)X, Y ) is
minimized forg = g0. For anyZ in g0, r �→ B(Ad(expr Z)Ad(g0)X, Y )

is then a smooth function ofr that is minimized forr = 0. Differentiating
and settingr = 0, we obtain

0 = B((adZ)Ad(g0)X,Y ) = B([Z ,Ad(g0)X ],Y ) = B(Z , [Ad(g0)X,Y ]).

SinceZ is arbitrary, [Ad(g0)X, Y ] = 0. Thus Ad(g0)X is in Zg0(Y ) = t0.
Sincet0 is abelian, this means

t0 ⊆ Zg0(Ad(g0)X) = Ad(g0)Zg0(X) = Ad(g0)t
′
0.

Equality must hold sincet0 is maximal abelian. Thust0 = Ad(g0)t
′
0.

Corollary 4.35. For a compact connected Lie group, any two maximal
tori are conjugate.

PROOF. This follows by combining Proposition 4.30 and Theorem 4.34.

We come to the main result of this section.

Theorem 4.36. If G is a compact connected Lie group andT is a
maximal torus, then each element ofG is conjugate to a member ofT .

REMARK. If G = U (n) andT is the diagonal subgroup, this theorem
says that each unitary matrix is conjugate by a unitary matrix to a diagonal
matrix. This is just the finite-dimensional Spectral Theorem and is an easy
result. Theorem 4.36 lies deeper, and thusU (n) is not completely typical.
Even forSO(n) andSp(n), the theorem is a little harder, and the full power
of the theorem comes in handling those compact connected Lie groups that
have not yet arisen as examples.
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PROOF. We use the following notation for conjugates:

yx = xyx−1

T g = {t g | t ∈ T }
T G =

⋃
g∈G

T g.

The statement of the theorem is thatT G = G.
We prove the theorem by induction on dimG, the trivial case for the

induction being dimG = 0. Suppose that the theorem is known when the
dimension is< n, and suppose that dimG = n > 0. By Theorem 4.29
and the inductive hypothesis, there is no loss of generality in assuming that
G is semisimple.

Let ZG be the center ofG, and writeT × = T − (T ∩ ZG) andG× =
G − ZG . Since G is compact semisimple, Theorem 4.29 notes that
|ZG | < ∞. From the examples in §I.1, we know that no Lie algebra
of dimension 1 or 2 is semisimple, and hence dimG ≥ 3. ThereforeG× is
open connected dense inG. And, of course,(T ×)G is nonempty. We shall
prove that

(4.37) (T ×)G is open and closed inG×,

and then it follows that

(4.38) G× = (T ×)G .

To obtain the conclusion of the theorem from this result, we observe that
T G is the image of the compact setG × T under the map(x, t) �→ xtx−1.
HenceT G is a closed set, and (4.38) shows that it containsG×. SinceG×

is dense, we obtainT G = G. This conclusion will complete the induction
and the proof of the theorem.

Thus we are to prove (4.37). To prove that(T ×)G is closed inG×,
let {tn} and {xn} be sequences inT and G with lim(tn)

xn = g ∈ G×.
Passing to a subsequence (by compactness) if necessary, we may assume
that limtn = t ∈ T and limxn = x ∈ G. Then continuity givesg = t x . To
see thatt is in T ×, suppose on the contrary thatt is in T ∩ ZG . Theng = t
is in ZG and is not inG×, contradiction. We conclude thatt is in T × and
thatg is in (T ×)G . Hence(T ×)G is closed inG×.

To prove that(T ×)G is open inG×, it is enough to prove that anyt ∈ T ×

is an interior point of(T ×)G . Fix t in T ×. Let Z = (ZG(t))0. This is a
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compact connected group withT ⊆ Z ⊆ G. Letz0 be its Lie algebra. Since
by assumptiont is not inZG , we see thatz0 �= g0 and hence dimZ < dimG.
By inductive hypothesis,

(4.39) T Z = Z .

Let Z× = Z − (Z ∩ ZG). Then (4.39) gives

Z× =
⋃
y∈Z

T y − (Z ∩ ZG) =
⋃
y∈Z

T y − (( ⋃
y∈Z

T y
) ∩ ZG

)
=

⋃
y∈Z

T y −
⋃
y∈Z

(T y ∩ ZG) =
⋃
y∈Z

T y −
⋃
y∈Z

(T ∩ ZG)y

⊆
⋃
y∈Z

(T − (T ∩ ZG))y =
⋃
y∈Z

(T ×)y.(4.40)

The right side of (4.40) is contained inZ . Also it does not contain any
member ofZ ∩ ZG . In fact, if (t ′)y = z is in Z ∩ ZG with y ∈ Z , then
t ′ = zy−1 = z shows thatt ′ is in ZG , contradiction. Consequently the right
side of (4.40) is contained inZ×. Then equality must hold throughout
(4.40), and we find thatZ× = (T ×)Z . Hence

(4.41) (T ×)G = (Z×)G .

We shall introduce a certain open subsetZ1 of Z× containingt . Let q0

be the orthogonal complement toz0 in g0 relative to our given inner product
−B. We have

z0 = {X ∈ g0 | Ad(t)X = X} = ker(Ad(t) − 1).

Since Ad(t) is an orthogonal transformation, we have

q0 = image(Ad(t) − 1).

For anyz ∈ Z , the orthogonal transformation Ad(z) leavesz0 stable, and
therefore it leavesq0 stable also. Put

Z1 = {z ∈ Z | det(Ad(z) − 1)|q0 �= 0}.
This set is open inZ , and no member ofZG is in it (sinceq0 �= 0). Since
Ad(t) does not have the eigenvalue 1 onq0, t is in Z1. ThusZ1 is an open
subset ofZ× containingt .
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By (4.41), we obtain

t ∈ Z G
1 ⊆ (Z×)G = (T ×)G .

Thus it is enough to prove thatZ G
1 is open inG. To do so, we shall prove

that the mapψ : G × Z → G given byψ(y, x) = x y has differential
mapping onto at every point ofG × Z1. Thus fix y ∈ G and x ∈ Z1.
We identify the tangent spaces aty, x , andx y with g0, z0, andg0 by left
translation. First letY be ing0. To compute(dψ)(y,x)(Y, 0), we observe
from (1.88) that

(4.42) x y exprY = x y exp(rAd(yx−1)Y ) exp(−rAd(y)Y ).

We know from Lemma 1.90a that

expr X ′ exprY ′ = exp{r(X ′ + Y ′) + O(r2)} asr → 0.

Hence the right side of (4.42) is

= x y exp(rAd(y)(Ad(x−1) − 1)Y + O(r2)),

and

(4.43) dψ(Y, 0) = Ad(y)(Ad(x−1) − 1)Y.

Next let X be inz0. Then (1.88) gives

(x expr X)y = x y exp(rAd(y)X),

and hence

(4.44) dψ(0, X) = Ad(y)X.

Combining (4.43) and (4.44), we obtain

(4.45) dψ(Y, X) = Ad(y)((Ad(x−1) − 1)Y + X).

Sincex is in Z1, Ad(x−1) − 1 is invertible onq0, and thus the set of all
(Ad(x−1) − 1)Y containsq0. Since X is arbitrary inz0, the set of all
(Ad(x−1) − 1)Y + X is all of g0. But Ad(y) is invertible, and thus (4.45)
shows thatdψ is ontog0. This completes the proof that(T ×)G is open in
G×, and the theorem follows.
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Corollary 4.46. Every element of a compact connected Lie groupG
lies in some maximal torus.

PROOF. Let T be a maximal torus. Ify is given, then Theorem 4.36
givesy = xtx−1 for somex ∈ G andt ∈ T . Theny is in T x , andT x is
the required maximal torus.

Corollary 4.47. The centerZG of a compact connected Lie group lies
in every maximal torus.

PROOF. Let T be a maximal torus. Ifz ∈ ZG is given, then Theorem
4.36 givesz = xtx−1 for somex ∈ G andt ∈ T . Multiplying on the left
by x−1 and on the right byx and using thatz is central, we see thatz = t .
Hencez is in T .

Corollary 4.48. For any compact connected Lie groupG, the exponen-
tial map is ontoG.

PROOF. The exponential map is onto for each maximal torus, and hence
this corollary follows from Corollary 4.46.

Lemma 4.49. Let A be a compact abelian Lie group such thatA/A0

is cyclic, whereA0 denotes the identity component ofA. Then A has an
element whose powers are dense inA.

PROOF. SinceA0 is a torus, we can choosea0 in A0 such that the powers
of a0 are dense inA0. Let N = |A/A0|, and letb be a representative ofA
of a generating coset ofA/A0. SincebN is in A0, we can findc in A0 with
bN cN = a0. Then the closure of the powers ofbc is a subgroup containing
A0 and a representative of each coset ofA/A0, hence is all ofA.

Theorem 4.50.Let G be a compact connected Lie group, and letS be a
torus ofG. If g in G centralizesS, then there is a torusS′ in G containing
both S andg.

PROOF. Let A be the closure of
⋃∞

n=−∞ gn S. Then the identity compo-
nentA0 is a torus. SinceA0 is open inA,

⋃∞
n=−∞ gn A0 is an open subgroup

of A containing
⋃∞

n=−∞ gn S. Hence
⋃∞

n=−∞ gn A0 = A. By compactness
of A0, some nonzero power ofg is in A0. If N denotes the smallest positive
such power, thenA/A0 is cyclic of orderN . Applying Lemma 4.49, we can
find a in A whose powers are dense inA. By Corollary 4.48 we can write
a = expX for someX ∈ g0. Then the closure of{expr X, −∞ < r < ∞}
is a torusS′ containingA, hence containing bothS andg.
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Corollary 4.51. In a compact connected Lie group, the centralizer of a
torus is connected.

PROOF. Theorem 4.50 shows that the centralizer is the union of the tori
containing the given torus.

Corollary 4.52. A maximal torus in a compact connected Lie group is
equal to its own centralizer.

PROOF. Apply Theorem 4.50.

6. Analytic Weyl Group

We continue with the notation of §5:G is a compact connected Lie
group,g0 is its Lie algebra, andB is the negative of an invariant inner
product ong0. Let T be a maximal torus, and lett0 be its Lie algebra. We
indicate complexifications of Lie algebras by dropping subscripts 0. Let
�(g, t) be the set of roots ofg with respect tot. The centerZg0 of g0 is
contained int0, and all roots vanish onZg.

The roots are purely imaginary ont0, as a consequence of (4.32) and
passage to differentials. We definetR = it0; this is a real form oft on
which all the roots are real. We may then regard all roots as members of
t∗R. The set�(g, t) is an abstract reduced root system in the subspace oft∗R
coming from the semisimple Lie algebra [g, g].

The negative-definite formB on t0 leads by complexification to a
positive-definite form ontR. Thus, forλ ∈ t∗R, let Hλ be the member
of tR such that

λ(H) = B(H, Hλ) for H ∈ tR.

The resulting linear mapλ �→ Hλ is a vector-space isomorphism oft∗R with
tR. Under this isomorphism let(i Zg0)

∗ be the subspace oft∗R corresponding
to i Zg0. The inner product ontR induces an inner product ont∗R denoted
by 〈 · , · 〉. Relative to this inner product, the members of�(g, t) span the
orthogonal complement of(i Zg0)

∗, and�(g, t) is an abstract reduced root
system in this orthogonal complement. Also we have

〈λ, µ〉 = λ(Hµ) = µ(Hλ) = B(Hλ, Hµ).

Forα ∈ �(g, t), theroot reflection sα is given as in the semisimple case
by

sα(λ) = λ − 2〈λ, α〉
|α|2 α.
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The linear transformationsα is the identity on(i Zg0)
∗ and is the usual root

reflection in the orthogonal complement. TheWeyl group W (�(g, t))

is the group generated by thesα ’s for α ∈ �(g, t). This consists of the
members of the usual Weyl group of the abstract root system, with each
member extended to be the identity on(i Zg0)

∗.
We might think ofW (�(g, t)) as an algebraically defined Weyl group.

There is also an analytically definedWeyl group W (G, T ), defined as the
quotient of normalizer by centralizer

W (G, T ) = NG(T )/ZG(T ).

The groupW (G, T ) acts by automorphisms ofT , hence by invertible
linear transformations ont0 and the associated spacestR = it0, t, t∗R, and
t∗. Only 1 acts as the identity. In the definition ofW (G, T ), we can replace
ZG(T ) by T , according to Corollary 4.52. The groupW (G, T ) plays the
following role in the theory.

Proposition 4.53.For a compact connected Lie groupG with maximal
torusT , every element ofG is conjugate to a member ofT , and two elements
of T are conjugate withinG if and only if they are conjugate viaW (G, T ).
Thus the conjugacy classes inG are parametrized byT/W (G, T ). This cor-
respondence respects the topologies in that a continuous complex-valued
function f on T extends to a continuous functionF on G invariant under
group conjugation if and only iff is invariant underW (G, T ).

PROOF. Theorem 4.36 says that every conjugacy class meetsT . Suppose
thats andt are inT andg is in G andgtg−1 = s. We show that there is
an elementg0 of NG(T ) with g0tg−1

0 = s. In fact, consider the centralizer
ZG(s). This is a closed subgroup ofG with Lie algebra

Zg(s) = {X ∈ g | Ad(s)X = X}.

The identity component(ZG(s))0 is a group to which we can apply Theorem
4.34. Botht and Ad(g)t are inZg(s), and they are maximal abelian; hence
there existsz ∈ (ZG(s))0 with

t = Ad(zg)t.

Theng0 = zg is in NG(T ) and(zg)t (zg)−1 = s.
Thus the conjugacy classes inG are given byT/W (G, T ). Let us

check that continuous functions correspond. IfF is continuous onG,
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then certainly its restrictionf to T is continuous. Conversely suppose
f is continuous onT and invariant underW (G, T ). Define F on G by
F(xtx−1) = f (t); we have just shown thatF is well defined. Let{gn} be a
sequence inG with limit g, and writegn = xntnx−1

n . Using the compactness
of G andT , we can pass to a subsequence so that{xn} and{tn} have limits,
say limxn = x and limtn = t . Theng = xtx−1, and the continuity off
gives

lim F(gn) = lim f (tn) = f (t) = F(g).

HenceF is continuous.

The discussion of characters of finite-dimensional representations in §2
showed the importance of understanding the conjugacy classes inG, and
Proposition 4.53 has now reduced that question to an understanding of
W (G, T ). There is a simple description ofW (G, T ), which is the subject
of the following theorem.

Theorem 4.54. For a compact connected Lie groupG with maximal
torus T , the analytically defined Weyl groupW (G, T ), when consid-
ered as acting ont∗R, coincides with the algebraically defined Weyl group
W (�(g, t)).

REMARK. Most of the argument consists in exhibiting the root reflections
as occurring inW (G, T ). The calculation for this part is motivated by
what happens inSU (2). For this group,T is diagonal andsα is given by(

0 1

−1 0

)
. Let bar denote conjugation ofsl(2, C) with respect tosu(2). With

Eα =
(

0 1

0 0

)
, we haveEα =

(
0 0

−1 0

)
and

(
0 1

−1 0

)
= expπ

2 (Eα + Eα). The

general case amounts to embedding this argument inG.

PROOF. In view of Theorem 4.29, we may assume thatG is semisimple.
To show thatW (�(g, t)) ⊆ W (G, T ), it is enough to show thatα in �(g, t)

impliessα in W (G, T ). Thus let bar denote conjugation ofg with respect
to g0, and extendB to a complex bilinear form ong. Let Eα be ingα, and
write Eα = Xα + iYα with Xα andYα in g0. ThenEα = Xα − iYα is in
g−α. For H in t, we have

(4.55) [Xα, H ] = − 1
2[H, Eα+Eα] = − 1

2α(H)(Eα−Eα) = −iα(H)Yα.

Also Lemma 2.18a, reinterpreted withB in place of the Killing form, gives

(4.56)
[ Xα, Yα] = 1

4i
[Eα + Eα, Eα − Eα]

= − 1

2i
[Eα, Eα] = − 1

2i
B(Eα, Eα)Hα.
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SinceB(Eα, Eα) < 0, we can define a real numberr by

r =
√

2π

|α|
√

−B(Eα, Eα)
.

SinceXα is in g0, g = expr Xα is in G. We compute Ad(g)H for H ∈ tR.
We have

(4.57) Ad(g)H = eadr Xα H =
∞∑

k=0

r k

k!
(adXα)

k H.

If α(H) = 0, then (4.55) shows that the series (4.57) collapses toH . If
H = Hα, then we obtain

r2(adXα)
2Hα = 1

2|α|2B(Eα, Eα)r
2Hα = −π2Hα

from (4.55) and (4.56). Therefore (4.57) shows that

Ad(g)Hα =
∞∑

m=0

r2m

(2m)!
(adXα)

2m Hα +
∞∑

m=0

r2m+1

(2m + 1)!
(adXα)

2m+1Hα

=
∞∑

m=0

(−1)mπ2m

(2m!)
Hα + r

∞∑
m=0

(−1)mπ2m

(2m + 1)!
[ Xα, Hα]

= (cosπ)Hα + rπ−1(sinπ)[ Xα, Hα]

= −Hα.

Thus everyH ∈ tR satisfies

Ad(g)H = H − 2α(H)

|α|2 Hα,

and Ad(g) normalizestR, operating assα on t∗R.
It follows that W (�(g, t)) ⊆ W (G, T ). Next let us observe that

W (G, T ) permutes the roots. In fact, letg be in NG(T ) = NG(t), let
α be in�, and letEα be ingα. Then

[H, Ad(g)Eα] = Ad(g)[Ad(g)−1H, Eα] = Ad(g)(α(Ad(g)−1H)Eα)

= α(Ad(g)−1H)Ad(g)Eα = (gα)(H)Ad(g)Eα

shows thatgα is in � and that Ad(g)Eα is a root vector forgα. Thus
W (G, T ) permutes the roots.
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Fix a simple system� for �, let g be given inW (G, T ), and let̃g be
a representative ofg in NG(T ). It follows from the previous paragraph
that g� is another simple system for�. By Theorem 2.63 choosew in
W (�(g, t)) with wg� = �. We show thatwg fixes t∗R. If so, thenwg is
the identity inW (G, T ), andg = w−1. Sog is exhibited as inW (�(g, t)),
andW (�(g, t)) = W (G, T ).

Thus letwg� = �. SinceW (�(g, t)) ⊆ W (G, T ), w has a represen-
tative w̃ in NG(T ). Let �+ be the positive system corresponding to�,
and defineδ = 1

2

∑
α∈�+ α. Thenwgδ = δ, and so Ad(w̃g̃)Hδ = Hδ. If

S denotes the closure of{expir Hδ | r ∈ R}, then S is a torus, and̃wg̃
is in its centralizerZG(S). Let s0 be the Lie algebra ofS. We claim that
Zg0(s0) = t0. If so, thenZG(S) = T by Corollary 4.51. Hencẽwg̃ is in
T , wg = Ad(w̃g̃) fixest∗R, and the proof is complete.

To see thatZg0(s0) = t0, let αi be a simple root. Proposition 2.69
shows that 2〈δ, αi〉/|αi |2 = 1. For a general positive rootα, we therefore
have〈δ, α〉 > 0. Thusα(Hδ) �= 0 for all α ∈ �(g, t). By Lemma 4.33,
Zg(Hδ) = t. Hence

Zg0(s0) = g0 ∩ Zg(s0) = g0 ∩ Zg(Hδ) = g0 ∩ t = t0,

as required.

7. Integral Forms

We continue with the notation of §§5–6 for a compact connected Lie
groupG with maximal torusT . We saw in (4.32) that rootsα ∈ �(g, t)

have the property that they lift from imaginary-valued linear functionals
on t0 to multiplicative characters ofT . Let us examine this phenomenon
more systematically.

Proposition 4.58. If λ is in t∗, then the following conditions onλ are
equivalent:

(i) WheneverH ∈ t0 satisfies expH = 1, λ(H) is in 2π iZ.
(ii) There is a multiplicative characterξλ of T with ξλ(expH) = eλ(H)

for all H ∈ t0.

All roots have these properties. Ifλ has these properties, thenλ is real
valued ontR.

REMARK. A linear functionalλ satisfying (i) and (ii) is said to be
analytically integral .
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PROOF. If T̃ denotes a universal covering group ofT , we can regard
the exponential map of̃T as carryingt0 into T̃ ∼= Rn; in doing so, it
is a group isomorphism. SincẽT is simply connected, the Lie algebra
homomorphismλ : t0 → C lifts to a group homomorphism̃ξλ : T̃ → C×.
This homomorphism satisfies̃ξλ(exp̃T H) = eλ(H) by (1.82). Since exp̃T is
ontoT̃ , the homomorphism̃ξλ descends toT if and only if ξ̃λ(exp̃T H) is 1
whenever exp̃T H is carried to 1 inT by the covering map, i.e., whenever
expT H = 1. Thus̃ξλ descends toT if and only if (i) holds, and so (i) and
(ii) are equivalent. If̃ξλ descends toξλ on T , thenξλ has compact image in
C×, hence image in the unit circle, and it follows thatλ is real valued on
tR. We saw in (4.32) that roots satisfy (ii).

Proposition 4.59. If λ in t∗ is analytically integral, thenλ satisfies the
condition

(4.60)
2〈λ, α〉

|α|2 is in Z for eachα ∈ �.

REMARK. A linear functionalλ satisfying the condition (4.60) is said to
bealgebraically integral.

PROOF. Let bar denote conjugation ofg with respect tog0, and extend
B to a complex bilinear form ong. Fix α ∈ �(g, t), and let Eα be a
nonzero root vector. SinceB(Eα, Eα) < 0, we can normalizeEα so that
B(Eα, Eα) = −2/|α|2. Write Eα = Xα + iYα with Xα andYα in g0. Put
Zα = −i |α|−2Hα ∈ g0. Then Xα, Yα, and Zα are ing0, and (4.55) and
(4.56) respectively give

[Zα, Xα] = i

|α|2 [ Xα, Hα] = i

|α|2 (−iα(Hα)Yα) = Yα

[ Xα, Yα] = 1

2i

2

|α|2 Hα = Zα.and

Similarly

[Yα, Zα] = i

|α|2 [Hα,
1
2i
(Eα − Eα)] = 1

2|α|2 α(Hα)(Eα + Eα) = Xα.

Hence the correspondence

1
2

(
0 i

i 0

)
↔ Xα,

1
2

(
0 1

−1 0

)
↔ Yα,

1
2

(
−i 0

0 i

)
↔ Zα
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gives us an isomorphism

(4.61) su(2) ∼= RXα + RYα + RZα.

Since SU (2) is simply connected, there exists a homomorphism� of
SU (2) into G whose differential implements (4.61). Under the com-

plexification of (4.61),h =
(

1 0

0 −1

)
maps to 2i Zα = 2|α|−2Hα. Thus

d�(ih) = −2Zα = 2i |α|−2Hα. By (1.82),

1 = �(1) = �(exp 2π ih) = exp(d�(2π ih)) = exp(2π i(2|α|−2Hα)).

Since λ is analytically integral, (i) of Proposition 4.58 shows that
λ(2π i(2|α|−2Hα)) is in 2π iZ. This means that 2〈λ, α〉/|α|2 is in Z.

Proposition 4.62. Fix a simple system of roots{α1, . . . , αl}. Then
λ ∈ t∗ is algebraically integral if and only if 2〈λ, αi〉/|αi |2 is in Z for each
simple rootαi .

PROOF. If λ is algebraically integral, then 2〈λ, αi〉/|αi |2 is in Z for each
αi by definition. Conversely if 2〈λ, αi〉/|αi |2 is an integer for eachαi , let
α = ∑

ciαi be a positive root. We prove by induction on the level
∑

ci that
2〈λ, α〉/|α|2 is an integer. Level 1 is the given case. Assume the assertion
when the level is< n, and let the level ben > 1 for α. Chooseαi with
〈α, αi〉 > 0. By Lemma 2.61,β = sαi α is positive, and it certainly has
level< n. Then

2〈λ, α〉
|α|2 = 2〈sαi λ, β〉

|β|2 = 2〈λ, β〉
|β|2 − 2〈λ, αi〉

|αi |2
2〈αi , β〉

|β|2 ,

and the right side is an integer by inductive hypothesis. The proposition
follows.

Propositions 4.58 and 4.59 tell us that we have inclusions

(4.63)
Z combinations of roots⊆ analytically integral forms

⊆ algebraically integral forms.

Each of these three sets may be regarded as an additive group int∗R.
Let us specialize to the case thatG is semisimple. Propositions 2.49

and 4.62 show that the right member of (4.63) is alattice in t∗R, i.e., a
discrete subgroup with compact quotient. Proposition 2.49 shows that the
left member of (4.63) spanst∗R overR and hence is a sublattice. Thus (4.63)
provides us with an inclusion relation for three lattices. Matters are con-
trolled somewhat by the following result.
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Proposition 4.64.If G is semisimple, then the index of the lattice ofZ
combinations of roots in the lattice of algebraically integral forms is exactly
the determinant of the Cartan matrix.

Lemma 4.65. Let F be a free abelian group of rankl, and letR be a
subgroup of rankl. Then it is possible to chooseZ bases{ti} of F and{ui}
of R such thatui = δi ti (with δi ∈ Z) for all i and such thatδi dividesδj if
i < j .

REMARK. This result tells what happens in a standard proof of the
Fundamental Theorem for Finitely Generated Abelian Groups. We omit
the argument. Artin [1991], p. 458, gives details.

Lemma 4.66. Let F be a free abelian group of rankl, and letR be a
subgroup of rankl. Let {ti} and{ui} beZ bases ofF andR, respectively,
and suppose thatuj = ∑l

i=1 di j ti . ThenF/R has order| det(di j)|.
PROOF. A change of basis in thet ’s or in theu’s corresponds to multiply-

ing (di j) by an integer matrix of determinant±1. In view of Lemma 4.65,
we may therefore assume(di j) is diagonal. Then the result is obvious.

PROOF OF PROPOSITION 4.64. Fix a simple system{α1, . . . , αl} and
define{λ1, . . . , λl} by 2〈λi , αj〉/|αj |2 = δi j . The {λi} form a Z basis of
the lattice of algebraically integral forms by Proposition 4.62, and the{αi}
form a Z basis of the lattice generated by the roots by Proposition 2.49.
Write

αj =
l∑

k=1

dkjλk,

and apply 2〈αi , · 〉/|αi |2 to both sides. Then we see thatdi j equals
2〈αi , αj〉/|αi |2. Proposition 2.52e shows that the determinant of the Cartan
matrix is positive; thus the result follows from Lemma 4.66.

Proposition 4.67. If G is a compact connected Lie group and̃G is a
finite covering group, then the index of the group of analytically integral
forms for G in the group of analytically integral forms for̃G equals the
order of the kernel of the covering homomorphism̃G → G.

PROOF. This follows by combining Corollary 4.47 and Proposition 4.58.

Proposition 4.68. If G is a compact semisimple Lie group with trivial
center, then every analytically integral form is aZ combination of roots.
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PROOF. Letλ be analytically integral. Letα1, . . . , αl be a simple system,
and defineHj ∈ t0 by αk(Hj) = 2π iδk j . If α = ∑

m nmαm is a root and if
X is in gα, then

Ad(expHj)X = eadHj X = eα(Hj ) X = e
∑

nmαm (Hj ) X = e2π inj X = X.

So expHj is in ZG and therefore is 1. Sinceλ is analytically integral,
Proposition 4.58 shows thatλ(Hj) is in 2π iZ. Write λ = ∑

m cmαm.
Evaluating both sides onHj , we see thatcj2π i is in 2π iZ. Hencecj is in
Z for eachj , andλ is aZ combination of roots.

8. Weyl’s Theorem

We now combine a number of results from this chapter to prove the
following theorem.

Theorem 4.69(Weyl’s Theorem). IfG is a compact semisimple Lie
group, then the fundamental group ofG is finite. Consequently the univer-
sal covering group ofG is compact.

Lemma 4.70. If G is a compact connected Lie group, then its funda-
mental group is finitely generated.

PROOF. We can writeG = G̃/Z whereG̃ is the universal covering group
of G andZ is a discrete subgroup of the center ofG̃. HereZ is isomorphic
to the fundamental group ofG. Lete : G̃ → G be the covering homomor-
phism. About each pointx ∈ G, choose a connected simply connected
open neighborhoodNx and a connected simply connected neighborhood
N ′

x with closure inNx . Extract a finite subcover ofG from among the
N ′

x , sayN ′
x1
, . . . , N ′

xn
. SinceN ′

xj
is connected and simply connected, the

components ofe−1(N ′
xj
) in G̃ are homeomorphic toN ′

xj
. Let Mxj be one of

them. SinceNxj is connected and simply connected, the homeomorphism
of Mxj with N ′

xj
extends to a homeomorphism of the closures. Therefore

U = ⋃n
j=1 Mxj is an open set iñG such thatU is compact and̃G = ZU .

By enlargingU , we may suppose also that 1 is inU andU = U−1.
The setU U

−1
is compact inG̃ and is covered by the open setszU ,

z ∈ Z , sinceG̃ = ZU . Thus we can findz1, . . . , zk in Z such that

(4.71) U U
−1 ⊆

k⋃
j=1

zjU.
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Let Z1 be the subgroup ofZ generated byz1, . . . , zk , and letE be the image
of U in G̃/Z1. ThenE contains the identity andE = E−1, and (4.71) shows
that E E−1 ⊆ E . Thus E is a subgroup of̃G/Z1. SinceE contains the
image ofU , E is open, and thusE = G̃/Z1 by connectedness. SinceU is
compact,E is compact. ConsequentlyE is a finite-sheeted covering group
of G. That is,G has a finite-sheeted covering group whose fundamental
groupZ1 is finitely generated. The lemma follows.

PROOF OFTHEOREM 4.69. LetG = G̃/Z , whereG̃ is the universal
covering group ofG andZ is a discrete subgroup of the center ofG̃. Here
Z is a finitely generated abelian group by Lemma 4.70. IfZ is finite, we
are done. OtherwiseZ has an infinite cyclic direct summand, and we can
find a subgroupZ1 of Z such thatZ1 has finite index inZ greater than
the determinant of the Cartan matrix. TheñG/Z1 is a compact covering
group of G with a number of sheets exceeding the determinant of the
Cartan matrix. By Proposition 4.67 the index of the lattice of analytically
integral forms forG in the corresponding lattice for̃G/Z1 exceeds the
determinant of the Cartan matrix. Comparing this conclusion with (4.63)
and Proposition 4.64, we arrive at a contradiction. Theorem 4.69 follows.

More is true. As we noted in the proof of Weyl’s Theorem, Propositions
4.64 and 4.67 show for a compact semisimple Lie group that the order of
the center is≤ the determinant of the Cartan matrix. Actually equality
holds when the group is simply connected. This result may be regarded
as a kind of existence theorem. For example, the groupSO(2n) has the
2-element center{±1}, while the determinant of the Cartan matrix (type
Dn) is 4. It follows thatSO(2n) is not simply connected and has a double
cover. The relevant existence theorem will be proved in Chapter V as the
Theorem of the Highest Weight, and the consequence about the order of
the center of a compact semisimple Lie group will be proved at the end of
that chapter.

9. Problems

1. Example 2 forSU (n) in §1 gives a representation ofSU (2) in the space
of holomorphic polynomials inz1, z2 homogeneous of degreeN . Call this
representation�N , and letχN be its character. LetT be the maximal torus

T = {tθ } with tθ =
(

eiθ 0
0 e−iθ

)
.



270 IV. Compact Lie Groups

(a) Compute�N (tθ ) on each monomialzk
1zN−k

2 .

(b) Computed�N

(
1 0
0 −1

)
, and use Theorem 1.66 to deduce that�N is

irreducible.
(c) Give an explicit(N + 1)-term geometric series forχN (tθ ), and write the

sum as a quotient.
(d) DecomposeχMχN as a sum ofχN ′ ’s, and give a formula for the multi-

plicity of �N ′ in �M ⊗ �N .

2. Deduce Theorem 4.36 from Corollary 4.48 and Theorem 4.34.

3. Give direct proofs of Theorem 4.36 forSO(n) andSp(n) in the spirit of the
remarks with that theorem.

4. In SO(3), show that there is an element whose centralizer inSO(3) is not
connected.

5. ForG = U (n) with T equal to the diagonal subgroup, what elements are in
the normalizerNG(T )?

6. LetG be a compact semisimple Lie group, and suppose that every algebraically
integral form is analytically integral. Prove thatG is simply connected.

7. Let� be an irreducible unitary finite-dimensional representation of the com-
pact groupG on the spaceV . The linear span of the matrix coefficients
(�(x)u, v) is a vector spacẽV, and it was noted in the proof of Theorem 4.20
that this space is invariant under the representationr(g) f (x) = f (xg). Find
the multiplicity of� in the spacẽV whenṼ is acted upon byr .

8. Let G be a compact group with normalized Haar measuredx , and let�
be a finite-dimensional irreducible unitary representation with degreed and
characterχ . Prove thatχ(u)χ(v) = d

∫
G χ(utvt−1) dt .

Problems 9–14 concern Example 2 forG = SO(n) in §1. Let VN be the space
of complex-valued polynomials inx1, . . . , xn homogeneous of degreeN . For any
homogeneous polynomialp, we define a differential operator∂(p) with constant
coefficients by requiring that∂( · ) is linear in( · ) and that

∂(xk1
1 · · · xkn

n ) = ∂k1+···+kn

∂xk1
1 · · · ∂xkn

n

.

For example, if we write|x |2 = x2
1 + · · · + x2

n , then∂(|x |2) = �. If p andq are
in the sameVN , then∂(q̄)p is a constant polynomial, and we define〈p, q〉 to be
that constant.

9. Prove that〈 · , · 〉 is G invariant onVN .

10. Prove that distinct monomials inVN are orthogonal relative to〈 · , · 〉 and that
〈p, p〉 is > 0 for such a monomial. Deduce that〈 · , · 〉 is a Hermitian inner
product.
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11. Call p ∈ VN harmonic if ∂(|x |2)p = 0, and letHN be the subspace of
harmonic polynomials. Prove that the orthogonal complement of|x |2VN−2 in
VN relative to〈 · , · 〉 is HN .

12. Deduce from Problem 11 that� carriesVN ontoVN−2.

13. Deduce from Problem 11 that eachp ∈ VN decomposes uniquely as

p = hN + |x |2hN−2 + |x |4hN−4 + · · ·

with hN , hN−2, hN−4, . . . homogeneous harmonic of the indicated degrees.

14. Compute the dimension ofHN .

Problems 15–17 concern Example 2 forSU (n) in §1. Let VN be the space of
polynomials inz1, . . . , zn, z̄1, . . . , z̄n that are homogeneous of degreeN .

15. Show for each pair(p, q) with p + q = N that the subspaceVp,q of poly-
nomials with p z-type factors andq z̄-type factors is an invariant subspace
underSU (n).

16. The Laplacian in these coordinates is a multiple of
∑

j

∂2

∂zj∂ z̄ j
. Using the

result of Problem 12, prove that the Laplacian carriesVp,q ontoVp−1,q−1.

17. Compute the dimension of the subspace of harmonic polynomials inVp,q .

Problems 18–21 deal with integral forms. In each case the maximal torusT is
understood to be as in the corresponding example of §5, and the notation for
members oft∗ is to be as in the corresponding example of §II.1 (withh = t).

18. For SU (n), a general member oft∗ may be written uniquely as
∑n

j=1 cj ej

with
∑n

j=1 cj = 0.
(a) Prove that theZ combinations of roots are those forms with allcj in Z.
(b) Prove that the algebraically integral forms are those for which allcj are

in Z + k
n for somek.

(c) Prove that every algebraically integral form is analytically integral.
(d) Prove that the quotient of the lattice of algebraically integral forms by the

lattice ofZ combinations of roots is a cyclic group of ordern.

19. ForSO(2n + 1), a general member oft∗ is
∑n

j=1 cj ej .
(a) Prove that theZ combinations of roots are those forms with allcj in Z.
(b) Prove that the algebraically integral forms are those forms with allcj in

Z or all cj in Z + 1
2.

(c) Prove that every analytically integral form is aZ combination of roots.

20. ForSp(n, C) ∩ U (2n), a general member oft∗ is
∑n

j=1 cj ej .
(a) Prove that theZ combinations of roots are those forms with allcj in Z

and with
∑n

j=1 cj even.
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(b) Prove that the algebraically integral forms are those forms with allcj in
Z.

(c) Prove that every algebraically integral form is analytically integral.

21. ForSO(2n), a general member oft∗ is
∑n

j=1 cj ej .
(a) Prove that theZ combinations of roots are those forms with allcj in Z

and with
∑n

j=1 cj even.
(b) Prove that the algebraically integral forms are those forms with allcj in

Z or all cj in Z + 1
2.

(c) Prove that the analytically integral forms are those forms with allcj in Z.
(d) The quotient of the lattice of algebraically integral forms by the lattice of

Z combinations of roots is a group of order 4. Identify the group.



CHAPTER V

Finite-Dimensional Representations

Abstract. In any finite-dimensional representation of a complex semisimple Lie algebra
g, a Cartan subalgebrah acts completely reducibly, the simultaneous eigenvalues being
called “weights.” Once a positive system for the roots�+(g, h) has been fixed, one can
speak of highest weights. The Theorem of the Highest Weight says that irreducible finite-
dimensional representations are characterized by their highest weights and that the highest
weight can be any dominant algebraically integral linear functional onh. The hard step
in the proof is the construction of an irreducible representation corresponding to a given
dominant algebraically integral form. This step is carried out by using “Verma modules,”
which are universal highest weight modules.

All finite-dimensional representations ofg are completely reducible. Consequently the
nature of such a representation can be determined from the representation ofh in the space
of “n invariants.” The Harish-Chandra Isomorphism identifies the center of the universal
enveloping algebraU (g) with the Weyl-group invariant members ofU (h). The proof uses
the complete reducibility of finite-dimensional representations ofg.

The center ofU (g) acts by scalars in any irreducible representation ofg, whether finite
dimensional or infinite dimensional. The result is a homomorphism of the center intoC
and is known as the “infinitesimal character” of the representation. The Harish-Chandra
Isomorphism makes it possible to parametrize all possible homomorphisms of the center
into C, thus to parametrize all possible infinitesimal characters. The parametrization is by
the quotient ofh∗ by the Weyl group.

The Weyl Character Formula attaches to each irreducible finite-dimensional represen-
tation a formal exponential sum corresponding to the character of the representation. The
proof uses infinitesimal characters. The formula encodes the multiplicity of each weight,
and this multiplicity is made explicit by the Kostant Multiplicity Formula. The formula
encodes also the dimension of the representation, which is made explicit by the Weyl
Dimension Formula.

Parabolic subalgebras provide a framework for generalizing the Theorem of the Highest
Weight so that the Cartan subalgebra is replaced by a larger subalgebra called the “Levi
factor” of the parabolic subalgebra.

The theory of finite-dimensional representations of complex semisimple Lie algebras
has consequences for compact connected Lie groups. One of these is a formula for the order
of the fundamental group. Another is a version of the Theorem of the Highest Weight that
takes global properties of the group into account. The Weyl Character Formula becomes
more explicit, giving an expression for the character of any irreducible representation when
restricted to a maximal torus.

273
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1. Weights

For most of this chapter we study finite-dimensional representations of
complex semisimple Lie algebras. As introduced in Example 4 of §I.5,
these are complex-linear homomorphisms of a complex semisimple Lie
algebra into EndC V, whereV is a finite-dimensional complex vector space.
Historically the motivation for studying such representations comes from
two sources—representations ofsl(2, C) and representations of compact
Lie groups. Representations ofsl(2, C) were studied in §I.9, and the theory
of the present chapter may be regarded as generalizing the results of that
section to all complex semisimple Lie algebras.

Representations of compact connected Lie groups were studied in Chap-
ter IV. If G is a compact connected Lie group, then a representation ofG
on a finite-dimensional complex vector spaceV yields a representation of
the Lie algebrag0 onV and then a representation of the complexificationg

of g0 on V . The Lie algebrag0 is the direct sum of an abelian Lie algebra
and a semisimple Lie algebra, and the same thing is true ofg. Through
studying the representations of the semisimple part ofg, we shall be able,
with only little extra effort, to complete the study of the representations of
G at the end of this chapter.

The examples of representations in Chapter IV give us examples for the
present chapter, as well as clues for how to proceed. The easy examples,
apart from the trivial representation withg acting as 0, are the standard
representations ofsu(n)C andso(n)C. These are obtained by differentiation
of the standard representations ofSU (n) and SO(n) and just amount to
multiplication of a matrix by a column vector, namely

ϕ(X)

 z1
...

zn

 = X

 z1
...

zn

 .

The differentiated versions of the other examples in §IV.1 are more com-
plicated because they involve tensor products. Although tensor products
on the group level (4.2) are fairly simple, they become more complicated
on the Lie algebra level (4.3) because of the product rule for differentiation.
This complication persists for representations in spaces of symmetric or
alternating tensors, since such spaces are subspaces of tensor products.
Thus the usual representation ofSU (n) on

∧lCn is given simply by

�(g)(εj1 ∧ · · · ∧ εjl ) = gεj1 ∧ · · · ∧ gεjl ,
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while the corresponding representation ofsu(n)C on
∧lCn is given by

ϕ(X)(εj1 ∧ · · · ∧ εjl ) =
l∑

k=1

εj1 ∧ · · · ∧ εjk−1 ∧ Xεjk ∧ εjk+1 ∧ · · · ∧ εjl .

The second construction that enters the examples of §IV.1 is contra-
gredient, given on the Lie group level by (4.1) and on the Lie algebra level
by (4.4). Corollary A.24b, withE = Cn, shows that the representation in
a spaceSn(E∗) of polynomials may be regarded as the contragredient of
the representation in the spaceSn(E) of symmetric tensors.

The clue for how to proceed comes from the representation theory of
compact connected Lie groupsG in Chapter IV. Letg0 be the Lie algebra
of G, and letg be the complexification. IfT is a maximal torus inG, then
the complexified Lie algebra ofT is a Cartan subalgebrat of g. Insight
into g comes from roots relative tot, which correspond to simultaneous
eigenspaces for the action ofT , according to (4.32). If� is any finite-
dimensional representation ofG on a complex vector spaceV, then� may
be regarded as unitary by Proposition 4.6. Hence�|T is unitary, and Corol-
lary 4.7 shows that�|T splits as the direct sum of irreducible representations
of T . By Corollary 4.9 each of these irreducible representations ofT is
1-dimensional. ThusV is the direct sum of simultaneous eigenspaces for
the action ofT , hence also for the action oft.

At first this kind of decomposition seems unlikely to persist when
the compact groups are dropped and we have only a representation of
a complex semisimple Lie algebra, since Proposition 2.4 predicts only a
generalized weight-space decomposition. But a decomposition into si-
multaneous eigenspaces is nonetheless valid and is the starting point for
our investigation. Before coming to this, let us record that the proofs of
Schur’s Lemma and its corollary in §IV.2 are valid for representations of
Lie algebras.

Proposition 5.1 (Schur’s Lemma). Supposeϕ andϕ′ are irreducible
representations of a Lie algebrag on finite-dimensional vector spacesV and
V ′, respectively. IfL : V → V ′ is a linear map such thatϕ′(X)L = Lϕ(X)

for all X ∈ g, thenL is one-one onto orL = 0.

PROOF. We see easily that kerL and imageL are invariant subspaces of
V andV ′, respectively, and then the only possibilities are the ones listed.

Corollary 5.2. Supposeϕ is an irreducible representation of a Lie
algebrag on a finite-dimensional complex vector spaceV . If L : V → V
is a linear map such thatϕ(X)L = Lϕ(X) for all X ∈ g, thenL is scalar.
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PROOF. Let λ be an eigenvalue ofL. Then L − λI is not one-one
onto, but it does commute withϕ(X) for all X ∈ g. By Proposition 5.1,
L − λI = 0.

Let g be a complex semisimple Lie algebra. Fix a Cartan subalgebra
h, and let� = �(g, h) be the set of roots. Following the notation first
introduced in Corollary 2.38, leth0 be the real form ofh on which all roots
are real valued. LetB be any nondegenerate symmetric invariant bilinear
form on g that is positive definite onh0. Relative toB, we can define
membersHα of h for eachα ∈ �. Thenh0 = ∑

α∈� RHα.
Let ϕ be a representation on the complex vector spaceV . Recall from

§II.2 that if λ is in h∗, we defineVλ to be the subspace

{v ∈ V | (ϕ(H) − λ(H)1)nv = 0 for all H ∈ h and somen = n(H, V )}.
If Vλ �= 0, then Vλ is called ageneralized weight spaceand λ is a
weight. Members ofVλ are calledgeneralized weight vectors. WhenV
is finite dimensional,V is the direct sum of its generalized weight spaces
by Proposition 2.4.

Theweight spacecorresponding toλ is

{v ∈ V | ϕ(H)v = λ(H)v for all H ∈ h},
i.e., the subspace ofVλ for which n can be taken to be 1. Members of the
weight space are calledweight vectors. The examples of weight vectors
below continue the discussion of examples in §IV.1.

EXAMPLES FOR G = SU (n). Hereg = su(n)C = sl(n, C). As in
Example 1 of §II.1, we defineh to be the diagonal subalgebra. The roots
are allei − ej with i �= j .

1) Let V consist of all polynomials inz1, . . . , zn, z̄1, . . . , z̄n homoge-
neous of degreeN . Let H = diag(i t1, . . . , i tn) with

∑
tj = 0. Then the

Lie algebra representationϕ has

ϕ(H)P(z, z̄) = d

dr
P

e−r H

 z1
...

zn

 , er H

 z̄1
...

z̄n


r=0

= d

dr
P

 e−ir t1z1
...

e−ir tn zn

 ,

 eirt1 z̄1
...

eirtn z̄n


r=0

=
n∑

j=1

(−i tj z j)
∂ P

∂zj
(z, z̄) +

n∑
j=1

(i tj z̄ j)
∂ P

∂ z̄ j
(z, z̄).
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If P is a monomial of the form

P(z, z̄) = zk1
1 · · · zkn

n z̄l1
1 · · · z̄ln

n with
n∑

j=1

(kj + lj) = N ,

then the above expression simplifies to

ϕ(H)P = ( n∑
j=0

(lj − kj)(i tj)
)
P.

Thus the monomialP is a weight vector of weight
∑n

j=0 (lj − kj)ej .

2) Let V = ∧lCn. Again let H = diag(i t1, . . . , i tn) with
∑

tj = 0.
Then the Lie algebra representationϕ has

ϕ(H)(εj1 ∧ · · · ∧ εjl ) =
l∑

k=1

εj1 ∧ · · · ∧ Hεjk ∧ · · · ∧ εjl

=
l∑

k=1

(i tjk )(εj1 ∧ · · · ∧ εjl ).

Thusεj1 ∧ · · · ∧ εjl is a weight vector of weight
∑l

k=1 ejk .

EXAMPLES FOR G = SO(2n + 1). Here g = so(2n + 1)C =
so(2n + 1, C). As in Example 2 of §II.1, we defineh to be built from
the firstn diagonal blocks of size 2. The roots are±ej and±ei ± ej with
i �= j .

1) Letm = 2n +1, and letV consist of all complex-valued polynomials

on Rm of degree≤ N . Let H1 be the member ofh equal to

(
0 1

−1 0

)
in

the first 2-by-2 block and 0 elsewhere. Then the Lie algebra representation
ϕ has

ϕ(H1)P

 x1
...

xm

= d

dr
P


x1 cosr − x2 sinr
x1 sinr + x2 cosr

x3
...

xm


r=0

= −x2
∂ P

∂x1
(x)+ x1

∂ P

∂x2
(x).

(5.3)
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For P(x) = (x1 + i x2)
k , ϕ(H1) thus acts as the scalarik. The other 2-by-2

blocks ofh annihilate thisP, and it follows that(x1 + i x2)
k is a weight

vector of weight−ke1. Similarly (x1 − i x2)
k is a weight vector of weight

+ke1.
ReplacingP in (5.3) by(x2 j−1 ± x2 j)Q and making the obvious adjust-

ments in the computation, we obtain

ϕ(H)((x2 j−1± i x2 j)Q) = (x2 j−1± i x2 j)(ϕ(H)∓ej(H))Q for H ∈ h.

Sincex2 j−1 + i x2 j and x2 j−1 − i x2 j together generatex2 j−1 and x2 j and
sinceϕ(H) acts as 0 onxk

2n+1, this equation tells us how to computeϕ(H)

on any monomial, hence on any polynomial.
It is clear that the subspace of polynomials homogeneous of degreeN

is an invariant subspace under the representation. This invariant subspace
is spanned by the weight vectors

(x1 + i x2)
k1(x1 − i x2)

l1(x3 + i x4)
k2 · · · (x2n−1 − i x2n)

ln xk0
2n+1,

where
∑n

j=0 kj + ∑n
j=1 lj = N . Hence the weights of the subspace are all

expressions
∑n

j=1 (lj − kj)ej with
∑n

j=0 kj + ∑n
j=1 lj = N .

2) LetV = ∧lC2n+1. The elementH1 of h in the above example acts on
ε1 + iε2 by the scalar+i and onε1 − iε2 by the scalar−i . Thusε1 + iε2

andε1− iε2 are weight vectors inC2n+1 of respective weights−e1 and+e1.
Also ε2n+1 has weight 0. Then the product rule for differentiation allows
us to compute the weights in

∧lC2n+1 and find that they are all expressions

±ej1 ± · · · ± ejr

with

j1 < · · · < jr and

{
r ≤ l if l ≤ n

r ≤ 2n + 1 − l if l > n.

Motivated by Proposition 4.59 for compact Lie groups, we say that a
memberλ of h∗ is algebraically integral if 2〈λ, α〉/|α|2 is in Z for each
α ∈ �.

Proposition 5.4.Let g be a complex semisimple Lie algebra, leth be a
Cartan subalgebra, let� = �(g, h) be the roots, and leth0 = ∑

α∈� RHα.
If ϕ is a representation ofg on the finite-dimensional complex vector space
V, then

(a) ϕ(h) acts diagonably onV, so that every generalized weight vector
is a weight vector andV is the direct sum of all the weight spaces,

(b) every weight is real valued onh0 and is algebraically integral,
(c) roots and weights are related byϕ(gα)Vλ ⊆ Vλ+α.



2. Theorem of the Highest Weight 279

PROOF.
(a, b) If α is a root andEα andE−α are nonzero root vectors forα and

−α, then{Hα, Eα, E−α} spans a subalgebraslα of g isomorphic tosl(2, C),

with 2|α|−2Hα corresponding toh =
(

1 0

0 −1

)
. Then the restriction ofϕ to

slα is a finite-dimensional representation ofslα, and Corollary 1.72 shows
thatϕ(2|α|−2Hα) is diagonable with integer eigenvalues. This proves (a)
and the first half of (b). Ifλ is a weight andv ∈ Vλ is nonzero, then we
have just seen thatϕ(2|α|−2Hα)v = 2|α|−2〈λ, α〉v is an integral multiple
of v. Hence 2〈λ, α〉/|α|2 is an integer, andλ is algebraically integral.

(c) Let Eα be ingα, let v be inVλ, and letH be inh. Then

ϕ(H)ϕ(Eα)v = ϕ(Eα)ϕ(H)v + ϕ([H, Eα])v

= λ(H)ϕ(Eα)v + α(H)ϕ(Eα)v

= (λ + α)(H)ϕ(Eα)v.

Henceϕ(Eα)v is in Vλ+α.

2. Theorem of the Highest Weight

In this section letg be a complex semisimple Lie algebra, leth be a
Cartan subalgebra, let� = �(g, h) be the set of roots, and letW (�) be
the Weyl group. Leth0 be the real form ofh on which all roots are real
valued, and letB be any nondegenerate symmetric invariant bilinear form
ong that is positive definite onh0. Introduce an ordering inh∗

0 in the usual
way, and let� be the resulting simple system.

If ϕ is a representation ofg on a finite-dimensional complex vector space
V, then the weights ofV are inh∗

0 by Proposition 5.4b. The largest weight
in the ordering is called thehighest weightof ϕ.

Theorem 5.5(Theorem of the Highest Weight). Apart from equivalence
the irreducible finite-dimensional representationsϕ of g stand in one-one
correspondence with the dominant algebraically integral linear functionals
λ on h, the correspondence being thatλ is the highest weight ofϕλ. The
highest weightλ of ϕλ has these additional properties:

(a) λ depends only on the simple system� and not on the ordering
used to define�,

(b) the weight spaceVλ for λ is 1-dimensional,
(c) each root vectorEα for arbitraryα ∈ �+ annihilates the members

of Vλ, and the members ofVλ are the only vectors with this property,
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(d) every weight ofϕλ is of the formλ − ∑l
i=1 niαi with the integers

≥ 0 and theαi in �,
(e) each weight spaceVµ for ϕλ has dimVwµ = dim Vµ for all w in the

Weyl groupW (�), and each weightµ has|µ| ≤ |λ| with equality
only if µ is in the orbitW (�)λ.

REMARKS.
1) Because of (e) the weights in the orbitW (�)λ are said to beextreme.

The set of extreme weights does not depend on the choice of�.
2) Much of the proof of Theorem 5.5 will be given in this section after

some examples. The proof will be completed in §3. The examples continue
the notation of the examples in §1.

EXAMPLES.

1) With g = sl(n, C), let V consist of all polynomials inz1, . . . , zn,
and z̄1, . . . , z̄n homogeneous of total degreeN . The weights are all ex-
pressions

∑n
j=1 (lj − kj)ej with

∑n
j=1 (kj + lj) = N . The highest weight

relative to the usual positive system isNe1. The subspace of holomorphic
polynomials is an invariant subspace, and it has highest weight−Nen. The
subspace of antiholomorphic polynomials is another invariant subspace,
and it has highest weightNe1.

2) With g = sl(n, C), let V = ∧lCn. The weights are all expres-
sions

∑l
k=1 ejk . The highest weight relative to the usual positive system is∑l

k=1 ek .

3) With g = so(2n + 1, C), let the representation space consist of all
complex-valued polynomials inx1, . . . , x2n+1 homogeneous of degreeN .
The weights are all expressions

∑n
j=1 (lj −kj)ej with k0 +∑n

j=1 (kj + lj) =
N . The highest weight relative to the usual positive system isNe1.

4) With g = so(2n + 1, C), let V = ∧lC2n+1. If l ≤ n, the weights
are all expressions±ej1 ± · · · ± ejr with j1 < · · · < jr andr ≤ l, and the
highest weight relative to the usual positive system is

∑l
k=1 ek .

PROOF OF EXISTENCE OF THE CORRESPONDENCE. Letϕ be an irreducible
finite-dimensional representation ofg on a spaceV . The representation
ϕ has weights by Proposition 2.4, and we letλ be the highest. Thenλ is
algebraically integral by Proposition 5.4b.

If α is in�+, thenλ+α exceedsλ and cannot be a weight. ThusEα ∈ gα

andv ∈ Vλ imply ϕ(Eα)v = 0 by Proposition 5.4c. This proves the first
part of (c).
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Extendϕ multiplicatively to be defined on all ofU (g) with ϕ(1) = 1 by
Corollary 3.6. Sinceϕ is irreducible,ϕ(U (g))v = V for eachv �= 0 in V .
Let β1, . . . , βk be an enumeration of�+, and letH1, . . . , Hl be a basis of
h. By the Poincar´e–Birkhoff–Witt Theorem (Theorem 3.8) the monomials

(5.6) Eq1

−β1
· · · Eqk

−βk
H m1

1 · · · H ml
l E p1

β1
· · · E pk

βk

form a basis ofU (g). Let us applyϕ of each of these monomials tov in
Vλ. The Eβ ’s give 0, theH ’s multiply by constants (by Proposition 5.4a),
and theE−β ’s push the weight down (by Proposition 5.4c). Consequently
the only members ofVλ that can be obtained by applyingϕ of (5.6) tov

are the vectors ofCv. ThusVλ is 1-dimensional, and (b) is proved.
The effect ofϕ of (5.6) applied tov in Vλ is to give a weight vector with

weight

(5.7) λ −
k∑

j=1

qjβj ,

and these weight vectors spanV . Thus the weights (5.7) are the only
weights ofϕ, and (d) follows from Proposition 2.49. Also (d) implies (a).

To prove the second half of (c), letv /∈ Vλ satisfyϕ(Eα)v = 0 for all
α ∈ �+. Subtracting the component inVλ, we may assume thatv has 0
component inVλ. Let λ0 be the largest weight such thatv has a nonzero
component inVλ0, and letv′ be the component. Thenϕ(Eα)v

′ = 0 for all
α ∈ �+, andϕ(h)v′ ⊆ Cv′. Applying ϕ of (5.6), we see that

V =
∑

Cϕ(E−β1)
q1 · · · ϕ(E−βk )

qk v′.

Every weight of vectors on the right side is strictly lower thanλ, and we
have a contradiction with the fact thatλ occurs as a weight.

Next we prove thatλ is dominant. Letα be in�+, and formH ′
α, E ′

α, and
E ′

−α as in (2.26). These vectors span a Lie subalgebraslα of g isomorphic

to sl(2, C), and the isomorphism carriesH ′
α to h =

(
1 0

0 −1

)
. Forv �= 0 in

Vλ, the subspace ofV spanned by all

ϕ(E ′
−α)

pϕ(H ′
α)

qϕ(E ′
α)

rv

is stable underslα, and (c) shows that it is the same as the span of all
ϕ(E ′

−α)
pv. On these vectorsϕ(H ′

α) acts with eigenvalue

(λ − pα)(H ′
α) = 2〈λ, α〉

|α|2 − 2p,
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and the largest eigenvalue ofϕ(H ′
α) is therefore 2〈λ, α〉/|α|2. By Corollary

1.72 the largest eigenvalue forh in any finite-dimensional representation
of sl(2, C) is ≥ 0, andλ is therefore dominant.

Finally we prove (e). Fixα ∈ �, and formslα as above. Proposition
5.4a shows thatV is the direct sum of its simultaneous eigenspaces underh

and hence also under the subspace kerα of h. In turn, since kerα commutes
with slα, each of these simultaneous eigenspaces under kerα is invariant
underslα and is completely reducible by Theorem 1.67.

ThusV is the direct sum of subspaces invariant and irreducible under
slα ⊕ kerα. Let V ′ be one of these irreducible subspaces. Sinceh ⊆
slα ⊕ kerα, V ′ is the direct sum of its weight spaces:V ′ = ⊕

ν(V ′ ∩ Vν).
If ν andν ′ are two weights occurring inV ′, then the irreducibility under
slα ⊕ kerα forcesν ′ − ν = nα for some integern.

Fix a weightµ, and consider such a spaceV ′. The weights ofV ′ are
µ+nα, and these are distinguished from one another by their values onH ′

α.
By Corollary 1.72, dim(V ′ ∩ Vµ) = dim(V ′ ∩ Vsαµ). Summing overV ′,
we obtain dimVµ = dim Vsαµ. Since the root reflections generateW (�),
it follows that dimVµ = dim Vwµ for all w ∈ W (�). This proves the first
half of (e).

For the second half of (e), Corollary 2.68 and the result just proved show
that there is no loss of generality in assuming thatµ is dominant. Under
this restriction onµ, let us use (d) to writeλ = µ + ∑l

i=1 niαi with all
ni ≥ 0. Then

|λ|2 = |µ|2 +
l∑

i=1

ni〈µ, αi〉 + ∣∣ l∑
i=1

niαi

∣∣2

≥ |µ|2 + ∣∣ l∑
i=1

niαi

∣∣2
by dominance ofµ.

The right side is≥ |µ|2 with equality only if
∑l

i=1 niαi = 0. In this case
µ = λ.

PROOF THAT THE CORRESPONDENCE IS ONE-ONE. Let ϕ and ϕ′ be
irreducible finite dimensional onV andV ′, respectively, both with highest
weightλ, and regardϕ andϕ′ as representations ofU (g). Let v0 andv′

0 be
nonzero highest weight vectors. Formϕ ⊕ ϕ′ on V ⊕ V ′. We claim that

S = (ϕ ⊕ ϕ′)(U (g))(v0 ⊕ v′
0)

is an irreducible invariant subspace ofV ⊕ V ′.
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CertainlyS is invariant. LetT ⊆ S be an irreducible invariant subspace,
and letv ⊕ v′ be a nonzero highest weight vector. Forα ∈ �+, we have

0 = (ϕ ⊕ ϕ′)(Eα)(v ⊕ v′) = ϕ(Eα)v ⊕ ϕ′(Eα)v
′,

and thusϕ(Eα)v = 0 andϕ′(Eα)v
′ = 0. By (c),v = cv0 andv′ = c′v′

0.
Hencev⊕v′ = cv0⊕c′v′

0. This vector by assumption is inϕ(U (g))(v0⊕v′
0).

When we applyϕ of (5.6) tov0⊕v′
0, theEβ ’s give 0, while theH ’s multiply

by constants, namely

(ϕ ⊕ ϕ′)(H)(v0 ⊕ v′
0) = ϕ(H)v0 ⊕ ϕ′(H)v′

0 = λ(H)(v0 ⊕ v′
0).

Also theE−β ’s push weights down by Proposition 5.4c. We conclude that
c′ = c. HenceT = S, andS is irreducible.

The projection ofS to V commutes with the representations and is not
identically 0. By Schur’s Lemma (Proposition 5.1),ϕ ⊕ ϕ′|S is equivalent
with ϕ. Similarly it is equivalent withϕ′. Henceϕ andϕ′ are equivalent.

To complete the proof of Theorem 5.5, we need to prove an existence
result. The existence result says that for any dominant algebraically integral
λ, there exists an irreducible finite-dimensional representationϕλ of g with
highest weightλ. We carry out this step in the next section.

3. Verma Modules

In this section we complete the proof of the Theorem of the Highest
Weight (Theorem 5.5): Under the assumption thatλ is algebraically inte-
gral, we give an algebraic construction of an irreducible finite-dimensional
representation ofg with highest weightλ.

By means of Corollary 3.6, we can identify representations ofg with
unital left U (g) modules, and henceforth we shall often drop the name of
the representation when working in this fashion. The idea is to consider
all U (g) modules, finite dimensional or infinite dimensional, that possess
a vector that behaves like a highest weight vector with weightλ. Among
these we shall see that there is one (called a “Verma module”) with a
universal mapping property. A suitable quotient of the Verma module will
give us our irreducible representation, and the main step will be to prove
that it is finite dimensional.
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We retain the notation of §2, and we write� = {α1, . . . , αl}. In addition
we let

(5.8)

n =
⊕
α∈�+

gα

n
− =

⊕
α∈�+

g−α

b = h ⊕ n

δ = 1
2

∑
α∈�+

α.

Thenn, n−, andb are Lie subalgebras ofg, andg = b⊕n− as a direct sum
of vector spaces.

Let the complex vector spaceV be a unital leftU (g) module. We allow
V to be infinite dimensional. Because of Corollary 3.6 we have already
defined in §1 the notions “weight,” “weight space,” and “weight vector”
for V . Departing slightly from the notation of that section, letVµ be the
weight space for the weightµ. The sum

∑
Vµ is necessarily a direct sum.

As in Proposition 5.4c, we have

(5.9) gα(Vµ) ⊆ Vµ+α

if α is in� andµ is inh∗. Moreover, (5.9) and the root-space decomposition
of g show that

(5.10) g

( ⊕
µ∈h∗

Vµ

)
⊆

( ⊕
µ∈h∗

Vµ

)
.

A highest weight vectorfor V is by definition a weight vectorv �= 0
withn(v) = 0. The setn(v)will be 0 as soon asEαv = 0 for the root vectors
Eα of simple rootsα. In fact, we easily see this assertion by expanding any
positiveα in terms of simple roots as

∑
i niαi and proceeding by induction

on the level
∑

i ni .
A highest weight moduleis a U (g) module generated by a highest

weight vector. “Verma modules,” to be defined below, will be universal
highest weight modules.

Proposition 5.11.Let M be a highest weight module forU (g), and let
v be a highest weight vector generatingM . Supposev is of weightλ. Then

(a) M = U (n−)v,
(b) M = ⊕

µ∈h∗ Mµ with each Mµ finite dimensional and with
dim Mλ = 1,

(c) every weight ofM is of the formλ − ∑l
i=1 niαi with theαi ’s in �

and with eachni an integer≥ 0.
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PROOF.
(a) We haveg = n− ⊕ h ⊕ n. By the Poincar´e–Birkhoff–Witt Theorem

(Theorem 3.8 and (3.14)),U (g) = U (n−)U (h)U (n). On the vectorv,
U (n) andU (h) act to give multiples ofv. ThusU (g)v = U (n−)v. Since
v generatesM , M = U (g)v = U (n−)v.

(b, c) By (5.10),
⊕

Mµ is U (g) stable, and it containsv. SinceM =
U (g)v, M = ⊕

Mµ. By (a), M = U (n−)v, and (5.9) shows that any
expression

(5.12) Eq1

−β1
· · · Eqk

−βk
v with all βj ∈ �+

is a weight vector with weightµ = λ − q1β1 − · · · − qkβk , from which (c)
follows. The number of expressions (5.12) leading to thisµ is finite, and
so dimMµ < ∞. The number of expressions (5.12) leading toλ is 1, from
v itself, and so dimMλ = 1.

Before defining Verma modules, we recall some facts about tensor prod-
ucts of associative algebras. (A special case has already been treated in
§I.3.) Let M1 and M2 be complex vector spaces, and letA and B be
complex associative algebras with identity. Suppose thatM1 is a right B
module andM2 is a left B module, and suppose thatM1 is also a leftA
module in such a way that(am1)b = a(m1b). We define

M1 ⊗B M2 = M1 ⊗C M2

subspace generated by allm1b ⊗ m2 − m1 ⊗ bm2
,

and we letA act on the quotient bya(m1 ⊗ m2) = (am1) ⊗ m2. Then
M1 ⊗B M2 is a left A module, and it has the following universal mapping
property: Wheneverψ : M1 × M2 → E is a bilinear map into a complex
vector spaceE such thatψ(m1b, m2) = ψ(m1, bm2), then there exists a
unique linear map̃ψ : M1⊗B M2 → E such thatψ(m1, m2) = ψ̃(m1⊗m2).

Now letλ be inh∗, and makeC into a leftU (b) moduleCλ−δ by defining

(5.13)
H z = (λ − δ)(H)z for H ∈ h, z ∈ C
Xz = 0 for X ∈ n.

(Equation (5.13) defines a 1-dimensional representation ofb, and thus
Cλ−δ becomes a leftU (b) module.) The algebraU (g) itself is a rightU (b)

module and a leftU (g) module under multiplication, and we define the
Verma module V (λ) to be the leftU (g) module

V (λ) = U (g) ⊗U (b) Cλ−δ.
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Proposition 5.14.Let λ be inh∗.

(a) V (λ) is a highest weight module underU (g) and is generated by
1 ⊗ 1 (thecanonical generator), which is of weightλ − δ.

(b) The map ofU (n−) into V (λ) given byu �→ u(1 ⊗ 1) is one-one
onto.

(c) If M is any highest weight module underU (g) generated by a highest
weight vectorv �= 0 of weightλ − δ, then there exists one and only one
U (g) homomorphism̃ψ of V (λ) into M such that̃ψ(1 ⊗ 1) = v. The
mapψ̃ is onto. Alsoψ̃ is one-one if and only ifu �= 0 in U (n−) implies
u(v) �= 0 in M .

PROOF.
(a) ClearlyV (λ) = U (g)(1 ⊗ 1). Also

H(1 ⊗ 1) = H ⊗ 1 = 1 ⊗ H(1) = (λ − δ)(H)(1 ⊗ 1) for H ∈ h

X (1 ⊗ 1) = X ⊗ 1 = 1 ⊗ X (1) = 0 for X ∈ n,

and so 1⊗ 1 is a highest weight vector of weightλ − δ.
(b) By the Poincar´e–Birkhoff–Witt Theorem (Theorem 3.8 and (3.14)),

we haveU (g) ∼= U (n−) ⊗C U (b), and this isomorphism is clearly an
isomorphism of leftU (n−) modules. Thus we obtain a chain of canonical
left U (n−) module isomorphisms

V (λ) = U (g) ⊗U (b) C ∼= (U (n−) ⊗C U (b)) ⊗U (b) C
∼= U (n−) ⊗C (U (b) ⊗U (b) C) ∼= U (n−) ⊗C C ∼= U (n−),

and (b) follows.
(c) We consider the bilinear map ofU (g) × Cλ−δ into M given by

(u, z) �→ u(zv). In terms of the action ofU (b) onCλ−δ, we check forb in
h and then forb in n that

(u, b(z)) �→ u(b(z)v) = zu((b(1))v)

(ub, z) �→ ub(zv) = zub(v) = zu((b(1))v).and

By the universal mapping property, there exists one and only one linear
map

ψ̃ : U (g) ⊗U (b) Cλ−δ → M

such thatu(zv) = ψ̃(u ⊗ z) for all u ∈ U (g) andz ∈ C, i.e., such that
u(v) = ψ̃(u(1⊗1)). This condition says that̃ψ is aU (g) homomorphism
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and that 1⊗ 1 maps tov. Hence existence and uniqueness follow. Clearly
ψ̃ is onto.

Let u be inU (n−). If u(v) = 0 with u �= 0, thenψ̃(u(1⊗1)) = 0 while
u(1 ⊗ 1) �= 0, by (b). Hencẽψ is not one-one. Conversely if̃ψ is not
one-one, then Proposition 5.11a implies that there existsu ∈ U (n−) with
u �= 0 andψ̃(u ⊗ 1) = 0. Then

u(v) = u(ψ̃(1 ⊗ 1)) = ψ̃(u(1 ⊗ 1)) = ψ̃(u ⊗ 1) = 0.

This completes the proof.

Proposition 5.15.Letλ be inh∗, and letV (λ)+ = ⊕
µ�=λ−δ V (λ)µ. Then

every properU (g)submodule ofV (λ) is contained inV (λ)+. Consequently
the sumS of all properU (g) submodules is a properU (g) submodule, and
L(λ) = V (λ)/S is an irreducibleU (g) module. Moreover,L(λ) is a
highest weight module with highest weightλ − δ.

PROOF. If N is aU (h) submodule, thenN = ⊕
µ(N ∩ V (λ)µ). Since

V (λ)λ−δ is 1-dimensional and generatesV (λ) (by Proposition 5.14a), the
λ − δ term must be 0 in the sum forN if N is proper. ThusN ⊆ V (λ)+.
HenceS is proper, andL(λ) = V (λ)/S is irreducible. The image of 1⊗ 1
in L(λ) is not 0, is annihilated byn, and is acted upon byh according to
λ − δ. ThusL(λ) has all the required properties.

Theorem 5.16.Suppose thatλ ∈ h∗ is real valued onh0 and is dominant
and algebraically integral. Then the irreducible highest weight module
L(λ + δ) is an irreducible finite-dimensional representation ofg with
highest weightλ.

REMARKS. Theorem 5.16 will complete the proof of the Theorem of
the Highest Weight (Theorem 5.5). The proof of Theorem 5.16 will be
preceded by two lemmas.

Lemma 5.17.In U (sl(2, C)), [e, f n] = n f n−1(h − (n − 1)).

PROOF. Let

L f = left by f in U (sl(2, C))

R f = right by f

ad f = L f − R f.
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Then R f = L f − ad f , and the terms on the right commute. By the
binomial theorem,

(R f )ne =
n∑

j=0

(
n
j

)
(L f )n− j(−ad f ) j e

= (L f )ne + n(L f )n−1(−ad f )e + n(n − 1)

2
(L f )n−2(−ad f )2e

since(ad f )3e = 0, and this expression is

= (L f )ne + n f n−1h + n(n − 1)

2
f n−2(−2 f )

= (L f )ne + n f n−1(h − (n − 1)).

Thus
[e, f n] = (R f )ne − (L f )ne = n f n−1(h − (n − 1)).

Lemma 5.18.For general complex semisimpleg, letλ be inh∗, letα be
a simple root, and suppose thatm = 2〈λ, α〉/|α|2 is a positive integer. Let
vλ−δ be the canonical generator ofV (λ), and letM be theU (g) submodule
generated by(E−α)

mvλ−δ, whereE−α is a nonzero root vector for the root
−α. ThenM is isomorphic toV (sαλ).

PROOF. The vectorv = (E−α)
mvλ−δ is not 0 by Proposition 5.14b. Since

sαλ = λ−mα, v is in V (λ)λ−δ−mα = V (λ)sαλ−δ. Thus the result will follow
from Proposition 5.14c if we show thatEβv = 0 wheneverEβ is a root
vector for a simple rootβ. Forβ �= α, [Eβ, E−α] = 0 sinceβ − α is not a
root (Lemma 2.51). Thus

Eβv = Eβ(E−α)
mvλ−δ = (E−α)

m Eβvλ−δ = 0.

For β = α, let us introduce a root vectorEα for α so that [Eα, E−α] =
2|α|−2Hα. The isomorphism (2.27) identifies span{Hα, Eα, E−α} with
sl(2, C), and then Lemma 5.17 gives

Eα(E−α)
mvλ−δ = [Eα, Em

−α]vλ−δ

= m(E−α)
m−1(2|α|−2Hα − (m − 1))vλ−δ

= m

(
2〈λ − δ, α〉

|α|2 − (m − 1)

)
Em−1

−α vλ−δ

= 0,

the last step following from Proposition 2.69.
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PROOF OFTHEOREM 5.16. Letvλ �= 0 be a highest weight vector in
L(λ + δ), with weightλ. We proceed in three steps.

First we show: For every simple rootα, En
−αvλ = 0 for all n suffi-

ciently large. HereE−α is a nonzero root vector for−α. In fact, for

n = 2〈λ + δ, α〉
|α|2 (which is positive by Proposition 2.69), the member

En
−α(1 ⊗ 1) of V (λ + δ) lies in a properU (g) submodule, according to

Lemma 5.18, and hence is in the submoduleS in Proposition 5.15. Thus
En

−αvλ = 0 in L(λ + δ).
Second we show: The set of weights is stable under the Weyl group

W = W (�). In fact, letα be a simple root, letslα be the copy ofsl(2, C)

given by slα = span{Hα, Eα, E−α}, setv(i) = Ei
−αvλ, and letn be the

largest integer such thatv(n) �= 0 (existence by the first step above). Then
Cv(0) + · · · + Cv(n) is stable underslα. The sum of all finite-dimensional
U (slα) submodules thus containsv(0) = vλ, and we claim it isg stable.

In fact, if T is a finite-dimensionalU (slα) submodule, then

gT = { ∑
Xt | X ∈ g andt ∈ T

}
is finite dimensional and forY ∈ slα andX ∈ g we have

Y Xt = XY t + [Y, X ]t = Xt ′ + [Y, X ]t ∈ gT .

SogT is slα stable, and the claim follows.
Since the sum of all finite-dimensionalU (slα) submodules ofL(λ + δ)

is g stable, the irreducibility ofL(λ + δ) implies that this sum is all of
L(λ+δ). By Corollary 1.73,L(λ+δ) is the direct sum of finite-dimensional
irreducibleU (slα) submodules.

Let µ be a weight, and lett �= 0 be inVµ. We have just shown thatt lies
in a finite direct sum of finite-dimensional irreducibleU (slα) submodules.
Let us writet = ∑

i∈I ti with ti in aU (slα) submoduleTi andti �= 0. Then∑
Hαti = Hαt = µ(Hα)t =

∑
µ(Hα)ti ,

2Hα

|α|2 ti = 2〈µ, α〉
|α|2 ti for eachi ∈ I.and so

If 〈µ, α〉 > 0, we know that(E−α)
2〈µ,α〉/|α|2ti �= 0 from Theorem 1.66.

Hence(E−α)
2〈µ,α〉/|α|2t �= 0, and we see that

µ − 2〈µ, α〉
|α|2 α = sαµ
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is a weight. If〈µ, α〉 < 0 instead, we know that(Eα)
−2〈µ,α〉/|α|2ti �= 0 from

Theorem 1.66. Hence(Eα)
−2〈µ,α〉/|α|2t �= 0, and so

µ − 2〈µ, α〉
|α|2 α = sαµ

is a weight. If〈µ, α〉 = 0, thensαµ = µ. In any casesαµ is a weight.
So the set of weights is stable under each reflectionsα for α simple, and
Proposition 2.62 shows that the set of weights is stable underW .

Third we show: The set of weights ofL(λ+ δ) is finite, andL(λ+ δ) is
finite dimensional. In fact, Corollary 2.68 shows that any linear functional
on h0 is W conjugate to a dominant one. Since the second step above
says that the set of weights is stable underW , the number of weights is at
most |W | times the number of dominant weights, which are of the form
λ−∑l

i=1 niαi by Proposition 5.11c. Each such dominant form must satisfy

〈λ, δ〉 ≥
l∑

i=1

ni〈αi , δ〉,

and Proposition 2.69 shows that
∑

ni is bounded; thus the number of dom-
inant weights is finite. ThenL(λ + δ) is finite dimensional by Proposition
5.11b.

4. Complete Reducibility

Let g be a finite-dimensional complex Lie algebra, and letU (g) be
its universal enveloping algebra. As a consequence of the generalization
of Schur’s Lemma given in Proposition 5.19 below, the centerZ(g) of
U (g) acts by scalars in any irreducible unital leftU (g) module, even an
infinite-dimensional one. The resulting homomorphismχ : Z(g) → C
is the first serious algebraic invariant of an irreducible representation ofg

and is called theinfinitesimal character. This invariant is most useful in
situations whereZ(g) can be shown to be large, which will be the case
wheng is semisimple.

Proposition 5.19(Dixmier). Letg be a complex Lie algebra, and letV
be an irreducible unital leftU (g) module. Then the onlyU (g) linear maps
L : V → V are the scalars.
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PROOF. The spaceE = EndU (g)(V, V ) is an associative algebra overC,
and Schur’s Lemma (Proposition 5.1) shows that every nonzero element of
E has a two-sided inverse, i.e.,E is a division algebra.

If v �= 0 is in V, then the irreducibility implies thatV = U (g)v. Hence
the dimension ofV is at most countable. Since every nonzero element
of E is invertible, theC linear mapL �→ L(v) of E into V is one-one.
Therefore the dimension ofE overC is at most countable.

Let L be in E . Arguing by contradiction, suppose thatL is not a scalar
multiple of the identity. Form the field extensionC(L) ⊆ E . SinceC is
algebraically closed,L is not algebraic overC. ThusL is transcendental
overC. In the transcendental extensionC(X), the set of all(X − c)−1 for
c ∈ C is linearly independent, and consequently the dimension ofC(X) is
uncountable. ThereforeC(L) has uncountable dimension, and so doesE ,
contradiction.

Let us introduceadjoint representationson the universal enveloping
algebraU (g) wheng is a finite-dimensional complex Lie algebra. We
define a representation ad ofg onU (g) by

(adX)u = Xu − u X for X ∈ g andu ∈ U (g).

(The representation property follows from the fact thatXY −Y X = [ X, Y ]
in U (g).) Lemma 3.9 shows that adX carriesUn(g) to itself. Therefore ad
provides for alln a consistently defined family of representations ofg on
Un(g).

Each g ∈ Int g gives an automorphism ofg. Composing with the
inclusion ofg into U (g), we obtain a complex-linear map ofg into U (g),
and it will be convenient to call this map Ad(g). This composition has the
property that

Ad(g)[ X, Y ] = [Ad(g)X, Ad(g)Y ]

= (Ad(g)X)(Ad(g)Y ) − (Ad(g)Y )(Ad(g)X).

By Proposition 3.3 (withA = U (g)), Ad(g) extends to a homomorphism
of U (g) into itself carrying 1 to 1. Moreover

(5.20) Ad(g1)Ad(g2) = Ad(g1g2)

because of the uniqueness of the extension and the validity of this formula
on U1(g). Therefore each Ad(g) is an automorphism ofU (g). Because
Ad(g) leavesU1(g) stable, it leaves eachUn(g) stable. Its smoothness ing
onU1(g) implies its smoothness ing onUn(g). Thus we obtain for alln a
consistently defined family Ad of smooth representations ofG onUn(g).
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Proposition 5.21. Let g be a finite-dimensional complex Lie algebra.
Then

(a) the differential at 1 of Ad onUn(g) is ad, and
(b) on eachUn(g), Ad(expX) = eadX for all X ∈ g.

PROOF. For (a) letu = Xk1
1 · · · Xkn

n be a monomial inUn(g). For X in g,
we have

Ad(expr X)u = (Ad(expr X)X1)
k1 · · · (Ad(expr X)Xn)

kn

since each Ad(g) for g ∈ Int g is an automorphism ofU (g). Differentiating
both sides with respect tor and applying the product rule for differentiation,
we obtain atr = 0

d

dr
Ad(expr X)u

∣∣∣
r=0

=
n∑

i=1

ki∑
j=1

Xk1
1 · · · Xki−1

i−1 X j−1
i

( d

dr
Ad(expr X)Xi

)
r=0

Xki − j
i X ki+1

i+1 · · · Xkn
n

= (adX)u.

Then (a) follows from Proposition 1.91, and (b) follows from Corollary
1.85.

Proposition 5.22.If g is a finite-dimensional complex Lie algebra, then
the following conditions on an elementu of U (g) are equivalent:

(a) u is in the centerZ(g),
(b) u X = Xu for all X ∈ g,
(c) eadX u = u for all X ∈ g,
(d) Ad(g)u = u for all g ∈ Int g.

PROOF. Conclusion (a) implies (b) trivially, and (b) implies (a) since
g generatesU (g). If (b) holds, then(adX)u = 0, and (c) follows by
summing the series for the exponential. Conversely if (c) holds, then we
can replaceX by r X in (c) and differentiate to obtain (b). Finally (c)
follows from (d) by takingg = exp X and applying Proposition 5.21b,
while (d) follows from (c) by (5.20) and Proposition 5.21b.

In the case thatg is semisimple, we shall construct some explicit elements
of Z(g) and use them to extend to all semisimpleg the theorem of complete
reducibility proved forsl(2, C) in Theorem 1.67. To begin with, here is an
explicit element ofZ(g) wheng = sl(2, C).
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EXAMPLE. g = sl(2, C). Let Z = 1
2h2+e f + f e with h, e, f as in (1.5).

The action ofZ in a representation already appeared in Lemma 1.68. We
readily check thatZ is in Z(g) by seeing thatZ commutes withh, e, and
f . The elementZ is a multiple of the Casimir element� defined below.

For a general semisimpleg, let B be the Killing form. (To fix the
definitions in this section, we shall not allow more general invariant forms
in place ofB.) Let Xi be any basis ofg overC, and letX̃i be the dual basis
relative toB, i.e., the basis with

B(X̃i , X j) = δi j .

TheCasimir element� is defined by

(5.23) � =
∑

i, j

B(Xi , X j)X̃i X̃ j .

Proposition 5.24. In a complex semisimple Lie algebrag, the Casimir
element� is defined independently of the basisXi and is a member of the
centerZ(g) of U (g).

PROOF. Let a second basisX ′
i be given by means of a nonsingular

complex matrix(ai j) as

(5.25a) X ′
j =

∑
m

amj Xm .

Let (bi j) be the inverse of the matrix(ai j), and define

(5.25b) X̃ ′
i =

∑
l

bil X̃l .

Then
B(X̃ ′

i , X ′
j) =

∑
l,m

bilamj B(X̃l, Xm) =
∑

l

bilal j = δi j .

Thus X̃ ′
i is the dual basis ofX ′

j . The element to consider is

�′ =
∑

i, j

B(X ′
i , X ′

j)X̃ ′
i X̃ ′

j

=
∑
m,m ′

∑
l,l ′

∑
i, j

ami am ′ j bilbjl ′ B(Xm, Xm ′)X̃l X̃l ′

=
∑
m,m ′

∑
l,l ′

δmlδm ′l ′ B(Xm, Xm ′)X̃l X̃l ′

=
∑
l,l ′

B(Xl, Xl ′)X̃l X̃l ′

= �.
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This proves that� is independent of the basis.
Let g be in Intg, and take the second basis to beX ′

i = gXi = Ad(g)Xi .
Because of Proposition 1.119 the invariance of the Killing form gives

(5.26) B(Ad(g)X̃i , X ′
j) = B(X̃i , Ad(g)−1X ′

j) = B(X̃i , X j) = δi j ,

and we conclude that̃X ′
i = Ad(g)X̃i . Therefore

Ad(g)� =
∑

i, j

B(Xi , X j)Ad(g)(X̃i X̃ j)

=
∑

i, j

B(Ad(g)Xi , Ad(g)X j)X̃ ′
i X̃ ′

j by Proposition 1.119

=
∑

i, j

B(X ′
i , X ′

j)X̃ ′
i X̃ ′

j

=
∑

i, j

B(Xi , X j)X̃i X̃ j by change of basis

= �.

By Proposition 5.22,� is in Z(g).

EXAMPLE. g = sl(2, C). We take as basis the elementsh, e, f as
in (1.5). The Killing form has already been computed in Example 2 of
§I.3, and we find that̃h = 1

8h, ẽ = 1
4 f, f̃ = 1

4e. Then

� = B(h, h)̃h2 + B(e, f )̃e f̃ + B( f, e) f̃ ẽ

= 8̃h2 + 4̃e f̃ + 4 f̃ ẽ

= 1
8h2 + 1

4e f + 1
4 f e,(5.27)

which is 1
4 of the elementZ = 1

2h2 + e f + f e whose action in a represen-
tation appeared in Lemma 1.68.

Letϕ be an irreducible finite-dimensional representation ofg on a space
V . Schur’s Lemma (Proposition 5.1) and Proposition 5.24 imply that�

acts as a scalar inV . We shall compute this scalar, making use of the
Theorem of the Highest Weight (Theorem 5.5). Thus let us introduce a
Cartan subalgebrah, the set� = �(g, h) of roots, and a positive system
�+ = �+(g, h).
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Proposition 5.28. In the complex semisimple Lie algebrag, let h0 be
the real form ofh on which all roots are real valued, and let{Hi}l

i=1 be an
orthonormal basis ofh0 relative to the Killing formB of g. Choose root
vectorsEα so thatB(Eα, E−α) = 1 for all α ∈ �. Then

(a) � = ∑l
i=1 H 2

i + ∑
α∈� Eα E−α,

(b) � operates by the scalar|λ|2 + 2〈λ, δ〉 = |λ + δ|2 − |δ|2 in an
irreducible finite-dimensional representation ofg of highest weight
λ, whereδ is half the sum of the positive roots,

(c) the scalar value by which� operates in an irreducible finite-
dimensional representation ofg is nonzero if the representation
is not trivial.

PROOF.
(a) SinceB(h, Eα) = 0 for all α ∈ �, H̃i = Hi . Also the normaliza-

tion B(Eα, E−α) = 1 makesẼα = E−α. Then (a) follows immediately
from (5.23).

(b) Let ϕ be an irreducible finite-dimensional representation ofg with
highest weightλ, and letvλ be a nonzero vector of weightλ. Using the
relation [Eα, E−α] = Hα from Lemma 2.18a, we rewrite� from (a) as

� =
l∑

i=1

H 2
i +

∑
α∈�+

Eα E−α +
∑
α∈�+

E−α Eα

=
l∑

i=1

H 2
i +

∑
α∈�+

Hα + 2
∑
α∈�+

E−α Eα

=
l∑

i=1

H 2
i + 2Hδ + 2

∑
α∈�+

E−α Eα.

When we apply� to vλ and use Theorem 5.5c, the last term gives 0. Thus

�vλ =
l∑

i=1

λ(Hi)
2vλ + 2λ(Hδ)vλ = (|λ|2 + 2〈λ, δ〉)vλ.

Schur’s Lemma (Proposition 5.1) shows that� acts by a scalar, and hence
that scalar must be|λ|2 + 2〈λ, δ〉.

(c) We have〈λ, δ〉 = 1
2

∑
α∈�+〈λ, α〉. Sinceλ is dominant, this is≥ 0

with equality only if 〈λ, α〉 = 0 for all α, i.e., only if λ = 0. Thus the
scalar in (b) is≥ |λ|2 and can be 0 only ifλ is 0.
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Theorem 5.29.Letϕ be a complex-linear representation of the complex
semisimple Lie algebrag on a finite-dimensional complex vector space
V . ThenV is completely reducible in the sense that there exist invariant
subspacesU1, . . . , Ur of V such thatV = U1 ⊕· · ·⊕Ur and the restriction
of the representation to eachUi is irreducible.

REMARKS. The proof is very similar to the proof of Theorem 1.67. It
is enough by induction to show that any invariant subspaceU in V has an
invariant complementU ′. For the case thatU has codimension 1, we shall
prove this result as a lemma. Then we return to the proof of Theorem 5.29.

Lemma 5.30. Let ϕ : g → EndV be a finite-dimensional representa-
tion, and letU ⊆ V be an invariant subspace of codimension 1. Then there
is a 1-dimensional invariant subspaceW such thatV = U ⊕ W .

PROOF.
Case 1. Suppose dimU = 1. Form the quotient representationϕ on

V/U , with dim(V/U ) = 1. This quotient representation is irreducible of
dimension 1, and Lemma 4.28 shows that it is 0. Consequently

ϕ(g)V ⊆ U and ϕ(g)U = 0.

Hence ifY = [ X1, X2], we have

ϕ(Y )V ⊆ ϕ(X1)ϕ(X2)V + ϕ(X2)ϕ(X1)V

⊆ ϕ(X1)U + ϕ(X2)U = 0.

Since Corollary 1.55 givesg = [g, g], we conclude thatϕ(g) = 0. There-
fore any complementary subspace toU will serve asW .

Case 2. Suppose thatϕ( · )|U is irreducible and dimU > 1. Since
dim V/U = 1, the quotient representation is 0 andϕ(g)V ⊆ U . The
formula for� in (5.23) then shows that�(V ) ⊆ U , and Proposition 5.28c
says that� is a nonzero scalar onU . Therefore dim(ker�) = 1 and
U ∩ (ker�) = 0. Since� commutes withϕ(g), ker� is an invariant
subspace. TakingW = ker�, we haveV = U ⊕ W as required.

Case 3. Suppose thatϕ( · )|U is not necessarily irreducible and that
dimU ≥ 1. We induct on dimV . The base case is dimV = 2 and is
handled by Case 1. When dimV > 2, let U1 ⊆ U be an irreducible
invariant subspace, and form the quotient representations on

U/U1 ⊆ V/U1
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with quotientV/U of dimension 1. By inductive hypothesis we can write

V/U1 = U/U1 ⊕ Y/U1,

whereY is an invariant subspace inV and dimY/U1 = 1. Case 1 or Case 2
is applicable to the representationϕ( · )|Y and the irreducible invariant
subspaceU1. ThenY = U1 ⊕ W , whereW is a 1-dimensional invariant
subspace. SinceW ⊆ Y andY ∩ U ⊆ U1, we find that

W ∩ U = (W ∩ Y ) ∩ U = W ∩ (Y ∩ U ) ⊆ W ∩ U1 = 0.

ThereforeV = U ⊕ W as required.

PROOF OFTHEOREM5.29. Letϕ be a representation ofg on M , and let
N �= 0 be an invariant subspace. Put

V = {γ ∈ EndM | γ (M) ⊆ N andγ |N is scalar}.
Linear algebra shows thatV is nonzero. Define a linear functionσ from g

into End(EndM) by

σ(X)γ = ϕ(X)γ − γ ϕ(X) for γ ∈ EndM andX ∈ g.

Checking directly thatσ [ X, Y ] andσ(X)σ (Y ) − σ(Y )σ (X) are equal, we
see thatσ is a representation ofg on EndM .

We claim that the subspaceV ⊆ EndM is an invariant subspace under
σ . In fact, letγ (M) ⊆ N andγ |N = λ1. In the right side of the expression

σ(X)γ = ϕ(X)γ − γ ϕ(X),

the first term carriesM to N sinceγ carriesM to N andϕ(X) carriesN
to N . The second term carriesM into N sinceϕ(X) carriesM to M and
γ carriesM to N . Thusσ(X)γ carriesM into N . On N , the action of
σ(X)γ is given by

σ(X)γ (n) = ϕ(X)γ (n) − γ ϕ(X)(n) = λϕ(X)(n) − λϕ(X)(n) = 0.

ThusV is an invariant subspace.
Actually the above argument shows also that the subspaceU of V given

by
U = {γ ∈ V | γ = 0 on N }

is an invariant subspace. Clearly dimV/U = 1. By Lemma 5.30,V =
U ⊕ W for a 1-dimensional invariant subspaceW = Cγ . Hereγ is a
nonzero scalarλ1 on N . The invariance ofW means thatσ(X)γ = 0
since 1-dimensional representations are 0 by Lemma 4.28. Thereforeγ

commutes withϕ(X) for all X ∈ g. But then kerγ is a nonzero invariant
subspace ofM . Sinceγ is nonsingular onN (being a nonzero scalar there),
we must haveM = N ⊕ kerγ . This completes the proof.
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Let us return to the notation introduced before Proposition 5.28, taking
h to be a Cartan subalgebra,� = �(g, h) to be the set of roots, and
�+ = �+(g, h) to be a positive system. Definen andn− as in (5.8).

Corollary 5.31. Let a finite-dimensional representation ofg be given
on a spaceV, and letV n be the subspace ofn invariants given by

V n = {v ∈ V | Xv = 0 for all X ∈ n}.

Then the subspaceV n is aU (h) module, and

(a) V = V n ⊕ n−V asU (h) modules,
(b) the natural mapV n → V/(n−V ) is an isomorphism ofU (h)

modules,
(c) theU (h) moduleV n determines theU (g) moduleV up to equiv-

alence; the dimension ofV n equals the number of irreducible
constituents ofV, and the multiplicity of a weight inV n equals
the multiplicity inV of the irreducible representation ofg with that
highest weight.

PROOF. To see thatV n is aU (h) module, letH be inh andv be inV n.
If X is inn, thenX (Hv) = H(Xv)+ [ X, H ]v = 0+ X ′v with X ′ in n, and
it follows thatHv is in V n. ThusV n is aU (h) module. Similarlyn−V is a
U (h) module. Conclusion (b) is immediate from (a), and conclusion (c) is
immediate from Theorems 5.29 and 5.5. Thus we are left with proving (a).

By Theorem 5.29,V is a direct sum of irreducible representations, and
hence there is no loss of generality for the proof of (a) in assuming thatV
is irreducible, say of highest weightλ. With V irreducible, choose nonzero
root vectorsEα for every rootα, and letH1, . . . , Hl be a basis ofh. By the
Poincaré–Birkhoff–Witt Theorem (Theorem 3.8),U (g) is spanned by all
elements

E−β1 · · · E−βp Hi1 · · · Hiq Eα1 · · · Eαr ,

where theαi andβj are positive roots, not necessarily distinct. SinceV is
irreducible,V is spanned by all elements

E−β1 · · · E−βp Hi1 · · · Hiq Eα1 · · · Eαr v

with v in Vλ. SinceVλ is annihilated byn, such an element is 0 unless
r = 0. The spaceVλ is mapped into itself byh, and we conclude thatV is
spanned by all elements

E−β1 · · · E−βpv
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with v in Vλ. If p > 0, such an element is inn−V and has weight less than
λ, while if p = 0, it is in Vλ. Consequently

V = Vλ ⊕ n
−V .

Theorem 5.5c shows thatV n is just theλ weight space ofV, and (a) follows.
This completes the proof of the corollary.

We conclude this section by giving a generalization of Proposition 5.24
that yields many elements inZ(g) wheng is semisimple. We shall use this
result in the next section.

Proposition 5.32. Let ϕ be a finite-dimensional representation of a
complex semisimple Lie algebrag, and letB be the Killing form ofg. If
Xi is a basis ofg over C, let X̃i be the dual basis relative toB. Fix an
integern ≥ 1 and define

z =
∑

i1,...,in

Tr ϕ(Xi1 · · · Xin)X̃i1 · · · X̃in

as a member ofU (g). Thenz is independent of the choice of basisXi and
is a member of the centerZ(g) of U (g).

PROOF. The proof is modeled on the argument for Proposition 5.24. Let
a second basisX ′

i be given by (5.25a), with dual basis̃X ′
i given by (5.25b).

The element to consider is

z′ =
∑

i1,...,in

Tr ϕ(X ′
i1

· · · X ′
in
)X̃ ′

i1
· · · X̃ ′

in

=
∑

m1,...,mn

∑
l1,...,ln

∑
i1,...,in

am1i1 · · · amnin Tr ϕ(Xm1 · · · Xmn)

× bi1l1 · · · binln X̃l1 · · · X̃ln

=
∑

m1,...,mn

∑
l1,...,ln

δm1l1 · · · δmnln Tr ϕ(Xm1 · · · Xmn)X̃l1 · · · X̃ln

=
∑

l1,...,ln

Tr ϕ(Xl1 · · · Xln)X̃l1 · · · X̃ln

= z.

This proves thatz is independent of the basis.
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The groupG = Int g has Lie algebra(adg)R, and its simply connected
cover G̃ is a simply connected analytic group with Lie algebragR. Re-
garding the representationϕ of g as a representation ofgR, we can lift it to
a representation� of G̃ sinceG̃ is simply connected. Fixg ∈ G̃. In the
earlier part of the proof let the new basis beX ′

i = Ad(g)Xi . Then (5.26)
shows that̃X ′

i = Ad(g)X̃i . Consequently Ad(g)z is

=
∑

i1,...,in

Tr ϕ(Xi1 · · · Xin)Ad(g)(X̃i1 · · · X̃in)

=
∑

i1,...,in

Tr(�(g)ϕ(Xi1 · · · Xin)�(g)−1)X̃ ′
i1

· · · X̃ ′
in

=
∑

i1,...,in

Tr((�(g)ϕ(Xi1)�(g)−1) · · · (�(g)ϕ(Xin)�(g)−1))X̃ ′
i1

· · · X̃ ′
in

=
∑

i1,...,in

Tr(ϕ(Ad(g)Xi1) · · · ϕ(Ad(g)Xin))X̃ ′
i1

· · · X̃ ′
in

=
∑

i1,...,in

Tr(ϕ((Ad(g)Xi1) · · · (Ad(g)Xin)))X̃ ′
i1

· · · X̃ ′
in

=
∑

i1,...,in

Tr(ϕ(X ′
i1

· · · X ′
in
))X̃ ′

i1
· · · X̃ ′

in
,

and this equalsz, by the result of the earlier part of the proof. By Proposition
5.22,z is in Z(g).

5. Harish-Chandra Isomorphism

Let g be a complex semisimple Lie algebra, and leth, � = �(g, h),
W = W (�), and B be as in §2. DefineH = U (h). Sinceh is abelian,
the algebraH coincides with the symmetric algebraS(h). By Proposition
A.20b every linear transformation ofh into an associative commutative
algebraA with identity extends uniquely to a homomorphism ofH into A
sending 1 into 1. Consequently

(i) W acts onH (since it mapsh intoh ⊆ H, with λw(H) = λ(Hw−1
)),

(ii) H may be regarded as the space of polynomial functions onh∗

(because ifλ is in h∗, λ is linear fromh into C and so extends to a
homomorphism ofH into C; we can think ofλ on a member ofH
as the value of the member ofH at the pointλ).
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LetHW = U (h)W = S(h)W be the subalgebra of Weyl-group invariants
of H. In this section we shall establish the “Harish-Chandra isomorphism”
γ : Z(g) → HW , and we shall see an indication of how this isomorphism
allows us to work with infinitesimal characters wheng is semisimple.

The Harish-Chandra mapping is motivated by considering how an ele-
mentz ∈ Z(g) acts in an irreducible finite-dimensional representation with
highest weightλ. The action is by scalars, by Proposition 5.19, and we
compute those scalars by testing the action on a nonzero highest-weight
vector.

First we use the Poincar´e–Birkhoff–Witt Theorem (Theorem 3.8) to
introduce a suitable basis ofU (g) for making the computation. Introduce
a positive system�+ = �+(g, h), and definen, n−, b, andδ as in (5.8). As
in (5.6), enumerate the positive roots asβ1, . . . , βk , and letH1, . . . , Hl be
a basis ofh overC. For each rootα ∈ �, let Eα be a nonzero root vector.
Then the monomials

(5.33) Eq1

−β1
· · · Eqk

−βk
H m1

1 · · · H ml
l E p1

β1
· · · E pk

βk

are a basis ofU (g) overC.
If we expand the central elementz in terms of the above basis ofU (g)

and consider the effect of the term (5.33), there are two possibilities. One
is that somepj is > 0, and then the term acts as 0. The other is that allpj

are 0. In this case, as we shall see in Proposition 5.34b below, allqj are 0.
TheU (h) part acts on a highest weight vectorvλ by the scalar

λ(H1)
m1 · · · λ(Hl)

ml ,

and that is the total effect of the term. Hence we can compute the effect of
z if we can extract those terms in the expansion relative to the basis (5.33)
such that only theU (h) part is present. This idea was already used in the
proof of Proposition 5.28b.

Thus define

P =
∑
α∈�+

U (g)Eα and N =
∑
α∈�+

E−αU (g).

Proposition 5.34.

(a)U (g) = H ⊕ (P + N),
(b) Any member ofZ(g) has itsP + N component inP.
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PROOF.
(a) The fact thatU (g) = H+(P+N) follows by the Poincar´e–Birkhoff–

Witt Theorem (Theorem 3.8) from the fact that the elements (5.33) span
U (g). Fix the basis of elements (5.33). For any nonzero element ofU (g)Eα

with α ∈ �+, write out theU (g) factor in terms of the basis (5.33), and
consider a single term of the product, say

(5.35) cEq1

−β1
· · · Eqk

−βk
H m1

1 · · · H ml
l E p1

β1
· · · E pk

βk
Eα.

The factorE p1

β1
· · · E pk

βk
Eα is in U (n) and has no constant term. By the

Poincaré–Birkhoff–Witt Theorem, we can rewrite it as a linear combination
of termsEr1

β1
· · · Erk

βk
with r1 + · · · + rk > 0. Putting

cEq1

−β1
· · · Eqk

−βk
H m1

1 · · · H ml
l

in place on the left of each term, we see that (5.35) is a linear combination of
terms (5.33) withp1 +· · ·+ pk > 0. Similarly any member ofN is a linear
combination of terms (5.33) withq1 + · · · + qk > 0. Thus any member
of P + N is a linear combination of terms (5.33) withp1 + · · · + pk > 0
or q1 + · · · + qk > 0. Any member ofH has p1 + · · · + pk = 0 and
q1 + · · · + qk = 0 in every term of its expansion, and thus (a) follows.

(b) In terms of the representation ad onU (g) given in Proposition 5.21,
the monomials (5.33) are a basis ofU (g) of weight vectors for adh, the
weight of (5.33) being

(5.36) −q1β1 − · · · − qkβk + p1β1 + · · · + pkβk .

Any memberz of Z(g) satisfies(adH)z = H z − zH = 0 for H ∈ h

and thus is of weight 0. Hence its expansion in terms of the basis (5.33)
involves only terms of weight 0. In the proof of (a) we saw that any member
of P+N has each term withp1 +· · ·+ pk > 0 orq1 +· · ·+qk > 0. Since
the p’s andq ’s are constrained by the condition that (5.36) equal 0, each
term must have bothp1 +· · ·+ pk > 0 andq1 +· · ·+ qk > 0. Hence each
term is inP.

Let γ ′
n

be the projection ofZ(g) into theH term in Proposition 5.34a.
Applying the basis elements (5.33) to a highest weight vector of a finite-
dimensional representation, we see that

(5.37)
λ(γ ′

n
(z)) is the scalar by whichz acts in an irreducible

finite-dimensional representation of highest weightλ.
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Despite the tidiness of this result, Harish-Chandra found that a slight ad-
justment ofγ ′

n
leads to an even more symmetric formula. Define a linear

mapτn : h → H by

(5.38) τn(H) = H − δ(H)1,

and extendτn to an algebra automorphism ofH by the universal mapping
property for symmetric algebras. TheHarish-Chandra map γ is defined
by

(5.39) γ = τn ◦ γ ′
n

as a mapping ofZ(g) intoH.
Any elementλ ∈ h∗ defines an algebra homomorphismλ : H → C with

λ(1) = 1, because the universal mapping property of symmetric algebras
allows us to extendλ : h → C to H. In terms of this extension, the maps
γ andγ ′

n
are related by

(5.40a) λ(γ (z)) = (λ − δ)(γ ′
n
(z)) for z ∈ Z(g), λ ∈ h

∗.

If instead we think ofH as the space of polynomial functions onh∗, this
formula may be rewritten as

(5.40b) γ (z)(λ) = γ ′
n
(z)(λ − δ) for z ∈ Z(g), λ ∈ h

∗.

We define

(5.41) χλ(z) = λ(γ (z)) for z ∈ Z(g),

so thatχλ is a map ofZ(g) intoC. This map has the following interpretation.

Proposition 5.42.Forλ ∈ h∗ andz ∈ Z(g), χλ(z) is the scalar by which
z operates on the Verma moduleV (λ).

REMARK. In this notation we can restate (5.37) as follows:

(5.43)
χλ+δ(z) is the scalar by whichz acts in an irreducible finite-
dimensional representation of highest weightλ.

PROOF. Write z = γ ′
n
(z) + p with p ∈ P. If vλ−δ denotes the canonical

generator ofV (λ), then

zvλ−δ = γ ′
n
(z)vλ−δ + pvλ−δ

= (λ − δ)(γ ′
η(z))vλ−δ

= λ(γ (z))vλ−δ by (5.40)

= χλ(z)vλ−δ by (5.41).

For u ∈ U (g), we therefore havezuvλ−δ = uzvλ−δ = χλ(z)uvλ−δ. Since
V (λ) = U (g)vλ−δ, the result follows.
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Theorem 5.44(Harish-Chandra). The mappingγ in (5.40) is an algebra
isomorphism ofZ(g) onto the algebraHW of Weyl-group invariants inH,
and it does not depend on the choice of the positive system�+.

EXAMPLE. g = sl(2, C). Let Z = 1
2h2+e f + f e with h, e, f as in (1.5).

We noted in the first example in §4 thatZ is in Z(sl(2, C)). Let us agree
thate corresponds to the positive rootα. Thene f = f e + [e, f ] = f e +h
implies

Z = 1
2h2 + e f + f e = ( 1

2h2 + h) + 2 f e ∈ H ⊕ P.

Hence
γ ′

n
(Z) = 1

2h2 + h.

Now δ(h) = 1
2α

(
1 0

0 −1

)
= 1, and so

τn(h) = h − 1.

Thus
γ (Z) = 1

2(h − 1)2 + (h − 1) = 1
2h2 − 1

2.

The nontrivial element of the 2-element Weyl group acts onH by sendingh
to−h, and thus we have a verification thatγ (Z) is invariant under the Weyl
group. Moreover it is now clear thatHW = C[h2] and thatγ (C[Z ]) =
C[h2]. Theorem 5.44 therefore implies thatZ(sl(2, C)) = C[Z ].

The proof of Theorem 5.44 will occupy the remainder of this section
and will take five steps.

PROOF THAT image(γ ) ⊆ HW .
Since members ofH are determined by the effect of allλ ∈ h∗ on them,

we need to prove that

λ(w(γ (z))) = λ(γ (z))

for all λ ∈ h∗ andw ∈ W . In other words, we need to see that everyw ∈ W
has

(5.45) (w−1λ)(γ (z)) = λ(γ (z)),

and it is enough to handlew equal to a reflection in a simple root by
Proposition 2.62. Moreover each side for fixedz is a polynomial inλ, and
thus it is enough to prove (5.45) forλ dominant integral.

Form the Verma moduleV (λ). We know from Proposition 5.42 thatz
acts inV (λ) by the scalarλ(γ (z)). Also z acts inV (sαλ) by the scalar
(sαλ)(γ (z)). Since 2〈λ, α〉/|α|2 is an integer≥ 0, Lemma 5.18 says that
V (sαλ) is isomorphic to a (clearly nonzero)U (g) submodule ofV (λ). Thus
the two scalars must match, and (5.45) is proved.
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PROOF THATγ DOES NOT DEPEND ON THE CHOICE OF�+.
Let λ be algebraically integral and dominant for�+, let V be a finite-

dimensional irreducible representation ofgwith highest weightλ (Theorem
5.5), and letχ be the infinitesimal character ofV . Temporarily, let us drop
the subscriptn from γ ′. By Theorem 2.63 any other positive system of
roots is related in�+ by a member ofW (�). Thus letw be in W (�),
and letγ̃ ′ andγ̃ be defined relative to�+∼ = w�+. We are to prove that
γ = γ̃ . The highest weight ofV relative tow�+ is wλ. If z is in Z(g),
then (5.37) gives

(5.46) λ(γ ′(z)) = χ(z) = wλ(γ̃ ′(z)).

Sinceγ (z) is invariant underW (�),

(wλ + wδ)(γ (z)) = (λ + δ)(γ (z)) = λ(γ ′(z))

= wλ(γ̃ ′(z)) = (wλ + wδ)(γ̃ (z)),

the next-to-last step following from (5.46). Sinceγ (z) andγ̃ (z) are poly-
nomial functions equal at the lattice points of an octant, they are equal
everywhere.

PROOF THATγ IS MULTIPLICATIVE .
Sinceτn is an algebra isomorphism, we need to show that

(5.47) γ ′
n
(z1z2) = γ ′

n
(z1)γ

′
n
(z2).

We have

z1z2 − γ ′
n
(z1)γ

′
n
(z2) = z1(z2 − γ ′

n
(z2)) + γ ′

n
(z2)(z1 − γ ′

n
(z1)),

which is inP, and therefore (5.47) follows.

PROOF THATγ IS ONE-ONE.
If γ (z) = 0, thenγ ′

n
(z) = 0, and (5.37) shows thatz acts as 0 in every

irreducible finite-dimensional representation ofg. By Theorem 5.29,z acts
as 0 in every finite-dimensional representation ofg.

In the representation ad ofg onUn(g), Un−1(g) is an invariant subspace.
Thus we obtain a representation ad ofg onUn(g)/Un−1(g) for eachn. It is
enough to show that ifu ∈ U (g) acts as 0 in each of these representations,
thenu = 0. Specifically let us expandu in terms of the basis

(5.48) Eq1

−β1
· · · Eqk

−βk
H m1

1 · · · H ml
l E p1

β1
· · · E pk

βk
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of U (g). We show that if adu is 0 on all elements

(5.49) H m
δ Er1

β1
· · · Erk

βk mod U m+∑
rj −1(g),

thenu = 0. (Here as usual,δ is half the sum of the positive roots.)
In (5.48) letm ′ = ∑k

j=1(pj + qj). The effect of a monomial term ofu
on (5.49) will be to produce a sum of monomials, all of whoseH factors
have total degree≥ m − m ′. There will be one monomial whoseH factors
have total degree= m −m ′, and we shall be able to identify that monomial
and its coefficient exactly.

Let us verify this assertion. IfX is ing, the action of adX on a monomial
X1 · · · Xn is

(adX)(X1 · · · Xn) = X X1 · · · Xn − X1 · · · Xn X

= [ X, X1] X2 · · · Xn + X1[ X, X2] X3 · · · Xn + · · · + X1 · · · Xn−1[ X, Xn].

(5.50)

If X1, . . . , Xn are root vectors or members ofh and if X has the same
property, then so does each [X, X j ]. Moreover, Lemma 3.9 allows us to
commute a bracket into its correct position in (5.49), modulo lower-order
terms.

Consider the effect of adE±α when applied to an expression (5.49). The
result is a sum of terms as in (5.50). When adE±α acts on theH part,
the degree of theH part of the resulting term goes down by 1, whereas if
adE±α acts on a root vector, the degree of theH part of the resulting term
goes up by 1 or stays the same. When some adHj acts on an expression of
the form (5.49), the degree of theH part of each term stays the same.

Thus when ad of (5.48) acts on (5.49), every term of the result hasH part
of degree≥ m − m ′, and degree= m − m ′ arises only when all adE±α ’s
act on one of the factorsHδ. To compute exactly the term at the end withH
part of degree= m − m ′, let us follow this process step by step. When we
apply adEβk to (5.49), we get a contribution of〈−βk, δ〉 from each factor
of Hδ in (5.49), plus irrelevant terms. Thus adEβk of (5.49) gives

m〈−βn, δ〉H m−1
δ Er1

β1
· · · Erk+1

βk
+ irrelevant terms.

By the time we have applied all of ad(E p1

β1
· · · E pk

βk
) to (5.49), the result is

m!

(m−∑
pj)!

( k∏
j=1

〈−βj , δ〉pj

)
H

m−∑
pj

δ E p1+r1

β1
· · · E pk+rk

βk
+irrelevant terms.

(5.51)
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Next we apply adHl to (5.51). The main term is multiplied by the
constant

∑k
j=1(pj + rj)βj(Hl). Repeating this kind of computation for the

other factors from ad(H), we see that ad(H m1
1 · · · H ml

l ) of (5.51) is

(5.52)

m!

m − ∑
pj

( k∏
j=1

〈−βj , δ〉pj

) l∏
i=1

( k∑
j=1

(pj + rj)βj(Hi)
)mi

× H
m−∑

pj

δ E p1+r1

β1
· · · E pk+rk

βk
+ irrelevant terms.

Finally we apply adE−βk to (5.52). The main term gets multiplied by
(m −∑

pj)〈βk, δ〉, another factor ofHδ gets dropped, and a factor ofE−βk

appears. Repeating this kind of computation for the other factors adE−βj ,
we see that ad(Eq1

−β1
· · · Eqk

−βk
) of (5.52) is

m!

(m − m ′)!

( k∏
j=1

(−1)pj 〈βj , δ〉pj +qj

) l∏
i=1

( k∑
j=1

(pj + rj)βj(Hi)
)mi

× Eq1

−β1
· · · Eqk

−βk
H m−m ′

δ E p1+r1

β1
· · · E pk+rk

βk
+ irrelevant terms.(5.53)

This completes our exact computation of the main term of ad of (5.48)
on (5.49).

We regardm and therj ’s fixed for the present. Among the terms ofu, we
consider the effect of ad of only those withm ′ as large as possible. From
these, the powers of the root vectors in (5.53) allow us to reconstruct the
pj ’s andqj ’s. The question is whether the different terms ofu for whichm ′

is maximal and thepj ’s andqj ’s take on given values can have their main
contributions to (5.53) add to 0. Thus we ask whether a finite sum

∑
m1,...,ml

cm1,...,ml

l∏
i=1

( k∑
j=1

(pj + rj)βj(Hi)
)mi

can be 0 for all choices of integersrj ≥ 0.
Assume it is 0 for all such choices. Then∑

m1,...,ml

cm1,...,ml

l∏
i=1

( k∑
j=1

zjβj(Hi)
)mi = 0

for all complexz1, . . . , zk . Hence

∑
m1,...,ml

cm1,...,ml

l∏
i=1

(µ(Hi))
mi = 0
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for all µ ∈ h∗, and we obtain

µ
( ∑

m1,...,ml

cm1,...,ml H
m1
1 · · · H ml

l

)
= 0

for all µ ∈ h∗. Therefore∑
m1,...,ml

cm1,...,ml H
m1
1 · · · H ml

l = 0,

and it follows that all the terms under consideration inu were 0. Thusγ is
one-one.

PROOF THATγ IS ONTO.
To prove thatγ is ontoHW , we need a supply of members ofZ(g).

Proposition 5.32 will fulfill this need. LetHn andHW
n be the subspaces

of H andHW of elements homogeneous of degreen. It is clear from the
Poincaré–Birkhoff–Witt Theorem that

(5.54) γ (Z(g) ∩ Un(g)) ⊆
n⊕

d=0

HW
d .

Letλ be any dominant algebraically integral member ofh∗, and letϕλ be
the irreducible finite-dimensional representation ofg with highest weight
λ. Let �(λ) be the weights ofϕλ, repeated as often as their multiplicities.
In Proposition 5.32 letXi be the ordered basis dual to one consisting of
a basisH1, . . . , Hl of h followed by the root vectorsEα. The proposition
says that the following elementz is in Z(g):

z =
∑

i1,...,in

Tr ϕλ(X̃i1 · · · X̃in)Xi1 · · · Xin

=
∑

i1,...,in ,

all ≤l

Tr ϕλ(H̃i1 · · · H̃in)Hi1 · · · Hin +
∑

j1,..., jn ,

at least one>l

Tr ϕλ(X̃ j1 · · · X̃ jn)X j1 · · · X jn .

In the second sum on the right side of the equality, some factor ofX j1 · · · X jn

is a root vector. Commuting the factors into their positions to match terms
with the basis vectors (5.33) ofU (g), we see that

X j1 · · · X jn ≡ u mod Un−1(g) with u ∈ P + N,

i.e., X j1 · · · X jn ≡ 0 mod
( n−1⊕

d=0

Hd ⊕ (P + N)
)
.
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Application ofγ ′
n

to z therefore gives

γ ′
n
(z) ≡

∑
i1,...,in ,

all ≤l

Tr ϕλ(H̃i1 · · · H̃in)Hi1 · · · Hin mod
( n−1⊕

d=0

Hd

)
.

The automorphismτn ofHaffects elements only modulo lower-order terms,
and thus

γ (z) ≡
∑

i1,...,in ,

all ≤l

Tr ϕλ(H̃i1 · · · H̃in)Hi1 · · · Hin mod
( n−1⊕

d=0

Hd

)

=
∑

µ∈�(λ)

∑
i1,...,in ,

all ≤l

µ(H̃i1) · · · µ(H̃in)Hi1 · · · Hin mod
( n−1⊕

d=0

Hd

)
.

Now

(5.55)
∑

i

µ(H̃i)Hi = Hµ

since 〈 ∑
i

µ(H̃i)Hi , H̃j

〉
= µ(H̃j) = 〈Hµ, H̃j〉 for all j.

Thus

γ (z) ≡
∑

µ∈�(λ)

(Hµ)n mod
( n−1⊕

d=0

Hd

)
.

The set of weights ofϕλ, together with their multiplicities, is invariant
underW by Theorem 5.5e. Hence

∑
µ∈�(λ)(Hµ)n is in HW , and we can

write

(5.56) γ (z) ≡
∑

µ∈�(λ)

(Hµ)n mod
( n−1⊕

d=0

HW
d

)
.

To prove thatγ is ontoHW , we show that the image ofγ contains
⊕m

d=0 HW
d

for everym. Form = 0, we haveγ (1) = 1, and there is nothing further to
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prove. Assuming the result form = n − 1, we see from (5.56) that we can
choosez1 ∈ Z(g) with

(5.57) γ (z − z1) =
∑

µ∈�(λ)

(Hµ)n.

To complete the induction, we shall show that

(5.58) the elements
∑

µ∈�(λ)

(Hµ)n spanHW
n .

Let �D(λ) be the set of dominant weights ofϕλ, repeated according
to their multiplicities. Since again the set of weights, together with their
multiplicities, is invariant underW , we can rewrite the right side of (5.58)
as

(5.59) =
∑

µ∈�D(λ)

cµ

∑
w∈W

(Hwµ)n,

wherec−1
µ is the order of the stabilizer ofµ in W . We know thatϕλ contains

the weightλ with multiplicity 1. Equation (5.57) shows that the elements
(5.59) are in the image ofγ in HW

n . To complete the induction, it is thus
enough to show that

(5.60) the elements (5.59) spanHW
n .

We do so by showing that

the span of all elements (5.59) includes all
elements

∑
w∈W (Hwν)

n for ν dominant and
algebraically integral,

(5.61a)

HW
n is spanned by all elements

∑
w∈W (Hwν)

n

for ν dominant and algebraically integral.
(5.61b)

To prove (5.61a), note that the set of dominant algebraically integralν

in a compact set is finite because the set of integral points forms a lattice
in the real linear span of the roots. Hence it is permissible to induct on
|ν|. The trivial case for the induction is|ν| = 0. Suppose inductively
that (5.61a) has been proved for all dominant algebraically integralν with
|ν| < |λ|. If µ is any dominant weight ofϕλ other thanλ, then|µ| < |λ|
by Theorem 5.5e. Thus the expression (5.59) involvingλ is the sum of
cλ

∑
w∈W (Hwλ)

n and a linear combination of terms for which (5.61a) is
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assumed by induction already to be proved. Sincecλ �= 0, (5.61a) holds
for

∑
w∈W (Hwλ)

n. This completes the induction and the proof of (5.61a).
To prove (5.61b), it is enough (by summing overw ∈ W ) to prove that

(5.61c)
Hn is spanned by all elements(Hν)

n for
ν dominant and algebraically integral,

and we do so by induction onn. The trivial case of the induction isn = 0.
For 1≤ i ≤ dimh, we can choose dominant algebraically integral forms

λi such that{λi} is aC basis forh∗. Since theλi ’s spanh∗, theHλi spanh.
Consequently thenth degree monomials in theHλi spanHn.

Assuming (5.61c) inductively forn − 1, we now prove it forn. Let
ν1, . . . , νn be dominant and algebraically integral. It is enough to show
that the monomialHν1 · · · Hνn is a linear combination of elements(Hν)

n

with ν dominant and algebraically integral. By the induction hypothesis,

(Hν1 · · · Hνn−1)Hνn =
∑

ν

cν H n−1
ν Hνn ,

and it is enough to show thatH n−1
ν Hν ′ is a linear combination of terms

(Hν+rν ′)n with r ≥ 0 in Z. By the invertibility of a Vandermonde matrix,
choose constantsc1, . . . , cn with

1 1 1 · · · 1
1 2 3 · · · n
1 22 32 · · · n2

...

1 2n−1 3n−1 · · · nn−1




c1

c2

c3
...

cn

 =


0
1
0
...

0

 .

Then

n∑
j=1

cj(Hν+ jν ′)n =
n∑

j=1

cj(Hν + j Hν ′)n

=
n∑

k=0

(
n
k

)
H n−k

ν H k
ν ′

n∑
j=1

cj j k

= nH n−1
ν Hν ′ .

Thus H n−1
ν Hν ′ has the required expansion, and the induction is complete.

This proves (5.61c), and consequentlyγ is ontoHW . This completes the
proof of Theorem 5.44.
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Forg complex semisimple we say that a unital leftU (g) moduleV “has
an infinitesimal character” ifZ(g) acts by scalars inV . In this case the
infinitesimal character of V is the homomorphismχ : Z(g) → C with
χ(z) equal to the scalar by whichz acts. Proposition 5.19 says that every
irreducible unital leftU (g) module has an infinitesimal character.

The Harish-Chandra isomorphism allows us to determine explicitly all
possible infinitesimal characters. Leth be a Cartan subalgebra ofg. If λ is
in h∗, thenλ is meaningful on the elementγ (z) of H. Earlier we defined
in (5.41) a homomorphismχλ : Z(g) → C by χλ(z) = λ(γ (z)).

Theorem 5.62. If g is a reductive Lie algebra andh is a Cartan subal-
gebra, then every homomorphism ofZ(g) into C sending 1 into 1 is of the
form χλ for someλ ∈ h∗. If λ′ andλ are inh∗, thenχλ′ = χλ if and only if
λ′ andλ are in the same orbit under the Weyl groupW = W (g, h).

PROOF. Let χ : Z(g) → C be a homomorphism withχ(1) = 1. By
Theorem 5.44,γ carriesZ(g) ontoHW , and thereforeγ (kerχ) is an ideal
in HW . Let us check that the corresponding idealI = Hγ (kerχ) in H is
proper. Assuming the contrary, supposeu1, . . . , un in H and H1, . . . , Hn

in γ (kerχ) are such that
∑

i ui Hi = 1. Application ofw ∈ W gives∑
i(wui)Hi = 1. Summing onw, we obtain∑

i

( ∑
w∈W

wui

)
Hi = |W |.

Since
∑

w∈W wui is in HW , we can applyχ ◦ γ −1 to both sides. Since
χ(1) = 1, the result is∑

i

χ
(
γ −1

( ∑
w∈W

wui

))
χ(γ −1(Hi)) = |W |.

But the left side is 0 sinceχ(γ −1(Hi)) = 0 for all i , and we have a
contradiction. We conclude that the idealI is proper.

By Zorn’s Lemma, extendI to a maximal ideal̃I of H. The Hilbert
Nullstellensatz tells us that there is someλ ∈ h∗ with

Ĩ = {H ∈ H | λ(H) = 0}.

Sinceγ (kerχ) ⊆ I ⊆ Ĩ , we haveχλ(z) = λ(γ (z)) = 0 for all z ∈ kerχ .
In other words,χ(z) = χλ(z) for z ∈ kerχ and forz = 1. Thesez’s span
HW , and henceχ = χλ.
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If λ′ andλ are in the same orbit underW , sayλ′ = wλ, then the identity
w(γ (z)) = γ (z) for w ∈ W forces

χλ′(z) = λ′(γ (z)) = λ′(w(γ (z))) = w−1λ′(γ (z)) = λ(γ (z)) = χλ(z).

Finally supposeλ′ andλ are not in the same orbit underW . Choose a
polynomial p on h∗ that is 1 onWλ and 0 onWλ′. The polynomialp on
h∗ is nothing more than an elementH of H with

(5.63) wλ(H) = 1 and wλ′(H) = 0 for all w ∈ W.

The element̃H ofHwith H̃ = |W |−1
∑

w∈W wH is inHW and satisfies the
same properties (5.63) asH . By Theorem 5.44 we can choosez ∈ Z(g)

with γ (z) = H̃ . Thenχλ(z) = λ(γ (z)) = λ(H̃) = 1 while χλ′(z) = 0.
Henceχλ′ �= χλ.

Now suppose thatV is aU (g) module with infinitesimal characterχ .
By Theorem 5.62,χ = χλ for someλ ∈ h∗. We often abuse notation and
say thatV hasinfinitesimal character λ. The elementλ is determined up
to the operation of the Weyl group, again by Theorem 5.62.

EXAMPLES.

1) Let V be a finite-dimensional irreducibleU (g) module with highest
weightλ. By (5.43),V has infinitesimal characterλ + δ.

2) If λ is in h∗, then the Verma moduleV (λ) has infinitesimal character
λ by Proposition 5.42.

3) WhenB is the Killing form and� is the Casimir element, Proposition
5.28b shows thatλ(γ ′

n
(�)) = |λ − δ|2 − |δ|2 if λ is dominant and alge-

braically integral. The same proof shows that this formula remains valid
as long asλ is in the real linear span of the roots. Combining this result
with the definition (5.41), we obtain

(5.64) χλ(�) = |λ|2 − |δ|2

for λ in the real linear span of the roots.



314 V. Finite-Dimensional Representations

6. Weyl Character Formula

We saw in §IV.2 that the character of a finite-dimensional representation
of a compact group determines the representation up to equivalence. Thus
characters provide an effective tool for working with representations in a
canonical fashion. In this section we shall deal with characters in a formal
way, working in the context of complex semisimple Lie algebras, deferring
until §8 the interpretation in terms of compact connected Lie groups.

To understand where the formalism comes from, it is helpful to think of
the groupSL(2, C) and its compact subgroupSU (2). The groupSU (2)

is simply connected, being homeomorphic to the 3-sphere, and it follows
from Proposition 1.143 thatSL(2, C) is simply connected also. A finite-
dimensional representation ofSU (2) is automatically smooth. Thus it leads
via differentiation to a representation ofsu(2), then via complexification to
a representation ofsl(2, C), and then via passage to the simply connected
group to a holomorphic representation ofSL(2, C). We can recover the
original representation ofSU (2) by restriction, and we can begin this cycle
at any stage, continuing all the way around. This construction is an instance
of “Weyl’s unitary trick,” which we shall study later.

Let us see the effect of this construction as we follow the character of
an irreducible representation� with differentialϕ. Let h =

(
1 0

0 −1

)
. The

diagonal subalgebrah = {zh | z ∈ C} is a Cartan subalgebra ofsl(2, C),
and the roots are 2 and−2 onh. We take the root that is 2 onh (and has

e =
(

0 1

0 0

)
as root vector) to be positive, and we call itα. The weights

of ϕ are determined by the eigenvalues ofϕ(h). According to Theorem
1.65, the eigenvalues are of the formn, n − 2, . . . , −n. Hence if we define
λ ∈ h∗ by λ(zh) = zn, then the weights are

λ, λ − α, λ − 2α, . . . , −λ.

Thus the matrix ofϕ(zh) relative to a basis of weight vectors is

ϕ(zh) = diag(λ(zh), (λ − α)(zh), (λ − 2α)(zh), . . . , −λ(zh)).

Exponentiating this formula in order to pass to the groupSL(2, C), we
obtain

�(expzh) = diag(eλ(zh), e(λ−α)(zh), e(λ−2α)(zh), . . . , e−λ(zh)).

This formula makes sense withinSU (2) if z is purely imaginary. In any
event if χ� denotes the character of� (i.e., the trace of� of a group
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element), then we obtain

χ�(expzh) = eλ(zh) + e(λ−α)(zh) + e(λ−2α)(zh) + · · · + e−λ(zh)

= e(λ+δ)(zh) − e−(λ+δ)(zh)

eδ(zh) − e−δ(zh)
,

whereδ = 1
2α takes the value 1 onh. We can drop the group element from

the notation if we introduce formal exponentials. Then we can write

χ� = eλ + eλ−α + eλ−2α + · · · + e−λ = eλ+δ − e−(λ+δ)

eδ − e−δ
.

In this section we shall derive a similar expression involving formal
exponentials for the character of an irreducible representation of a complex
semisimple Lie algebra with a given highest weight. This result is the
“Weyl Character Formula.” We shall interpret the result in terms of compact
connected Lie groups in §8.

The first step is to develop the formalism of exponentials. We fix a
complex semisimple Lie algebrag, a Cartan subalgebrah, the set� of
roots, the Weyl groupW , and a simple system� = {α1, . . . , αl}. Let �+

be the set of positive roots, and letδ be half the sum of the positive roots.
Following customary set-theory notation, letZh∗

be the additive group
of all functions fromh∗ to Z. If f is in Zh∗

, then thesupport of f is the
set ofλ ∈ h∗ where f (λ) �= 0. Forλ ∈ h∗, defineeλ to be the member of
Zh∗

that is 1 atλ and 0 elsewhere.
Within Zh∗

, let Z[h∗] be the subgroup of elements of finite support. For
such elements we can writef = ∑

λ∈h∗ f (λ)eλ since the sum is really a
finite sum. However, it will be convenient to allow this notation also for
f in the larger groupZh∗

, since the notation is unambiguous in this larger
context.

Let Q+ be the set of all members ofh∗ given as
∑l

i=1 niαi with all theni

equal to integers≥ 0. TheKostant partition function P is the function
from Q+ to the nonnegative integers that tells the number of ways, apart
from order, that a member ofQ+ can be written as the sum of positive
roots. By convention,P(0) = 1.

Let Z〈h∗〉 be the set of allf ∈ Zh∗
whose support is contained in the

union of a finite number of setsνi − Q+ with eachνi in h∗. This is an
abelian group, and we have

Z[h∗] ⊆ Z〈h∗〉 ⊆ Zh∗
.
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Within Z〈h∗〉, we introduce the multiplication

(5.65)
( ∑

λ∈h∗
cλeλ

)( ∑
µ∈h∗

c̃µeµ
)

=
∑
ν∈h∗

( ∑
λ+µ=ν

cλc̃µ

)
eν.

To see that (5.65) makes sense, we have to check that the interior sum
on the right side is finite. Because we are working withinZ〈h∗〉, we can
write λ = λ0 − q+

λ with q+
λ ∈ Q+ and with only finitely many possibilities

for λ0, and we can similarly writeµ = µ0 − q+
µ . Then

(λ0 − q+
λ ) + (µ0 − q+

µ ) = ν

q+
λ + q+

µ = ν − λ0 − µ0.and hence

Finiteness follows since there are only finitely many possibilities forλ0 and
µ0 and sinceP(ν − λ0 − µ0) < ∞ for each.

Under the definition of multiplication in (5.65),Z〈h∗〉 is a commutative
ring with identitye0. Sinceeλeµ = eλ+µ, the natural multiplication inZ[h∗]
is consistent with the multiplication inZ〈h∗〉.

The Weyl groupW acts onZh∗
. The definition isw f (µ) = f (w−1µ)

for f ∈ Zh∗
, µ ∈ h∗, andw ∈ W . Thenw(eλ) = ewλ. Eachw ∈ W leaves

Z[h∗] stable, but in generalw does not leaveZ〈h∗〉 stable.
We shall make use of the sign function onW . Let ε(w) = detw for

w ∈ W . This is always±1. Any root reflectionsα hasε(sα) = −1. Thus
if w is written as the product ofk root reflections, thenε(w) = (−1)k . By
Proposition 2.70,

(5.66) ε(w) = (−1)l(w),

wherel(w) is the length ofw as defined in §II.6.
Whenϕ is a representation ofg onV, we shall sometimes abuse notation

and refer toV as the representation. IfV is a representation, we say that
V has a characterif V is the direct sum of its weight spaces underh, i.e.,
V = ⊕

µ∈h∗ Vµ, and if dimVµ < ∞ for µ ∈ h∗. In this case thecharacter
is

char(V ) =
∑
µ∈h∗

(dim Vµ)eµ.

EXAMPLE. Let V (λ) be a Verma module, and letvλ−δ be the canonical
generator. Letn− be the sum of the root spaces ing for the negative roots.
By Proposition 5.14b the map ofU (n−) into V (λ) given byu �→ uvλ−δ is
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one-one onto. Also the action ofU (h) onV (λ) matches the action ofU (h)

onU (n−) ⊗ Cvλ−δ. Thus

dim V (λ)µ = dimU (n−)µ−λ+δ.

Let E−β1, . . . , E−βk be a basis ofn− consisting of root vectors. The
Poincaré–Birkhoff–Witt Theorem (Theorem 3.8) shows that monomials in
this basis form a basis ofU (n−), and it follows that dimU (n−)−ν = P(ν).
Therefore

dim V (λ)µ = P(λ − δ − µ),

andV (λ) has a character. The character is given by

(5.67) char(V (λ)) =
∑
µ∈h∗

P(λ − δ − µ)eµ = eλ−δ
∑
γ∈Q+

P(γ )e−γ .

Let us establish some properties of characters. LetV be a representation
of g with a character, and suppose thatV ′ is a subrepresentation. Then the
representationsV ′ andV/V ′ have characters, and

(5.68) char(V ) = char(V ′) + char(V/V ′).

In fact, we just extend a basis of weight vectors forV ′ to a basis of weight
vectors ofV . Then it is apparent that

dim Vµ = dim V ′
µ + dim(V/V ′)µ,

and (5.68) follows.
The relationship amongV, V ′, andV/V ′ is summarized by saying that

0 −−−→ V ′ −−−→ V −−−→ V/V ′ −−−→ 0

is anexact sequence. This means that the kernel of each map going out
equals the image of each map going in.

In these terms, we can generalize (5.68) as follows. Whenever

0 −−−→ V1
ϕ1−−−→ V2

ϕ2−−−→ V3
ϕ3−−−→ · · · ϕn−1−−−→ Vn −−−→ 0

is an exact sequence of representations ofg with characters, then

(5.69)
n∑

j=1

(−1) jchar(Vj) = 0.
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To prove (5.69), we note that the following are exact sequences; in each
case “inc” denotes an inclusion:

0 −−−→ image(ϕ1)
inc−−−→ V2

ϕ2−−−→ image(ϕ2) −−−→ 0,

0 −−−→ image(ϕ2)
inc−−−→ V3

ϕ3−−−→ image(ϕ3) −−−→ 0,

...

0 −−−→ image(ϕn−2)
inc−−−→ Vn−1

ϕn−1−−−→ image(ϕn−1) −−−→ 0.

For 2≤ j ≤ n − 1, (5.68) gives

−char(image(ϕj−1)) + char(Vj) − char(image(ϕj)) = 0.

Multiplying by (−1) j and summing, we obtain

0 = −char(image(ϕ1)) + char(V2) − char(V3)

+ · · · + (−1)n−1char(Vn−1) + (−1)nchar(image(ϕn−1)).

SinceV1
∼= image(ϕ1) andVn

∼= image(ϕn−1), (5.69) follows.
Suppose thatV1 and V2 are representations ofg having characters

that are inZ〈h∗〉. Then V1 ⊗ V2, which is a representation under the
definition (4.3), has a character, and

(5.70) (V1 ⊗ V2) = (char(V1))(char(V2)).

In fact, the tensor product of weight vectors is a weight vector, and we can
form a basis ofV1 ⊗ V2 from such tensor-product vectors. Hence (5.70) is
an immediate consequence of (5.65).

TheWeyl denominator is the member ofZ[h∗] given by

d = eδ
∏

α∈�+
(1 − e−α).(5.71)

K =
∑
γ∈Q+

P(γ )e−γ .Define

This is a member ofZ〈h∗〉.
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Lemma 5.72.In the ringZ〈h∗〉, K e−δd = 1. Henced−1 exists inZ〈h∗〉.
PROOF. From the definition in (5.71), we have

(5.73) e−δd =
∏

α∈�+
(1 − e−α).

Meanwhile

(5.74)
∏

α∈�+
(1 + e−α + e−2α + · · · ) =

∑
γ∈Q+

P(γ )e−γ = K .

Since(1 − e−α)(1 + e−α + e−2α + · · · ) = 1 for α positive, the lemma
follows by multiplying (5.74) by (5.73).

Theorem 5.75(Weyl Character Formula). LetV be an irreducible finite-
dimensional representation of the complex semisimple Lie algebrag with
highest weightλ. Then

char(V ) = d−1
∑
w∈W

ε(w)ew(λ+δ).

REMARKS. We shall prove this theorem below after giving three lemmas.
But first we deduce an alternative formulation of the theorem.

Corollary 5.76 (Weyl Denominator Formula).

eδ
∏

α∈�+
(1 − e−α) =

∑
w∈W

ε(w)ewδ.

PROOF. Takeλ = 0 in Theorem 5.75. ThenV is the 1-dimensional
trivial representation, and char(V ) = e0 = 1.

Theorem 5.77(Weyl Character Formula, alternative formulation). Let
V be an irreducible finite-dimensional representation of the complex
semisimple Lie algebrag with highest weightλ. Then( ∑

w∈W

ε(w)ewδ
)

char(V ) =
∑
w∈W

ε(w)ew(λ+δ).

PROOF. This follows by substituting the result of Corollary 5.76 into the
formula of Theorem 5.75.
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Lemma 5.78.If λ in h∗ is dominant, then now �= 1 in W fixesλ + δ.

PROOF. If w �= 1 fixesλ + δ, then Chevalley’s Lemma in the form of
Corollary 2.73 shows that some rootα has〈λ+δ, α〉 = 0. We may assume
thatα is positive. But then〈λ, α〉 ≥ 0 by dominance and〈δ, α〉 > 0 by
Proposition 2.69, and we have a contradiction.

Lemma 5.79. The Verma moduleV (λ) has a character belonging to
Z〈h∗〉, and char(V (λ)) = d−1eλ.

PROOF. Formula (5.67) shows that

char(V (λ)) = eλ−δ
∑
γ∈Q+

P(γ )e−γ = K e−δeλ,

and thus the result follows by substituting from Lemma 5.72.

Lemma 5.80.Let λ0 be inh∗, and suppose thatM is a representation of
g such that

(i) M has infinitesimal characterλ0 and
(ii) M has a character belonging toZ〈h∗〉.

Let

DM = {λ ∈ Wλ0 | (λ − δ + Q+) ∩ support(char(M)) �= ∅}.

Then char(M) is a finiteZ linear combination of char(V (λ)) for λ in DM .

REMARK. DM is a finite set, being a subset of an orbit of the finite
groupW .

PROOF. We may assume thatM �= 0, and we proceed by induction on
|DM |. First assume that|DM | = 0. SinceM has a character belonging to
Z〈h∗〉, we can findµ in h∗ such thatµ− δ is a weight ofM butµ− δ + q+

is not a weight ofM for anyq+ �= 0 in Q+. Setm = dim Mµ−δ. Since
the root vectors for positive roots evidently annihilateMµ−δ, the universal
mapping property for Verma modules (Proposition 5.14c) shows that we
can find aU (g) homomorphismϕ : V (µ)m → M such that(V (µ)m)µ−δ

maps one-one ontoMµ−δ. The infinitesimal characterλ0 of M must match
the infinitesimal character ofV (µ), which isµ by Proposition 5.42. By
Theorem 5.62,µ is in Wλ0. Thenµ is in DM , and|DM | = 0 is impossible.
This completes the base case of the induction.



6. Weyl Character Formula 321

Now assume the result of the lemma for modulesN satisfying (i) and (ii)
such thatDN has fewer than|DM | members. Constructµ, m, andϕ as
above. LetL be the kernel ofϕ, and putN = M/imageϕ. Then

0 −−−→ L −−−→ V (µ)m ϕ−−−→ M
ψ−−−→ N −−−→ 0

is an exact sequence of representations. By (5.68), char(L) and char(N )

exist. Thus (5.69) gives

char(M) = −char(L) + m char(V (µ)) + char(N ).

MoreoverL and N satisfy (i) and (ii). The induction will be complete if
we show that|DL | < |DM | and|DN | < |DM |.

In the case ofN , we clearly haveDN ⊆ DM . Sinceψ is onto, the
equalityMµ−δ = imageϕ implies thatNµ−δ = 0. Thusµ is not inDN , and
|DN | < |DM |.

In the case ofL, if λ is in DL , thenλ − δ + Q+ has nonempty inter-
section with support(char(L)) and hence with support(char(V (µ))). Then
µ − δ is in λ − δ + Q+, and henceµ − δ is a member of the intersection
(λ−δ+Q+)∩support(char(M)). That is,λ is in DM . ThereforeDL ⊆ DM .
But µ is not in DL , and hence|DL | < |DM |. This completes the proof.

PROOF OFTHEOREM5.75. By (5.43),V has infinitesimal characterλ+δ.
Lemma 5.80 applies toV with λ0 replaced byλ+δ, and Lemma 5.79 allows
us to conclude that

char(V ) = d−1
∑
w∈W

cwew(λ+δ)

for some unknown integerscw. We rewrite this formula as

(5.81) d char(V ) =
∑
w∈W

cwew(λ+δ).

Let us say that a memberf of Z[h∗] is even(underW ) if w f = f for
all w in W . It is odd if w f = ε(w) f for all w in W . Theorem 5.5e shows
that char(V ) is even. Let us see thatd is odd. In fact, we can writed as

(5.82) d =
∏

α∈�+
(eα/2 − e−α/2).

If we replace eachα by wα, we get the same factors on the right side of
(5.82) except for minus signs, and the number of minus signs is the number
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of positive rootsα such thatwα is negative. By (5.66) this product of minus
signs is justε(w).

Consequently the left side of (5.81) is odd underW , and application of
w0 to both sides of (5.81) gives∑

w∈W

cwε(w0)e
w(λ+δ) = ε(w0)d char(V ) = w0(d char(V ))

=
∑
w∈W

cwew0w(λ+δ) =
∑
w∈W

cw−1
0 wew(λ+δ).

By Lemma 5.78 the two sides of this formula are equal term by term.
Thus we havecw−1

0 w = cwε(w0) for w in W . Takingw = 1 givescw−1
0

=
c1ε(w0) = c1ε(w

−1
0 ), and hencecw0 = c1ε(w0). Therefore

d char(V ) = c1

∑
w∈W

ε(w)ew(λ+δ).

Expanding the left side and taking Theorem 5.5b into account, we see that
the coefficient ofeλ+δ on the left side is 1. Thus another application of
Lemma 5.78 givesc1 = 1.

Corollary 5.83 (Kostant Multiplicity Formula). LetV be an irreducible
finite-dimensional representation of the complex semisimple Lie algebrag

with highest weightλ. If µ is in h∗, then the multiplicity ofµ as a weight
of V is ∑

w∈W

ε(w)P(w(λ + δ) − (µ + δ)).

REMARK. By convention in this formula,P(ν) = 0 if ν is not in Q+.

PROOF. Lemma 5.72 and Theorem 5.75 combine to give

char(V ) = d−1(d char(V ))

= (K e−δ)(d char(V ))

=
( ∑

γ∈Q+
P(γ )e−δ−γ

)( ∑
w∈W

ε(w)ew(λ+δ)
)
.

Hence the required multiplicity is∑
γ∈Q+, w∈W

−δ−γ+w(λ+δ)=µ

P(γ )ε(w) =
∑
w∈W

ε(w)P(w(λ + δ) − µ − δ).
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Theorem 5.84(Weyl Dimension Formula). LetV be an irreducible
finite-dimensional representation of the complex semisimple Lie algebrag

with highest weightλ. Then

dim V =
∏

α∈�+ 〈λ + δ, α〉∏
α∈�+ 〈δ, α〉 .

PROOF. For H ∈ h∗, we introduce the ring homomorphism called
“evaluation atH ,” which is writtenεH : Z[h∗] → C and is given by

f =
∑

f (λ)eλ �→
∑

f (λ)eλ(H).

Then dimV = ε0(char(V )). The idea is thus to applyε0 to the Weyl
Character Formula as given in Theorem 5.75 or Theorem 5.77. But a
direct application will give 0/0 for the value ofε0(char(V )), and we have
to proceed more carefully. In effect, we shall use a version of l’Hˆopital’s
Rule.

For f ∈ Z[h∗] andϕ ∈ h∗, we define

∂ϕ f (H) = d

dr
f (H + r Hϕ)|r=0.

Then

(5.85) ∂ϕeλ(H) = d

dr
eλ(H+r Hϕ)|r=0 = 〈λ, ϕ〉eλ(H).

Consider any derivative∂ϕ1 · · · ∂ϕn of order less than the number of positive
roots, and apply it to the Weyl denominator (5.71), evaluating atH . We
are then considering

∂ϕ1 · · · ∂ϕn

(
e−δ(H)

∏
α∈�+

(eα(H) − 1)
)
.

Each∂ϕj operates by the product rule and differentiates one factor, leaving
the others alone. Thus each term in the derivative has an undifferentiated
eα(H) − 1 and will give 0 when evaluated atH = 0.

We apply
∏

α∈�+ ∂α to both sides of the identity given by the Weyl
Character Formula

d char(V ) =
∑
w∈W

ε(w)ew(λ+δ).
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Then we evaluate atH = 0. The result on the left side comes from the
Leibniz rule and involves many terms, but all of them give 0 (according to
the previous paragraph) except the one that comes from applying all the
derivatives tod and evaluating the other factor atH = 0. Thus we obtain(( ∏

α∈�+
∂α

)
d(H)

)
(0) dim V =

(( ∏
α∈�+

∂α

) ∑
w∈W

ε(w)ew(λ+δ)(H)
)
(0).

By Corollary 5.76 we can rewrite this formula as

(5.86)
(( ∏

α∈�+
∂α

) ∑
w∈W

ε(w)e(wδ)(H)
)
(0) dim V

=
(( ∏

α∈�+
∂α

) ∑
w∈W

ε(w)ew(λ+δ)(H)
)
(0).

We calculate( ∏
α∈�+

∂α

)( ∑
w∈W

ε(w)ew(λ+δ)(H)
)

=
∑
w∈W

ε(w)
∏

α∈�+
〈w(λ + δ), α〉ew(λ+δ)(H) by (5.85)

=
∑
w∈W

ε(w−1)
∏

α∈�+
〈λ + δ, w−1α〉ew(λ+δ)(H)

=
∑
w∈W

∏
α∈�+

〈λ + δ, α〉ew(λ+δ)(H) by (5.66)

=
( ∏

α∈�+
〈λ + δ, α〉

) ∑
w∈W

ew(λ+δ)(H).(5.87)

Whenλ = 0, (5.87) has a nonzero limit asH tends to 0 by Proposition
2.69. Therefore we can evaluate dimV from (5.86) by taking the quotient
with H in place and then lettingH tend to 0. By (5.87) the result is the
formula of the theorem.

The Weyl Dimension Formula provides a convenient tool for deciding
irreducibility. Letϕ be a finite-dimensional representation ofg, and sup-
pose thatλ is the highest weight ofϕ. Theorem 5.29 shows thatϕ is
completely reducible, and one of the irreducible summands must haveλ as
highest weight. Call this summandϕλ. Theorem 5.84 allows us to compute
dimϕλ. Then it follows thatϕ is irreducible if and only if dimϕ matches
the value of dimϕλ given by Theorem 5.84.
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EXAMPLE. With g = sl(n, C), let ϕ be the representation on the space
consisting of all holomorphic polynomials inz1, . . . , zn homogeneous of
degreeN . We shall prove that this representation is irreducible. From the
first example in §2, we know that this representation has highest weight

−Nen. Its dimension is

(
N + n − 1

N

)
, the number of ways of labeling

n − 1 of N + n − 1 objects as dividers and the others as monomials
zj . To check thatϕ is irreducible, it is enough to see from the Weyl
Dimension Formula that the irreducible representationϕ−Nen with highest

weightλ = −Nen has dimension

(
N + n − 1

N

)
. Easy calculation gives

δ = 1
2(n − 1)e1 + 1

2(n − 3)e2 + · · · + 1
2(1 − n)en.

A quotient
〈λ + δ, α〉

〈δ, α〉 will be 1 unless〈λ, α〉 �= 0. Therefore

dimϕ−Nen =
n−1∏
j=1

〈−Nen + δ, ej − en〉
〈δ, ej − en〉 =

n−1∏
j=1

N +n− j

n − j
=

(
N +n−1

N

)
,

as required.

7. Parabolic Subalgebras

Letg be a complex semisimple Lie algebra, and leth, � = �(g, h), and
B be as in §2. ABorel subalgebraof g is a subalgebrab = h ⊕ n, where
n = ⊕

α∈�+ gα for some positive system�+ within �. Any subalgebraq
of g containing a Borel subalgebra is called aparabolic subalgebraof g.
Our goal in this section is to classify parabolic subalgebras and to relate
them to finite-dimensional representations ofg.

We regardh andn as fixed in our discussion, and we study only para-
bolic subalgebrasq that containb = h ⊕ n. Let � be the simple system
determining�+ andn, and definen− as in (5.8). Sinceq ⊇ h and since
the root spaces are 1-dimensional,q is necessarily of the form

(5.88) q = h ⊕
⊕
α∈�

gα,

where� is a subset of�(g, h) containing�+(g, h). The extreme cases are
q = b (with � = �+(g, h)) andq = g (with � = �(g, h)).
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To obtain further examples of parabolic subalgebras, we fix a subset�′

of the set� of simple roots and let

(5.89) � = �+(g, h) ∪ {α ∈ �(g, h) | α ∈ span(�′)}.
Then (5.88) is a parabolic subalgebra containing the given Borel subalgebra
b. (Closure under brackets follows from the fact that ifα andβ are in� and
if α+β is a root, thenα+β is in�; this fact is an immediate consequence of
Proposition 2.49.) All examples are of this form, according to Proposition
5.90 below. With� as in (5.88), define−� to be the set of negatives of the
members of�.

Proposition 5.90. The parabolic subalgebrasq containing b are
parametrized by the set of subsets of simple roots; the one corresponding
to a subset�′ is of the form (5.88) with� as in (5.89).

PROOF. If q is given, we define�(q) to be the� in (5.88), and we define
�′(q) to be the set of simple roots in the linear span of�(q)∩−�(q). Then
q �→ �′(q) is a map from parabolic subalgebrasq containingb to subsets
of simple roots. In the reverse direction, if�′ is given, we define�(�′)
to be the� in (5.89), and thenq(�′) is defined by means of (5.88). We
have seen thatq(�′) is a subalgebra, and thus�′ �→ q(�′) is a map from
subsets of simple roots to parabolic subalgebras containingb.

To complete the proof we have to show that these two maps are inverse
to one another. To see that�′(q(�′)) = �′, we observe that

{α ∈ �(g, h) | α ∈ span(�′)}
is closed under negatives. Therefore (5.89) gives

�(�′) ∩ −�(�′) = (�+(g, h) ∪ {α ∈ �(g, h) | α ∈ span(�′)})
∩ (−�+(g, h) ∪ {α ∈ �(g, h) | α ∈ span(�′)})

= (�+(g, h) ∩ −�+(g, h))

∪ {α ∈ �(g, h) | α ∈ span(�′)}
= {α ∈ �(g, h) | α ∈ span(�′)}.

The simple roots in the span of the right side are the members of�′, by the
independence in Proposition 2.49, and it follows that�′(q(�′)) = �′.

To see thatq(�′(q)) = q, we are to show that�(�′(q)) = �(q). Since
�+(g, h) ⊆ �(q), the inclusion�(�′(q)) ⊆ �(q) will follow if we show
that

(5.91) {α ∈ �(g, h) | α ∈ span(�′(q))} ⊆ �(q).
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Since�(q) = �+(g, h) ∪ (�(q) ∩ −�(q)), the inclusion�(�′(q)) ⊇ �(q)

will follow if we show that

(5.92) �(q) ∩ −�(q) ⊆ �(�′(q)).

Let us first prove (5.91). The positive members of the left side of (5.91)
are elements of the right side sinceb ⊆ q. Any negative root in the left
side is a negative-integer combination of members of�′(q) by Proposition
2.49. Let−α be such a root, and expandα in terms of the simple roots
� = {αi}l

i=1 asα = ∑
i niαi . We prove by induction on the level

∑
ni that

a nonzero root vectorE−α for −α is inq. When the level is 1, this assertion
is just the definition of�′(q). When the level ofα is > 1, we can choose
positive rootsβ andγ with α = β + γ . Thenβ andγ are positive integer
combinations of members of�′(q). By inductive hypothesis,−β and−γ

are in�(q). Hence the corresponding root vectorsE−β andE−γ are inq.
By Corollary 2.35, [E−β, E−γ ] is a nonzero root vector for−α. Sinceq is
a subalgebra,−α must be in�(q). This proves (5.91).

Finally let us prove (5.92). Let−α be a negative root in�(q), and
expandα in terms of simple roots asα = ∑

i niαi . The assertion is that
eachαi for which ni > 0 is in �′(q), i.e., has−αi ∈ �(q). We prove this
assertion by induction on the level

∑
ni , the case of level 1 being trivial.

If the level ofα is > 1, thenα = β + γ with β andγ in �+(g, h). The
root vectorsE−α andEβ are inq, and hence so is their bracket, which is a
nonzero multiple ofE−γ by Corollary 2.35. SimilarlyE−α andEγ are in
q, and hence so isE−β . Thus−γ and−β are in�(q). By induction the
constituent simple roots ofβ andγ are in�′(q), and thus the same thing
is true ofα. This proves (5.92) and completes the proof of the proposition.

Now define

(5.93a) l = h ⊕
⊕

α∈�∩−�

gα and u =
⊕
α∈�,
α/∈−�

gα,

so that

(5.93b) q = l ⊕ u.

Corollary 5.94. Relative to a parabolic subalgebraq containingb,

(a) l andu are subalgebras ofq, andu is an ideal inq,
(b) u is nilpotent,
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(c) l is reductive with centerh′′ = ⋂
α∈�∩−� kerα ⊆ h and with

semisimple partlss having root-space decomposition

lss = h
′ ⊕

⊕
α∈�∩−�

gα,

whereh′ = ∑
α∈�∩−� CHα.

PROOF. By Proposition 5.90 letq be built from�′ by means of (5.89)
and (5.88). Then (a) is clear. In (b), we haveu ⊆ n, and henceu is
nilpotent.

Let us prove (c). Leth0 be the real form ofh on which all roots are
real valued. Thenh′

0 = h0 ∩ h′ andh′′
0 = h0 ∩ h′′ are real forms ofh′ and

h′′, respectively. The formB for g hasB|h0×h0 positive definite, and it is
clear thath′

0 andh′′
0 are orthogonal complements of each other. Therefore

h0 = h′
0 ⊕ h′′

0 andh = h′ ⊕ h′′. Thus withlss defined as in the statement of
(c), l = h′′ ⊕ lss . Moreover it is clear thath′′ andlss are ideals inl and that
h′′ is contained in the center. To complete the proof, it is enough to show
thatlss is semisimple.

Thus letB ′ be the Killing form oflss . Relative toB ′, h′ is orthogonal to
eachgα in l, and eachgα in l is orthogonal to allgβ in l exceptg−α. For
α ∈ � ∩ −�, choose root vectorsEα and E−α with B(Eα, E−α) = 1, so
that [Eα, E−α] = Hα. We shall show thatB ′(Eα, E−α) > 0 and thatB ′ is
positive definite onh′

0 × h′
0. Then it follows thatB ′ is nondegenerate, and

lss is semisimple by Cartan’s Criterion for Semisimplicity (Theorem 1.45).
In considering B ′(Eα, E−α), we observe from Corollary 2.37 that

adEα adE−α acts with eigenvalue≥ 0 on anygβ . On H ∈ h, it gives
α(H)Hα, which is a positive multiple ofHα if H = Hα and is 0 if H is
in kerα. Thus adEα adE−α has trace> 0 onh and trace≥ 0 on eachgβ .
ConsequentlyB ′(Eα, E−α) > 0.

If H is in h′
0, thenB ′(H, H) = ∑

α∈�∩−� α(H)2, and each term is≥ 0.
To get 0, we must haveα(H) = 0 for all α ∈ � ∩ −�. This condition
forcesH to be inh′′. Sinceh′ ∩h′′ = 0, we find thatH = 0. Consequently
B ′ is positive definite onh′

0 × h′
0, as asserted.

In the decomposition (5.93) ofq, l is called theLevi factor andu is
called thenilpotent radical . The nilpotent radical can be characterized
solely in terms ofq as the radical of the symmetric bilinear formB|q×q,
whereB is the invariant form forg. But the Levi factorl depends onh as
well asq.
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Define

(5.95a) u
− =

⊕
α∈�,
α/∈−�

g−α.

and

(5.95b) q
− = l ⊕ u

−,

(The subalgebraq− is a parabolic subalgebra containing the Borel subal-
gebrab− = h ⊕ n−.) Then we have the important identities

(5.96) l = q ∩ q
−

and

(5.97) g = u
− ⊕ l ⊕ u.

Now we shall examine parabolic subalgebras in terms of centralizers
and eigenvalues. We begin with some notation. In the background will
be our Cartan subalgebrah and the Borel subalgebrab. We suppose that
V is a finite-dimensional completely reducible representation ofh, and we
denote by�(V ) the set of weights ofh in V. Some examples are

�(g) = �(g, h) ∪ {0}
�(n) = �+(g, h)

�(q) = � ∪ {0}
�(l) = (� ∩ −�) ∪ {0}
�(u) = {α ∈ � | −α /∈ �}.

For each weightω ∈ �(V ), let mω be the multiplicity ofω. We define

(5.98) δ(V ) = 1
2

∑
ω∈�(V )

mωω,

half the sum of the weights with multiplicities counted. An example is that
δ(n) = δ, with δ defined as in §II.6 and again in (5.8). The following result
generalizes Proposition 2.69.
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Proposition 5.99. Let V be a finite-dimensional representation ofg,
and let� be a subset of�(V ). Suppose thatα is a root such thatλ ∈ �

andα + λ ∈ �(V ) together implyα + λ ∈ �. Then
〈∑

λ∈�

mλλ, α
〉

≥ 0.

Strict inequality holds when the representation is the adjoint representation
of g on V = g andα is in � and−α is not in�.

PROOF. Theorem 5.29 shows thatV is completely reducible. IfEα and
E−α denote nonzero root vectors forα and−α, V is therefore completely
reducible underh + span{Hα, Eα, E−α}. Let λ be in�, and suppose that
〈λ, α〉 < 0. Then the theory forsl(2, C) shows thatλ, λ + α, . . . , sαλ are
in �(V ), and the hypothesis forces all of these weights to be in�. In
particularsαλ is in �. Theorem 5.5e says thatmλ = msαλ. Therefore∑

λ∈�

mλλ =
∑
λ∈�,

〈λ,α〉<0

mλ(λ + sαλ) +
∑
λ∈�,

〈λ,α〉=0

mλλ +
∑

λ∈�, sαλ/∈�,
〈λ,α〉>0

mλλ.

The inner product ofα with the first two sums on the right is 0, and the
inner product ofα with the third sum is term-by-term positive. This proves
the first assertion. In the case of the adjoint representation, ifα ∈ � and
−α /∈ �, thenα occurs in the third sum and gives a positive inner product.
This proves the second assertion.

Corollary 5.100. Let q be a parabolic subalgebra containingb. If α is
in �+(g, h), then

〈δ(u), α〉 is

{ = 0 if α ∈ �(l, h)

> 0 if α ∈ �(u).

PROOF. In Proposition 5.99 letV = g and� = �(u). If α is in �(l, h),
the proposition applies toα and−α and gives〈δ(u), α〉 = 0. If α is in
�(u), then−α is not in� and the proposition gives〈δ(u), α〉 > 0.

Corollary 5.101. Let q = l ⊕ u be a parabolic subalgebra containing
b. Then the elementH = Hδ(u) of h has the property that all roots are real
valued onH and

u = sum of eigenspaces of adH for positive eigenvalues

l = Zg(H) = eigenspace of adH for eigenvalue 0

u
− = sum of eigenspaces of adH for negative eigenvalues.

PROOF. This is immediate from Corollary 5.100.
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We are ready to examine the role of parabolic subalgebras in finite-
dimensional representations. The idea is to obtain a generalization of the
Theorem of the Highest Weight (Theorem 5.5) in whichhandnget replaced
by l andu.

The Levi factorl of a parabolic subalgebraq containingb is reductive by
Corollary 5.94c, but it is usually not semisimple. In the representations that
we shall study,h will act completely reducibly, and hence the subalgebra
h′′ in that corollary will act completely reducibly. Each simultaneous
eigenspace ofh′′ will give a representation oflss , which will be completely
reducible by Theorem 5.29. We summarize these remarks as follows.

Proposition 5.102.Letq be a parabolic subalgebra containingb. In any
finite-dimensional representation ofl for whichhacts completely reducibly,
l acts completely reducibly. This happens in particular when the action of
a representation ofg is restricted tol.

Each irreducible constituent from Proposition 5.102 consists of a scalar
action byh′′ and an irreducible representation oflss , and the Theorem of the
Highest Weight (Theorem 5.5) is applicable for the latter. Reassembling
matters, we see that we can treath as a Cartan subalgebra ofl and treat
� ∩ −� as the root system�(l, h). The Theorem of the Highest Weight
may then be reinterpreted as valid forl. Even thoughl is merely reductive,
we shall work withl in this fashion without further special comment.

Let a finite-dimensional representation ofg be given on a spaceV, and
fix a parabolic subalgebraq = l ⊕ u containingb. The key tool for our
investigation will be the subspace ofu invariants given by

V u = {v ∈ V | Xv = 0 for all X ∈ u}.
This subspace carries a representation ofl sinceH ∈ l, v ∈ V u, andX ∈ u

imply
X (Hv) = H(Xv) + [ X, H ]v = 0 + 0 = 0

by Corollary 5.94a. By Corollary 5.31c the representation ofl on V u is
determined up to equivalence by the representation ofh on the space of
l ∩ n invariants. But

(5.103) (V u)l∩n = V u⊕(l∩n) = V n,

and the right side is given by the Theorem of the Highest Weight forg.
This fact allows us to treat the representation ofl onV u as a generalization
of the highest weight of the representation ofg on V .
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Theorem 5.104.Let g be a complex semisimple Lie algebra, leth be
a Cartan subalgebra, let�+(g, h) be a positive system for the set of roots,
and definen by (5.8). Letq = l ⊕ u be a parabolic subalgebra containing
the Borel subalgebrab = h ⊕ n.

(a) If an irreducible finite-dimensional representation ofg is given on
V, then the corresponding representation ofl on V u is irreducible. The
highest weight of this representation ofl matches the highest weight ofV
and is therefore algebraically integral and dominant for�+(g, h).

(b) If irreducible finite-dimensional representations ofg are given onV1

andV2 such that the associated irreducible representations ofl on V u

1 and
V u

2 are equivalent, thenV1 andV2 are equivalent.
(c) If an irreducible finite-dimensional representation ofl on M is given

whose highest weight is algebraically integral and dominant for�+(g, h),
then there exists an irreducible finite-dimensional representation ofg on a
spaceV such thatV u ∼= M as representations ofl.

PROOF.
(a) By (5.103),(V u)l∩n = V n. Parts (b) and (c) of Theorem 5.5 forg

say thatV n is 1-dimensional. Hence the space ofl ∩ n invariants forV u

is 1-dimensional. SinceV u is completely reducible underl by Proposition
5.102, Theorem 5.5c forl shows thatV u is irreducible underl. If λ is the
highest weight ofV underg, thenλ is the highest weight ofV u underl
sinceVλ = V n ⊆ V u. Thenλ is algebraically integral and dominant for
�+(g, h) by Theorem 5.5 forg.

(b) If V u

1 andV u

2 are equivalent underl, then(V u

1 )l∩n and(V u

2 )l∩n are
equivalent underh. By (5.103),V n

1 andV n

2 are equivalent underh. By
uniqueness in Theorem 5.5,V1 andV2 are equivalent underg.

(c) LetM have highest weightλ, which is assumed algebraically integral
and dominant for�+(g, h). By Theorem 5.5 we can form an irreducible
finite-dimensional representation ofg on a spaceV with highest weightλ.
ThenV u has highest weightλ by (a), andV u ∼= M as representations ofl

by uniqueness in Theorem 5.5 forl.

Proposition 5.105. Let g be a complex semisimple Lie algebra, and
let q = l ⊕ u be a parabolic subalgebra containingb. If V is any finite-
dimensionalU (g) module, then

(a) V = V u ⊕ u−V ,
(b) the natural mapV u → V/(u−V ) is an isomorphism ofU (l)

modules,
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(c) theU (l) moduleV u determines theU (g) moduleV up to equiv-
alence; the number of irreducible constituents ofV u equals the
number of irreducible constituents ofV, and the multiplicity of an
irreducibleU (l) module inV u equals the multiplicity inV of the
irreducibleU (g) module with that same highest weight.

PROOF. We have seen thatV u is aU (l) module, and similarlyu−V is a
U (l) module. Conclusion (b) is immediate from (a), and conclusion (c) is
immediate from Theorems 5.29 and 5.104. Thus we are left with proving
(a).

By Theorem 5.29,V is a direct sum of irreducible representations, and
there is no loss of generality in assuming thatV is irreducible, say of highest
weightλ.

With V irreducible, we argue as in the proof of Corollary 5.31, using a
Poincaré–Birkhoff–Witt basis ofU (g) built from root vectors inu−, root
vectors inl together with members ofh, and root vectors inu. We may do so
because of (5.97). Each such root vector is an eigenvector under adHδ(u),
and the eigenvalues are negative, zero, and positive in the three cases by
Corollary 5.101. Using this eigenvalue as a substitute for “weight” in the
proof of Corollary 5.31, we see that

V = U (l)Vλ ⊕ u
−V .

But l acts irreducibly onV u by Theorem 5.104a, andVλ = V n ⊆ V u.
HenceU (l)Vλ = V u, and (a) is proved. This completes the proof of the
proposition.

8. Application to Compact Lie Groups

As was mentioned in §1, one of the lines of motivation for studying
finite-dimensional representations of complex semisimple Lie algebras is
the representation theory of compact connected Lie groups. We now return
to that theory in order to interpret the results of this chapter in that context.

Throughout this section we letG be a compact connected Lie group
with Lie algebrag0 and complexified Lie algebrag, and we letT be a
maximal torus with Lie algebrat0 and complexified Lie algebrat. The
Lie algebrag is reductive (Corollary 4.25), and we saw in §IV.4 how to
interprett as a Cartan subalgebra and how the theory of roots extended
from the semisimple case to this reductive case. Let� = �(g, t) be the
set of roots, and letW = W (�) be the Weyl group.
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Recall that a memberλof t∗ isanalytically integral if it is the differential
of a multiplicative characterξλ of T , i.e., if ξλ(expH) = eλ(H) for all
H ∈ t0. If λ is analytically integral, thenλ takes purely imaginary values
ont0 by Proposition 4.58. Every root is analytically integral by Proposition
4.58. Every analytically integral member oft∗ is algebraically integral by
Proposition 4.59.

Lemma 5.106.If � is a finite-dimensional representation of the compact
connected Lie groupG and ifλ is a weight of the differential of�, thenλ

is analytically integral.

PROOF. We observed in §1 that�|T is the direct sum of 1-dimensional
invariant subspaces with�|T acting in each by a multiplicative characterξλj .
Then the weights are the variousλj ’s. Since each weight is the differential
of a multiplicative character ofT , each weight is analytically integral.

Theorem 5.107.Let G be a simply connected compact semisimple Lie
group, letT be a maximal torus, and lett be the complexified Lie algebra of
T . Then every algebraically integral member oft∗ is analytically integral.

PROOF. Let λ ∈ t∗ be algebraically integral. Thenλ is real valued on
it0, and the real span of the roots is(it0)

∗ by semisimplicity ofg. Henceλ
is in the real span of the roots. By Proposition 2.67 we can introduce
a positive system�+(g, t) such thatλ is dominant. By the Theorem
of the Highest Weight (Theorem 5.5), there exists an irreducible finite-
dimensional representationϕ of g with highest weightλ. SinceG is simply
connected, there exists an irreducible finite-dimensional representation�

of G with differentialϕ|g0. By Lemma 5.106,λ is analytically integral.

Corollary 5.108. If G is a compact semisimple Lie group, then the order
of the fundamental group ofG equals the index of the group of analytically
integral forms forG in the group of algebraically integral forms.

PROOF. Let G̃ be a simply connected covering group ofG. By Weyl’s
Theorem (Theorem 4.69),̃G is compact. Theorem 5.107 shows that the
analytically integral forms for̃G coincide with the algebraically integral
forms. Then it follows from Proposition 4.67 that the index of the group of
analytically integral forms forG in the group of algebraically integral forms
equals the order of the kernel of the covering homomorphismG̃ → G.
SinceG̃ is simply connected, this kernel is isomorphic to the fundamental
group ofG.
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EXAMPLE. Let G = SO(2n + 1) with n ≥ 1 or G = SO(2n) with
n ≥ 2. The analytically integral forms in standard notation are all ex-
pressions

∑n
j=1 cj ej with all cj in Z. The algebraically integral forms are

all expressions
∑n

j=1 cj ej with all cj in Z or all cj in Z + 1
2. Corollary

5.108 therefore implies that the fundamental group ofG has order 2. This
conclusion sharpens Proposition 1.136.

Corollary 5.109. If G is a simply connected compact semisimple Lie
group, then the order of the centerZG of G equals the determinant of the
Cartan matrix.

PROOF. Let G ′ be the adjoint group ofG so that ZG is the kernel
of the covering mapG → G ′. The analytically integral forms forG
coincide with the algebraically integral forms by Theorem 5.107, and the
analytically integral forms forG ′ coincide with theZ combinations of roots
by Proposition 4.68. Thus the corollary follows by combining Propositions
4.64 and 4.67.

Now we give results that do not assume thatG is semisimple. Sinceg0

is reductive, we can writeg0 = Zg0 ⊕ [g0, g0] with [g0, g0] semisimple.
Putt′0 = t0 ∩ [g0, g0]. The root-space decomposition ofg is then

g = t ⊕
⊕

α∈�(g,t)

gα = Zg ⊕
(
t
′ ⊕

⊕
α∈�(g,t)

gα

)
.

By Proposition 4.24 the compactness ofG implies that there is an invari-
ant inner product on the Lie algebrag0, and we letB be its negative. (This
form was used in Chapter IV, beginning in §5.) If we were assuming that
g0 is semisimple, thenB could be taken to be the Killing form, according
to Corollary 4.26. We extendB to be complex bilinear ong × g. The
restriction ofB to it0 × it0 is an inner product, which transfers to give an
inner product on(it0)

∗. Analytically integral forms are always in(it0)
∗.

If a positive system�+(g, t) is given for the roots, then the condition of
dominance for the form depends only on the restriction of the form toit′0.

Theorem 5.110(Theorem of the Highest Weight). LetG be a compact
connected Lie group with complexified Lie algebrag, let T be a maximal
torus with complexified Lie algebrat, and let�+(g, t) be a positive system
for the roots. Apart from equivalence the irreducible finite-dimensional
representations� of G stand in one-one correspondence with the dominant
analytically integral linear functionalsλ ont, the correspondence being that
λ is the highest weight of�.
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REMARK. The highest weight has the additional properties given in
Theorem 5.5.

PROOF. Let notation be as above. If� is given, then the highest weight
λ of � is analytically integral by Lemma 5.106. To see dominance, letϕ be
the differential of�. Extendϕ complex linearly fromg0 to g, and restrict
to [g, g]. The highest weight ofϕ on [g, g] is the restriction ofλ to t′, and
this must be dominant by Theorem 5.5. Thereforeλ is dominant.

By Theorem 4.29,G is a commuting productG = (ZG)0Gss with Gss

compact semisimple. Suppose that�and�′ are irreducible representations
of G, both with highest weightλ. By Schur’s Lemma (Corollary 4.9),
�|(ZG )0 and�′|(ZG )0 are scalar, and the scalar is determined by the restriction
of λ to the Lie algebraZg0 of (ZG)0. Hence�|(ZG )0 = �′|(ZG )0. On Gss ,
the differentialsϕ andϕ′ give irreducible representations of [g, g] with the
same highest weightλ|t′ , and these are equivalent by Theorem 5.5. Then
it follows thatϕ andϕ′ are equivalent as representations ofg, and� and
�′ are equivalent as representations ofG.

Finally if an analytically integral dominantλ is given, we shall produce
a representation� of G with highest weightλ. The formλ is algebraically
integral by Proposition 4.59. We construct an irreducible representation
ϕ of g with highest weightλ: This comes in two parts, withϕ|[g,g] equal
to the representation in Theorem 5.5 corresponding toλ|t′ and withϕ|Zg

given by scalar operators equal toλ|Zg
.

LetG̃ be the universal covering group ofG. SincẽG is simply connected,
there exists an irreducible representation�̃ of G̃ with differential ϕ|g0,
hence with highest weightλ. To complete the proof, we need to show that
�̃ descends to a representation� of G.

SinceG = (ZG)0Gss , G̃ is of the formRn × G̃ss , whereG̃ss is the
universal covering group ofGss . Let Z be the discrete subgroup of the
center ZG̃ of G̃ such thatG ∼= G̃/Z . By Weyl’s Theorem (Theorem
4.69),G̃ss is compact. Thus Corollary 4.47 shows that the center ofG̃ss is
contained in every maximal torus of̃Gss . SinceZG̃ ⊆ Rn × ZG̃ss

, it follows
that ZG̃ ⊆ expt0. Now λ is analytically integral forG, and consequently
the corresponding multiplicative characterξλ on expt0 ⊆ G̃ is trivial on
Z . By Schur’s Lemma,̃� is scalar onZG̃ , and its scalar values must agree
with those ofξλ sinceλ is a weight. Thus̃� is trivial on Z , and�̃ descends
to a representation� of G, as required.

Next we take up characters. Let� be an irreducible finite-dimensional
representation of the compact connected Lie groupG with highest weightλ,
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let V be the underlying vector space, and letϕ be the differential, regarded
as a representation ofg. The Weyl Character Formula, as stated in Theorem
5.75, gives a kind of generating function for the weights of an irreducible Lie
algebra representation in the semisimple case. Hence it is applicable to the
semisimple Lie algebra [g, g], the Cartan subalgebrat′, the representation
ϕ|[g,g] , and the highest weightλ|t′ . By Schur’s Lemma,�|(ZG )0 is scalar,
necessarily with differentialϕ|Zg

= λ|Zg
. Thus we can extend the Weyl

Character Formula as stated in Theorem 5.75 to be meaningful for our
reductiveg by extending all weights fromt′ to t with λ|Zg

as their values
on Zg. The formula looks the same:

(5.111)
(

eδ
∏

α∈�+
(1 − e−α)

)
char(V ) =

∑
w∈W

ε(w)ew(λ+δ).

We can apply the evaluation homomorphismεH to both sides for anyH ∈ t,
but we want to end up with an expression for char(V ) as a function on the
maximal torusT . This is a question of analytic integrality. The expressions
char(V ) and

∏
(1−e−α) give well defined functions onT since each weight

and root is analytically integral. Buteδ need not give a well defined function
onT sinceδ need not be analytically integral. (It is not analytically integral
for SO(3), for example.) Matters are resolved by the following lemma.

Lemma 5.112. For eachw ∈ W , δ − wδ is analytically integral. In
fact,δ − wδ is the sum of all positive rootsβ such thatw−1β is negative.

PROOF. We write

δ = 1
2

∑
{β | β > 0, w−1β > 0} + 1

2

∑
{β | β > 0, w−1β < 0}

and

wδ = 1
2w

∑
{α | α > 0, wα > 0} + 1

2w
∑

{α | α > 0, wα < 0}
= 1

2

∑
{wα | α > 0, wα > 0} + 1

2

∑
{wα | α > 0, wα < 0}

= 1
2

∑
{β | w−1β > 0, β > 0} + 1

2

∑
{η | w−1η > 0, η < 0}

underβ = wα andη = wα

= 1
2

∑
{β | w−1β > 0, β > 0} − 1

2

∑
{β | w−1β < 0, β > 0}

underβ = −η.

Subtracting, we obtain

δ − wδ =
∑

{β | β > 0, w−1β < 0}
as required.
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Theorem 5.113(Weyl Character Formula). LetG be a compact con-
nected Lie group, letT be a maximal torus, let�+ = �+(g, t) be a positive
system for the roots, and letλ ∈ t∗ be analytically integral and dominant.
Then the characterχ�λ

of the irreducible finite-dimensional representation
�λ of G with highest weightλ is given by

χ�λ
(t) =

∑
w∈W ε(w)ξw(λ+δ)−δ(t)∏

α∈�+ (1 − ξ−α(t))

at everyt ∈ T where noξα takes the value 1 ont . If G is simply connected,
then this formula can be rewritten as

χ�λ
(t) =

∑
w∈W ε(w)ξw(λ+δ)(t)

ξδ(t)
∏

α∈�+ (1 − ξ−α(t))
=

∑
w∈W ε(w)ξw(λ+δ)(t)∑

w∈W ε(w)ξwδ(t)
.

REMARK. Theorem 4.36 says that every member ofG is conjugate to
a member ofT . Since characters are constant on conjugacy classes, the
above formulas determine the characters everywhere onG.

PROOF. Theorem 5.110 shows that�λ exists whenλ is analytically
integral and dominant. We apply Theorem 5.75 in the form of (5.111).
When we divide (5.111) byeδ, Lemma 5.112 says that all the exponentials
yield well defined functions onT . The first formula follows. IfG is simply
connected, thenG is semisimple as a consequence of Proposition 1.122.
The linear functionalδ is algebraically integral by Proposition 2.69, hence
analytically integral by Theorem 5.107. Thus we can regroup the formula
as indicated. The version of the formula with an alternating sum in the
denominator uses Theorem 5.77 in place of Theorem 5.75.

Finally we discuss how parabolic subalgebras play a role in the repre-
sentation theory of compact Lie groups. WithG andT given, fix a positive
system�+(g, t) for the roots, definen as in (5.8), and letq = l ⊕ u be a
parabolic subalgebra ofg containingb = h ⊕ n. Corollary 5.101 shows
that l = Zg(Hδ(u)), and we can equally well writel = Zg(i Hδ(u)). Since
i Hδ(u) is in t0 ⊆ g0, l is the complexification of the subalgebra

l0 = Zg0(i Hδ(u))

of g0. Define
L = ZG(i Hδ(u)).

This is a compact subgroup ofG containingT . Since the closure of
expiRHδ(u) is a torus inG, L is the centralizer of a torus inG and is
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connected by Corollary 4.51. Thus we have an inclusion of compact
connected Lie groupsT ⊆ L ⊆ G, and T is a maximal torus in both
L andG. Hence analytic integrality is the same forL as forG. Combining
Theorems 5.104 and 5.110, we obtain the following result.

Theorem 5.114.Let G be a compact connected Lie group with maximal
torusT , let g0 andt0 be the Lie algebras, and letg andt be the complexi-
fications. Let�+(g, t) be a positive system for the roots, and definen by
(5.8). Letq = l ⊕ u be a parabolic subalgebra containingb = h ⊕ n, let
l0 = l ∩ g0, and letL be the analytic subgroup ofG with Lie algebral0.

(a) The subgroupL is compact connected, andT is a maximal torus in
it.

(b) If an irreducible finite-dimensional representation ofG is given on
V, then the corresponding representation ofL on V u is irreducible. The
highest weight of this representation ofL matches the highest weight ofV
and is therefore analytically integral and dominant for�+(g, h).

(c) If irreducible finite-dimensional representations ofG are given on
V1 andV2 such that the associated irreducible representations ofL on V u

1

andV u

2 are equivalent, thenV1 andV2 are equivalent.
(d) If an irreducible finite-dimensional representation ofL onM is given

whose highest weight is analytically integral and dominant for�+(g, h),
then there exists an irreducible finite-dimensional representation ofG on
a spaceV such thatV u ∼= M as representations ofL.

9. Problems

1. Letg be a complex semisimple Lie algebra, and letϕ be a finite-dimensional
representation ofg on the spaceV . The contragredientϕc is defined in (4.4).
(a) Show that the weights ofϕc are the negatives of the weights ofϕ.
(b) Let w0 be the element of the Weyl group produced in Problem 18 of

Chapter II such thatw0�
+ = −�+. If ϕ is irreducible with highest

weightλ, prove thatϕc is irreducible with highest weight−w0λ.

2. As in Problems 9–14 of Chapter IV, letVN be the space of polynomials in
x1, . . . , xn homogeneous of degreeN , and letHN be the subspace of harmonic
polynomials. The compact groupG = SO(n) acts onVN , and hence so does
the complexified Lie algebraso(n, C). The subspaceHN is an invariant
subspace. In the parts of this problem, it is appropriate to handle separately
the cases ofn odd andn even.
(a) The weights ofVN are identified in §1. Check thatNe1 is the highest

weight, and conclude thatNe1 is the highest weight ofHN .
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(b) Calculate the dimension of the irreducible representation ofso(n, C) with
highest weightNe1, compare with the result of Problem 14 of Chapter IV,
and conclude thatso(n, C) acts irreducibly onHN .

3. As in Problems 15–17 of Chapter IV, letVN be the space of polynomials in
z1, . . . , zn, z̄1, . . . , z̄n homogeneous of degreeN , and letVp,q be the subspace
of polynomials withp z-type factors andq z̄-type factors. The compact group
G = SU (n) acts onVN , and hence so does the complexified Lie algebra
sl(n, C). The subspaceHp,q of harmonic polynomials inVp,q is an invariant
subspace.
(a) The weights ofVp,q are identified in §1. Check thatqe1 − pen is the

highest weight, and conclude thatqe1 − pen is the highest weight of
Hp,q .

(b) Calculate the dimension of the irreducible representation ofsl(n, C) with
highest weightqe1 − pen, compare with the result of Problem 17 of
Chapter IV, and conclude thatsl(n, C) acts irreducibly onHp,q .

4. Forg = sl(3, C), show that the spaceHW of Weyl-group invariants contains
a nonzero element homogeneous of degree 3.

5. Give an interpretation of the Weyl Denominator Formula forsl(n, C) in terms
of the evaluation of Vandermonde determinants.

6. Prove that the Kostant partition functionP satisfies the recursion formula

P(λ) = −
∑
w∈W,
w �=1

ε(w)P(λ − (δ − wδ))

for λ �= 0 in Q+. HereP(ν) is understood to be 0 ifν is not in Q+.

Problems 7–10 address irreducibility of certain representations in spaces of alter-
nating tensors.

7. Show that the representation ofsl(n, C) on
∧lCn is irreducible by show-

ing that the dimension of the irreducible representation with highest weight∑l
k=1 ek is

(
n
l

)
.

8. Show that the representation ofso(2n + 1, C) on
∧lC2n+1 is irreducible for

l ≤ n by showing that the dimension of the irreducible representation with

highest weight
∑l

k=1 ek is

(
2n + 1

l

)
.

9. Show that the representation ofso(2n, C) on
∧lC2n is irreducible forl < n

by showing that the dimension of the irreducible representation with highest

weight
∑l

k=1 ek is

(
2n
l

)
.
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10. Show that the representation ofso(2n, C) on
∧nC2n is reducible, being

the sum of two irreducible representations with respective highest weights( ∑n−1
k=1 ek

) ± en.

Problems 11–13 concern Verma modules.

11. Prove for arbitraryλ andµ in h∗ that every nonzeroU (g) linear map ofV (µ)

into V (λ) is one-one.

12. Prove for arbitraryλ and µ in h∗ that if V (µ) is isomorphic to aU (g)

submodule ofV (λ), then µ is in λ − Q+ and is in the orbit ofλ under
the Weyl group.

13. Letλ be inh∗, and letM be an irreducible quotient of aU (g) submodule of
V (λ). Prove thatM is isomorphic to theU (g) moduleL(µ) of Proposition
5.15 for someµ in λ − Q+ such thatµ is in the orbit ofλ under the Weyl
group.

Problems 14–15 concern tensor products of irreducible representations. Letg be
a complex semisimple Lie algebra, and let notation be as in §2.

14. Letϕλ andϕλ′ be irreducible representations ofg with highest weightsλ and
λ′, respectively. Prove that the weights ofϕλ ⊗ϕλ′ are all sumsµ+µ′, where
µ is a weight ofϕλ andµ′ is a weight ofϕλ′ . How is the multiplicity ofµ+µ′

related to multiplicities inϕλ andϕλ′?

15. Letvλ andvλ′ be highest weight vectors inϕλ andϕλ′ , respectively. Prove that
vλ ⊗ vλ′ is a highest weight vector inϕλ ⊗ ϕλ′ . Conclude thatϕλ+λ′ occurs
exactly once inϕλ ⊗ ϕλ′ . (This occurrence is sometimes called theCartan
compositionof ϕλ andϕλ′ .)

Problems 16–18 begin a construction of “spin representations.” Letu1, . . . , un

be the standard orthonormal basis ofRn. TheClifford algebra Cliff (Rn) is an
associative algebra overR of dimension 2n with a basis parametrized by subsets
of {1, . . . , n} and given by

{ui1ui2 · · · uik | i1 < i2 < · · · < ik}.
The generators multiply by the rules

u2
i = −1, ui uj = −uj ui if i �= j.

16. Verify that the Clifford algebra is associative.

17. The Clifford algebra, like any associative algebra, becomes a Lie algebra
under the bracket operation [x, y] = xy − yx . Put

q =
∑
i �= j

Rui uj .
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Verify thatq is a Lie subalgebra of Cliff(Rn) isomorphic toso(n), the isomor-
phism beingϕ : so(n) → q with

ϕ(Eji − Ei j ) = 1
2ui uj .

18. Withϕ as in Problem 17, verify that

[ϕ(x), uj ] = xuj for all x ∈ so(n).

Here the left side is a bracket in Cliff(Rn), and the right side is the product
of the matrixx by the column vectoruj , the product being reinterpreted as a
member of Cliff(Rn).

Problems 19–27 continue the construction of spin representations. We form the
complexification CliffC(Rn) and denote left multiplication byc, puttingc(x)y =
xy. Thenc is a representation of the associative algebra CliffC((Rn) on itself,
hence also of the Lie algebra CliffC(Rn) on itself, hence also of the Lie subalgebra
qC ∼= so(n, C) on CliffC(Rn). Let n = 2m + 1 or n = 2m, according asn is odd
or even. For 1≤ j ≤ m, let

zj = u2 j−1 + iu2 j and z̄ j = u2 j−1 − iu2 j .

For each subsetS of {1, . . . , m}, define

zS =
( ∏

j∈S

zj

)( m∏
j=1

z̄ j

)
,

with each product arranged so that the indices are in increasing order. Ifn is odd,
define also

z′
S =

( ∏
j∈S

zj

)( m∏
j=1

z̄ j

)
u2m+1.

19. Check that
z2

j = z̄2
j = 0 and z̄ j z j z̄ j = −4zj ,

and deduce that

c(zj )zS =
{ ±zS∪{ j} if j /∈ S

0 if j ∈ S

c(z̄ j )zS =
{

0 if j /∈ S

±4zS−{ j} if j ∈ S.

20. Whenn is odd, check thatc(zj )z′
S andc(z̄ j )z′

S are given by formulas similar
to those in Problem 19, and compute alsoc(u2m+1)zS andc(u2m+1)z′

S, up to
sign.
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21. Forn even let

S =
∑

S⊆{1,...,m}
CzS,

of dimension 2m . Forn odd let

S =
∑

S⊆{1,...,m}
CzS +

∑
T ⊆{1,...,m}

Cz′
T ,

of dimension 2m+1. Prove thatc(Cliff C(Rn)) carriesS to itself, hence that
c(qC) carriesS to itself.

22. Forn even, writeS = S+ ⊕ S−, whereS+ refers to setsS with an even
number of elements and whereS− corresponds to setsS with an odd number
of elements. Prove thatS+ andS− are invariant subspaces underc(qC), of
dimension 2m−1. (The representationsS+ andS− are thespin representations
of so(2m, C).)

23. Forn odd, writeS = S+ ⊕ S−, whereS+ corresponds to setsS with an
even number of elements and setsT with an odd number of elements and
whereS− corresponds to setsS with an odd number of elements and sets
T with an even number of elements. Prove thatS+ andS− are invariant
subspaces underc(qC), of dimension 2m , and that they are equivalent under
right multiplication byu2m+1. (Thespin representationof so(2m + 1, C) is
either of the equivalent representationsS+ andS−.)

24. Let t0 be the maximal abelian subspace ofso(n) in §IV.5. In terms of the
isomorphismϕ in Problem 17, check that the corresponding maximal abelian
subspace ofq is ϕ(t0) = ∑

Ru2 j u2 j−1. In the notation of §II.1, check also
that 1

2iu2 j u2 j−1 is ϕ of the element oft on whichej is 1 andei is 0 for i �= j .

25. In the notation of the previous problem, prove that

c(ϕ(h))zS = 1

2

( ∑
j /∈S

ej −
∑
j∈S

ej

)
(h)zS

for h ∈ t. Prove also that a similar formula holds for the action onz′
S whenn

is odd.

26. Suppose thatn is even.
(a) Conclude from Problem 25 that the weights ofS+ are all expressions

1
2(±e1±· · ·±em) with an even number of minus signs, while the weights
of S− are all expressions12(±e1±· · ·±em) with an odd number of minus
signs.

(b) Compute the dimensions of the irreducible representations with highest
weights1

2(e1+· · ·+em−1+em) and1
2(e1+· · ·+em−1−em), and conclude

thatso(2m, C) acts irreducibly onS+ andS−.
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27. Suppose thatn is odd.
(a) Conclude from Problem 25 that the weights ofS+ are all expressions

1
2(±e1 ± · · · ± em) and that the weights ofS− are the same.

(b) Compute the dimension of the irreducible representation with highest
weight 1

2(e1+· · ·+em), and conclude thatso(2m +1, C) acts irreducibly
onS+ andS−.

Problems 28–33 concern fundamental representations. Letα1, . . . , αl be the
simple roots, and define�1, . . . , �l by 2〈�i , αj 〉/|αj |2 = δi j . The dominant
algebraically integral linear functionals are then all expressions

∑
i ni�i with all

ni integers≥ 0. We call�i the fundamental weight attached to the simple root
αi , and the corresponding irreducible representation is called thefundamental
representationattached to that simple root.

28. Letg = sl(n, C).

(a) Verify that the fundamental weights are
∑l

k=1 ek for 1 ≤ l ≤ n − 1.
(b) Using Problem 7, verify that the fundamental representations are the usual

alternating-tensor representations.

29. Letg = so(2n + 1, C). Let αi = ei − ei+1 for i < n, and letαi = en.

(a) Verify that the fundamental weights are�l = ∑l
k=1 ek for 1 ≤ l ≤ n −1

and�n = 1
2

∑n
k=1 ek .

(b) Using Problem 8, verify that the fundamental representations attached to
simple roots other than the last one are alternating-tensor representations.

(c) Using Problem 27, verify that the fundamental representation attached to
the last simple root is the spin representation.

30. Letg = so(2n, C). Letαi = ei −ei+1 for i < n −1, and letαn−1 = en−1−en

andαn = en−1 + en.

(a) Verify that the fundamental weights are�l = ∑l
k=1 ek for 1 ≤ l ≤ n −2,

�n−1 = 1
2

∑n
k=1 ek , and�n = 1

2

( ∑n−1
k=1 ek − en

)
.

(b) Using Problem 9, verify that the fundamental representations attached to
simple roots other than the last two are alternating-tensor representations.

(c) Using Problem 26, verify that the fundamental representations attached
to the last two simple roots are the spin representations.

31. Letλ andλ′ be dominant algebraically integral, and suppose thatλ − λ′ is
dominant and nonzero. Prove that the dimension of an irreducible represen-
tation with highest weightλ is greater than the dimension of an irreducible
representation with highest weightλ′.

32. Giveng, prove for each integerN that there are only finitely many irreducible
representations ofg, up to equivalence, of dimension≤ N .
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33. Letg be a complex simple Lie algebra of typeG2.
(a) Using Problem 42 in Chapter II, construct a 7-dimensional nonzero rep-

resentation ofg.
(b) Letα1 be the long simple root, and letα2 be the short simple root. Verify

that�1 = 2α1 + 3α2 and that�2 = α1 + 2α2.
(c) Verify that the dimensions of the fundamental representations ofg are 7

and 14. Which one has dimension 7?
(d) Using Problem 31, conclude that the representation constructed in (a) is

irreducible.

Problems 34–35 concern Borel subalgebrasb of a complex semisimple Lie
algebrag.

34. Leth be a Cartan subalgebra ofg, let� = �(g, h) be the system of roots, let
�+ be a system of positive roots, letn = ∑

α∈�+ gα be the sum of the root
spaces corresponding to�+, and letb = h ⊕ n be the corresponding Borel
subalgebra ofg. If H ∈ h hasα(H) �= 0 for all α ∈ �+ and if X is in n,
prove that the centralizerZb(H + X) is a Cartan subalgebra ofg.

35. Within the complex semisimple Lie algebrag, let (b, h, {Xα}) be a triple
consisting of a Borel subalgebrab of g, a Cartan subalgebrah of g that
lies in b, and a system of nonzero root vectors for the simple roots in the
positive system of roots definingb. Let (b′, h′, {Xα′ }) be a second such triple.
Suppose that there is a compact Lie algebrau0 that is a real form ofg and has
the property thath0 = h ∩ u0 is a maximal abelian subalgebra ofu0. Prove
that there exists an elementg ∈ Int g such that Ad(g)b = b′, Ad(g)h = h′,
and Ad(g){Xα} = {Xα′ }.





CHAPTER VI

Structure Theory of Semisimple Groups

Abstract. Every complex semisimple Lie algebra has a compact real form, as a
consequence of a particular normalization of root vectors whose construction uses the
Isomorphism Theorem of Chapter II. Ifg0 is a real semisimple Lie algebra, then the use
of a compact real form of(g0)

C leads to the construction of a “Cartan involution”θ of
g0. This involution has the property that ifg0 = k0 ⊕ p0 is the corresponding eigenspace
decomposition or “Cartan decomposition,” thenk0 ⊕ ip0 is a compact real form of(g0)

C .
Any two Cartan involutions ofg0 are conjugate by an inner automorphism. The Cartan
decomposition generalizes the decomposition of a classical matrix Lie algebra into its
skew-Hermitian and Hermitian parts.

If G is a semisimple Lie group, then a Cartan decompositiong0 = k0 ⊕ p0 of its Lie
algebra leads to a global decompositionG = K expp0, whereK is the analytic subgroup
of G with Lie algebrak0. This global decomposition generalizes the polar decomposition
of matrices. The groupK contains the center ofG and, if the center ofG is finite, is a
maximal compact subgroup ofG.

The Iwasawa decompositionG = K AN exhibits closed subgroupsA andN of G such
that A is simply connected abelian,N is simply connected nilpotent,A normalizesN , and
multiplication fromK × A × N to G is a diffeomorphism onto. This decomposition gen-
eralizes the Gram–Schmidt orthogonalization process. Any two Iwasawa decompositions
of G are conjugate. The Lie algebraa0 of A may be taken to be any maximal abelian
subspace ofp0, and the Lie algebra ofN is defined from a kind of root-space decomposition
of g0 with respect toa0. The simultaneous eigenspaces are called “restricted roots,” and
the restricted roots form an abstract root system. The Weyl group of this system coincides
with the quotient of normalizer by centralizer ofa0 in K .

A Cartan subalgebra ofg0 is a subalgebra whose complexification is a Cartan subalgebra
of (g0)

C . One Cartan subalgebra ofg0 is obtained by adjoining to the abovea0 a maximal
abelian subspace of the centralizer ofa0 in k0. This Cartan subalgebra isθ stable. Any
Cartan subalgebra ofg0 is conjugate by an inner automorphism to aθ stable one, and the
subalgebra built froma0 as above is maximally noncompact among allθ stable Cartan
subalgebras. Any two maximally noncompact Cartan subalgebras are conjugate, and so are
any two maximally compact ones. Cayley transforms allow one to pass between any twoθ

stable Cartan subalgebras, up to conjugacy.
A Vogan diagram ofg0 superimposes certain information about the real formg0 on the

Dynkin diagram of(g0)
C . The extra information involves a maximally compactθ stable

Cartan subalgebra and an allowable choice of a positive system of roots. The effect ofθ on
simple roots is labeled, and imaginary simple roots are painted if they are “noncompact,”
left unpainted if they are “compact.” Such a diagram is not unique forg0, but it determines

347
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g0 up to isomorphism. Every diagram that looks formally like a Vogan diagram arises from
someg0.

Vogan diagrams lead quickly to a classification of all simple real Lie algebras, the only
difficulty being eliminating the redundancy in the choice of positive system of roots. This
difficulty is resolved by the Borel and de Siebenthal Theorem. Using a succession of
Cayley transforms to pass from a maximally compact Cartan subalgebra to a maximally
noncompact Cartan subalgebra, one readily identifies the restricted roots for each simple
real Lie algebra.

1. Existence of a Compact Real Form

An important clue to the structure of semisimple Lie groups comes from
the examples of the classical semisimple groups in §§I.8 and I.17. In each
case the Lie algebrag0 is a real Lie algebra of matrices overR, C, or H
closed under conjugate transpose( · )∗. This fact is the key ingredient used
in Proposition 1.59 to detect semisimplicity ofg0.

Using the techniques at the end of §I.8, we can regardg0 as a Lie algebra
of matrices overR closed under transpose( · )∗. Theng0 is the direct sum
of the setk0 of its skew-symmetric members and the setp0 of its symmetric
members. The real vector spaceu0 = k0 ⊕ ip0 of complex matrices is
closed under brackets and is a Lie subalgebra of skew-Hermitian matrices.

Meanwhile we can regard the complexificationg of g0 as the Lie algebra
of complex matricesg = g0 + ig0. Puttingk = (k0)

C andp = (p0)
C, we

write g = k ⊕ p as vector spaces. The complexification ofu0 is the same
set of matrices:(u0)

C = k ⊕ p.
Sinceg0 has been assumed semisimple,g is semisimple by Corollary

1.53, andu0 is semisimple by the same corollary. The claim is thatu0 is
a compact Lie algebra in the sense of §IV.4. In fact, let us introduce the
inner product〈X, Y 〉 = Re Tr(XY ∗) onu0. The proof of Proposition 1.59
shows that

〈(adY )X, Z〉 = 〈X, (ad(Y ∗))Z〉
and hence

(6.1) (adY )∗ = ad(Y ∗).

SinceY ∗ = −Y , adY is skew Hermitian. Thus(adY )2 has eigenvalues
≤ 0, and the Killing formBu0 of u0 satisfies

Bu0(Y, Y ) = Tr((adY )2) ≤ 0.
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Sinceu0 is semisimple,Bu0 is nondegenerate (Theorem 1.45) and must be
negative definite. By Proposition 4.27,u0 is a compact Lie algebra.

In the terminology of real forms as in §I.3, the splitting of any of the
classical semisimple Lie algebrasg0 in §I.8 is equivalent with associating
to g0 the compact Lie algebrau0 that is a real form of the complexification
of g0. Once we have this splitting ofg0, the arguments in §I.17 allowed
us to obtain a polar-like decomposition of the analytic group of matrices
G with Lie algebrag0. This polar-like decomposition was a first structure
theorem for the classical groups, giving insight into the topology ofG and
underlining the importance of a certain compact subgroupK of G.

The idea for beginning an investigation of the structure of a general
semisimple Lie groupG, not necessarily classical, is to look for this same
kind of structure. We start with the Lie algebrag0 and seek a decomposition
into skew-symmetric and symmetric parts. To get this decomposition, we
look for the occurrence of a compact Lie algebrau0 as a real form of the
complexificationg of g0.

Actually not just anyu0 of this kind will do. The real formsu0 andg0

must be aligned so that the skew-symmetric partk0 and the symmetric part
p0 can be recovered ask0 = g0 ∩ u0 andp0 = g0 ∩ iu0. The condition of
proper alignment foru0 is that the conjugations ofg with respect tog0 and
to u0 must commute with each other.

The first step will be to associate to a complex semisimple Lie algebra
g a real formu0 that is compact. This construction will occupy us for the
remainder of this section. In §2 we shall address the alignment question
wheng is the complexification of a real semisimple Lie algebrag0. The
result will yield the desired Lie algebra decompositiong0 = k0⊕p0, known
as the “Cartan decomposition” of the Lie algebra. Then in §3 we shall pass
from the Cartan decomposition of the Lie algebra to a “Cartan decompo-
sition” of the Lie group that generalizes the polar-like decomposition in
Proposition 1.143.

The argument in the present section for constructing a compact real form
from a complex semisimpleg will be somewhat roundabout. We shall use
the Isomorphism Theorem (Theorem 2.108) to show that root vectors can
be selected so that the constants arising in the bracket products of root
vectors are all real. More precisely this result gives us a real form ofg

known as a “split real form.” It is not a compact Lie algebra but in a certain
sense is as noncompact as possible. Wheng is sl(2, C), the real subalgebra
sl(2, R) is a split form, and the desired real form that is compact issu(2).
In general we obtain the real form that is compact by taking suitable linear
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combinations of the root vectors that define the split real form.
For the remainder of this section, letg be a complex semisimple Lie

algebra, leth be a Cartan subalgebra, let� = �(g, h) be the set of roots
of g with respect toh, and letB be the Killing form. (The Killing form has
the property that it is invariant under all automorphisms ofg, according to
Proposition 1.119, and this property is not always shared by other forms.
To take advantage of this property, we shall insist thatB is the Killing form
in §§1–3. After that, we shall allow more general forms in place ofB.)

For each pair{α, −α} in �, we fix Eα ∈ gα and E−α ∈ g−α so that
B(Eα, E−α) = 1. Then [Eα, E−α] = Hα by Lemma 2.18a. Letα andβ be
roots. Ifα + β is in �, defineCα,β by

[Eα, Eβ ] = Cα,β Eα+β.

If α + β is not in�, putCα,β = 0.

Lemma 6.2.Cα,β = −Cβ,α.

PROOF. This follows from the skew symmetry of the bracket.

Lemma 6.3. If α, β, andγ are in� andα + β + γ = 0, then

Cα,β = Cβ,γ = Cγ,α.

PROOF. By the Jacobi identity,

[[ Eα, Eβ ], Eγ ] + [[ Eβ, Eγ ], Eα] + [[ Eγ , Eα], Eβ ] = 0.

Cα,β [E−γ , Eγ ] + Cβ,γ [E−α, Eα] + Cγ,α[E−β, Eβ ] = 0Thus

Cα,β Hγ + Cβ,γ Hα + Cγ,α Hβ = 0.and

Substituting Hγ = −Hα − Hβ and using the linear independence of
{Hα, Hβ}, we obtain the result.

Lemma 6.4. Let α, β, and α + β be in �, and letβ + nα, with
−p ≤ n ≤ q, be theα string containingβ. Then

Cα,β, C−α,−β = − 1
2q(1 + p)|α|2.

PROOF. By Corollary 2.37,

[E−α, [Eα, Eβ ]] = 1
2q(1 + p)|α|2B(Eα, E−α)Eβ.
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The left side isC−α,α+βCα,β Eβ , and B(Eα, E−α) = 1 on the right side.
Therefore

(6.5) C−α,α+βCα,β = 1
2q(1 + p)|α|2.

Since(−α) + (α + β) + (−β) = 0, Lemmas 6.3 and 6.2 give

C−α,α+β = C−β,−α = −C−α,−β,

and the result follows by substituting this formula into (6.5).

Theorem 6.6. Let g be a complex semisimple Lie algebra, leth be a
Cartan subalgebra, and let� be the set of roots. For eachα ∈ �, it is
possible to choose root vectorsXα ∈ gα such that, for allα andβ in �,

[ Xα, X−α] = Hα

[ Xα, Xβ ] = Nα,β Xα+β if α + β ∈ �

[ Xα, Xβ ] = 0 if α + β �= 0 andα + β /∈ �

with constantsNα,β that satisfy

Nα,β = −N−α,−β.

For any such choice of the system{Xα} of root vectors, the constantsNα,β

satisfy
N 2

α,β = 1
2q(1 + p)|α|2,

whereβ + nα, with −p ≤ n ≤ q, is theα string containingβ.

PROOF. The transpose of the linear mapϕ : h → h given byϕ(h) =
−h carries� to �, and thusϕ extends to an automorphism̃ϕ of g, by
the Isomorphism Theorem (Theorem 2.108). (See Example 3 at the end
of §II.10.) Sinceϕ̃(Eα) is in g−α, there exists a constantc−α such that
ϕ̃(Eα) = c−α E−α. By Proposition 1.119,

B(ϕ̃X, ϕ̃Y ) = B(X, Y ) for all X andY in g.

Applying this formula withX = Eα andY = E−α, we obtain

c−αcα = c−αcα B(E−α, Eα) = B(ϕ̃Eα, ϕ̃E−α) = B(Eα, E−α) = 1.



352 VI. Structure Theory of Semisimple Groups

Thusc−αcα = 1. Because of this relation we can chooseaα for eachα ∈ �

such that

aαa−α = +1(6.7a)

a2
α = −cα.(6.7b)

For example, fix a pair{α, −α}, and writecα = reiθ andc−α = r−1e−iθ ;
then we can takeaα = r1/2ieiθ/2 anda−α = −r−1/2ie−iθ/2.

With the choices of theaα ’s in place so that (6.7) holds, defineXα =
aα Eα. The root vectorsXα satisfy

[ Xα, X−α] = aαa−α[Eα, E−α] = Hα by (6.7a)

and

ϕ̃(Xα) = aαϕ̃(Eα) = aαc−α E−α

= a−1
−αc−α E−α by (6.7a)

= −a−α E−α by (6.7b)

= −X−α.(6.8)

Define constantsNα,β relative to the root vectorsXγ in the same way that
the constantsCα,β are defined relative to the root vectorsEγ . Then (6.8)
gives

−Nα,β X−α−β = ϕ̃(Nα,β Xα+β) = ϕ̃[ Xα, Xβ ]

= [ϕ̃Xα, ϕ̃Xβ ] = [−X−α, −X−β ] = N−α,−β X−α−β,

and we find thatNα,β = −N−α,−β . The formula forN 2
α,β follows by

substituting into Lemma 6.4, and the proof is complete.

Theorem 6.6 has an interpretation in terms of real forms of the complex
Lie algebrag. With notation as in Theorem 6.6, define

h0 = {H ∈ h | α(H) ∈ R for all α ∈ �},(6.9)

g0 = h0 ⊕
⊕
α∈�

RXα.and put

The formulaN 2
α,β = 1

2q(1+ p)|α|2 shows thatNα,β is real. Thereforeg0 is
a subalgebra ofgR. Since it is clear thatgR = g0⊕ ig0 as real vector spaces,
g0 is a real form ofg. A real form ofg that containsh0 as in (6.9) for some
Cartan subalgebrah is called asplit real form of g. We summarize the
above remarks as follows.
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Corollary 6.10. Any complex semisimple Lie algebra contains a split
real form.

EXAMPLES. It is clear from the computations in §II.1 thatsl(n, R) and
sp(n, R) are split real forms ofsl(n, C) andsp(n, C), respectively. We
shall see in §4 thatso(n + 1, n) andso(n, n) are isomorphic to split real
forms ofso(2n + 1, C) andso(2n, C), respectively.

As we indicated at the beginning of this section, we shall study real
semisimple Lie algebras by relating them to other real forms that are
compact Lie algebras. A real form of the complex semisimple Lie algebra
g that is a compact Lie algebra is called acompact real form of g.

Theorem 6.11. If g is a complex semisimple Lie algebra, theng has a
compact real formu0.

REMARKS.
1) The compact real forms of the classical complex semisimple Lie

algebras are already familiar. Forsl(n, C), so(n, C), andsp(n, C), they
aresu(n), so(n), andsp(n), respectively. In the case ofsp(n, C), this fact
uses the isomorphismsp(n) ∼= sp(n, C) ∩ u(2n) proved in §I.8.

2) We denote the compact real forms of the complex Lie algebras of types
E6, E7, E8, F4, andG2 by e6, e7, e8, f4, andg2, respectively. Corollary 6.20
will show that these compact real forms are well defined up to isomorphism.

PROOF. Let h be a Cartan subalgebra, and define root vectorsXα as in
Theorem 6.6. Let

(6.12) u0 =
∑
α∈�

R(i Hα) +
∑
α∈�

R(Xα − X−α) +
∑
α∈�

Ri(Xα + X−α).

It is clear thatgR = u0 ⊕ iu0 as real vector spaces. Let us see thatu0 is
closed under brackets. The term

∑
R(i Hα) on the right side of (6.12) is

abelian, and we have

[i Hα, (Xα − X−α)] = |α|2i(Xα + X−α)

[i Hα, i(Xα + X−α)] = −|α|2(Xα − X−α).

Therefore the term
∑

R(i Hα) bracketsu0 into u0. For the other brackets
of elements ofu0, we recall from Theorem 6.6 thatNα,β = −N−α,−β , and
we compute forβ �= ±α that

[(Xα − X−α),(Xβ − X−β)]

= Nα,β Xα+β + N−α,−β X−α−β − N−α,β X−α+β − Nα,−β Xα−β

= Nα,β(Xα+β − X−(α+β)) − N−α,β(X−α+β − X−(−α+β))
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and similarly that

[(Xα − X−α), i(Xβ + X−β)]

= Nα,βi(Xα+β + X−(α+β)) − N−α,βi(X−α+β + X−(−α+β))

and

[i(Xα + X−α), i(Xβ + X−β)]

= −Nα,β(Xα+β − X−(α+β)) − N−α,β(X−α+β − X−(−α+β)).

Finally
[(Xα − X−α), i(Xα + X−α)] = 2i Hα,

and thereforeu0 is closed under brackets. Consequentlyu0 is a real form.
To show thatu0 is a compact Lie algebra, it is enough, by Proposition

4.27, to show that the Killing form ofu0 is negative definite. The Killing
formsBu0 of u0 andB of g are related byBu0 = B|u0×u0, according to (1.20).
The first term on the right side of (6.12) is orthogonal to the other two terms
by Proposition 2.17a, andB is positive on

∑
RHα by Corollary 2.38. Hence

B is negative on
∑

Ri Hα. Next we use Proposition 2.17a to observe for
β �= ±α that

B((Xα − X−α), (Xβ − X−β)) = 0

B((Xα − X−α), i(Xβ + X−β)) = 0

B(i(Xα + X−α), i(Xβ + X−β)) = 0.

Finally we have

B((Xα − X−α), (Xα − X−α)) = −2B(Xα, X−α) = −2

B(i(Xα + X−α), i(Xα + X−α)) = −2B(Xα, X−α) = −2,

and thereforeB|u0×u0 is negative definite.

2. Cartan Decomposition on the Lie Algebra Level

To detect semisimplicity of some specific Lie algebras of matrices in
§I.8, we made critical use of the conjugate transpose mappingX �→ X ∗.
Slightly better is the mapθ(X) = −X ∗, which is actually aninvolution ,
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i.e., an automorphism of the Lie algebra with square equal to the identity.
To see thatθ respects brackets, we just write

θ [ X, Y ] = −[ X, Y ]∗ = −[Y ∗, X ∗] = [−X ∗, −Y ∗] = [θ(X), θ(Y )].

Let B be the Killing form. The involutionθ has the property that
Bθ (X, Y ) = −B(X, θY ) is symmetric and positive definite because Propo-
sition 1.119 gives

Bθ (X, Y ) = −B(X, θY ) = −B(θ X, θ2Y )

= −B(θ X, Y ) = −B(Y, θ X) = Bθ (Y, X)

and (6.1) gives

Bθ (X, X) = −B(X, θ X) = −Tr((adX)(adθ X))

= Tr((adX)(adX ∗)) = Tr((adX)(adX)∗) ≥ 0.

An involution θ of a real semisimple Lie algebrag0 such that the sym-
metric bilinear form

(6.13) Bθ (X, Y ) = −B(X, θY )

is positive definite is called aCartan involution . We shall see that any
real semisimple Lie algebra has a Cartan involution and that the Cartan
involution is unique up to inner automorphism. As a consequence of the
proof, we shall obtain a converse to the arguments of §I.8: Every real
semisimple Lie algebra can be realized as a Lie algebra of real matrices
closed under transpose.

Theorem 6.11 says that any complex semisimple Lie algebrag has a
compact real form. According to the next proposition, it follows thatgR

has a Cartan involution.

Proposition 6.14.Let g be a complex semisimple Lie algebra, letu0 be
a compact real form ofg, and letτ be the conjugation ofg with respect to
u0. If g is regarded as a real Lie algebragR, thenτ is a Cartan involution
of gR.

REMARK. The real Lie algebragR is semisimple by (1.61).
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PROOF. It is clear thatτ is an involution. The Killing formsBg of g and
BgR of gR are related by

BgR(Z1, Z2) = 2ReBg(Z1, Z2),

according to (1.60). WriteZ ∈ g asZ = X + iY with X andY in u0. Then

Bg(Z , τ Z) = Bg(X + iY, X − iY )

= Bg(X, X) + Bg(Y, Y )

= Bu0(X, X) + Bu0(Y, Y ),

and the right side is< 0 unlessZ = 0. In the notation of (6.13), it follows
that

(BgR)τ (Z1, Z2) = −BgR(Z1, τ Z2) = −2ReBg(Z1, τ Z2)

is positive definite ongR, and thereforeτ is a Cartan involution ofgR.

Now we address the problem of aligning a compact real form properly
when we start with a real semisimple Lie algebrag0 and obtaing by
complexification. Corollaries give the existence and uniqueness (up to
conjugacy) of Cartan involutions.

Lemma 6.15. Let g0 be a real finite-dimensional Lie algebra, and let
ρ be an automorphism ofg0 that is diagonable with positive eigenvalues
d1, ..., dm and corresponding eigenspaces(g0)dj . For−∞ < r < ∞, define
ρr to be the linear transformation ong0 that isdr

j on (g0)dj . Then{ρr} is a
one-parameter group in Autg0. If g0 is semisimple, thenρr lies in Intg0.

PROOF. If X is in (g0)di andY is in (g0)dj , then

ρ[ X, Y ] = [ρX, ρY ] = di dj [ X, Y ]

sinceρ is an automorphism. Hence [X, Y ] is in (g0)di dj , and we obtain

ρr [ X, Y ] = (di dj)
r [ X, Y ] = [dr

i X, dr
j Y ] = [ρr X, ρr Y ].

Consequentlyρr is an automorphism. Therefore{ρr} is a one-parameter
group in Autg0, hence in the identity component(Aut g0)0. If g0 is semi-
simple, then Propositions 1.120 and 1.121 show that(Aut g0)0 = Int g0,
and the lemma follows.
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Theorem 6.16.Letg0 be a real semisimple Lie algebra, letθ be a Cartan
involution, and letσ be any involution. Then there existsϕ ∈ Int g0 such
thatϕθϕ−1 commutes withσ .

PROOF. Sinceθ is given as a Cartan involution,Bθ is an inner product
for g0. Putω = σθ . This is an automorphism ofg0, and Proposition 1.119
shows that it leavesB invariant. Fromσ 2 = θ2 = 1, we therefore have

B(ωX, θY ) = B(X, ω−1θY ) = B(X, θωY )

Bθ (ωX, Y ) = Bθ (X, ωY ).and hence

Thusω is symmetric, and its squareρ = ω2 is positive definite. Write
ρr for the positive-definiter th power ofρ, −∞ < r < ∞. Lemma 6.15
shows thatρr is a one-parameter group in Intg0. Consideration ofω as a
diagonal matrix shows thatρr commutes withω. Now

ρθ = ω2θ = σθσθθ = σθσ = θθσθσ = θω−2 = θρ−1.

In terms of a basis ofg0 that diagonalizesρ, the matrix form of this equation
is

ρi iθi j = θi jρ
−1
j j for all i and j.

Considering separately the casesθi j = 0 andθi j �= 0, we see that

ρr
iiθi j = θi jρ

−r
j j

and therefore that

(6.17) ρrθ = θρ−r .

Putϕ = ρ1/4. Then two applications of (6.17) give

(ϕθϕ−1)σ = ρ1/4θρ−1/4σ = ρ1/2θσ

= ρ1/2ω−1 = ρ−1/2ρω−1

= ρ−1/2ω = ωρ−1/2

= σθρ−1/2 = σρ1/4θρ−1/4 = σ(ϕθϕ−1),

as required.
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Corollary 6.18. If g0 is a real semisimple Lie algebra, theng0 has a
Cartan involution.

PROOF. Let g be the complexification ofg0, and choose by Theorem
6.11 a compact real formu0 of g. Let σ andτ be the conjugations ofg
with respect tog0 andu0. If we regardg as a real Lie algebragR, thenσ

andτ are involutions ofgR, and Proposition 6.14 shows thatτ is a Cartan
involution. By Theorem 6.16 we can findϕ ∈ Int(gR) = Int g such that
ϕτϕ−1 commutes withσ .

Here ϕτϕ−1 is the conjugation ofg with respect toϕ(u0), which is
another compact real form ofg. Thus

(BgR)ϕτϕ−1(Z1, Z2) = −2ReBg(Z1, ϕτϕ−1Z2)

is positive definite ongR.
The Lie algebrag0 is characterized as the fixed set ofσ . If σ X = X ,

then
σ(ϕτϕ−1X) = ϕτϕ−1σ X = ϕτϕ−1X.

Henceϕτϕ−1 restricts to an involutionθ of g0. We have

Bθ (X, Y ) = −Bg0(X, θY ) = −Bg(X, ϕτϕ−1Y ) = 1
2(BgR)ϕτϕ−1(X, Y ).

ThusBθ is positive definite ong0, andθ is a Cartan involution.

Corollary 6.19. If g0 is a real semisimple Lie algebra, then any two
Cartan involutions ofg0 are conjugate via Intg0.

PROOF. Let θ and θ ′ be two Cartan involutions. Takingσ = θ ′ in
Theorem 6.16, we can findϕ ∈ Int g0 such thatϕθϕ−1 commutes withθ ′.
Hereϕθϕ−1 is another Cartan involution ofg0. So we may as well assume
thatθ andθ ′ commute from the outset. We shall prove thatθ = θ ′.

Sinceθ andθ ′ commute, they have compatible eigenspace decomposi-
tions into+1 and−1 eigenspaces. By symmetry it is enough to show that
no nonzeroX ∈ g0 is in the+1 eigenspace forθ and the−1 eigenspace for
θ ′. Assuming the contrary, suppose thatθ X = X andθ ′ X = −X . Then
we have

0 < Bθ (X, X) = −B(X, θ X) = −B(X, X)

0 < Bθ ′(X, X) = −B(X, θ ′ X) = +B(X, X),

contradiction. We conclude thatθ = θ ′, and the proof is complete.
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Corollary 6.20. If g is a complex semisimple Lie algebra, then any two
compact real forms ofg are conjugate via Intg.

PROOF. Each compact real form has an associated conjugation ofg

that determines it, and this conjugation is a Cartan involution ofgR, by
Proposition 6.14. Applying Corollary 6.19 togR, we see that the two
conjugations are conjugate by a member of Int(gR). Since Int(gR) = Int g,
the corollary follows.

Corollary 6.21. If A = (Ai j)
l
i, j=1 is an abstract Cartan matrix, then

there exists, up to isomorphism, one and only one compact semisimple Lie
algebrag0 whose complexificationg has a root system withA as Cartan
matrix.

PROOF. Existence ofg is given in Theorem 2.111, and uniqueness ofg

is given in Example 1 of §II.10. The passage fromg to g0 is accomplished
by Theorem 6.11 and Corollary 6.20.

Corollary 6.22. If g is a complex semisimple Lie algebra, then the only
Cartan involutions ofgR are the conjugations with respect to the compact
real forms ofg.

PROOF. Theorem 6.11 and Proposition 6.14 produce a Cartan involution
of gR that is conjugation with respect to some compact real form ofg. Any
other Cartan involution is conjugate to this one, according to Corollary
6.19, and hence is also the conjugation with respect to a compact real form
of g.

A Cartan involutionθ of g0 yields an eigenspace decomposition

(6.23) g0 = k0 ⊕ p0

of g0 into +1 and−1 eigenspaces, and these must bracket according to the
rules

(6.24) [k0, k0] ⊆ k0, [k0, p0] ⊆ p0, [p0, p0] ⊆ k0

sinceθ is an involution. From (6.23) and (6.24) it follows that

(6.25) k0 andp0 are orthogonal underBg0 and underBθ

In fact, if X is in k0 andY is in p0, then adX adY carriesk0 to p0 andp0 to
k0. Thus it has trace 0, andBg0(X, Y ) = 0; sinceθY = −Y , Bθ (X, Y ) = 0
also.
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SinceBθ is positive definite, the eigenspacesk0 andp0 in (6.23) have the
property that

(6.26) Bg0 is

{
negative definite onk0

positive definite onp0.

A decomposition (6.23) ofg0 that satisfies (6.24) and (6.26) is called a
Cartan decompositionof g0.

Conversely a Cartan decomposition determines a Cartan involutionθ by
the formula

θ =
{ +1 onk0

−1 onp0.

Here (6.24) shows thatθ respects brackets, and (6.25) and (6.26) show that
Bθ is positive definite. (Bθ is symmetric by Proposition 1.119 sinceθ has
order 2.)

If g0 = k0 ⊕ p0 is a Cartan decomposition ofg0, then k0 ⊕ ip0 is a
compact real form ofg = (g0)

C. Conversely ifh0 andq0 are the+1 and
−1 eigenspaces of an involutionσ , thenσ is a Cartan involution only if
the real formh0 ⊕ iq0 of g = (g0)

C is compact.
If g is a complex semisimple Lie algebra, then it follows from Corollary

6.22 that the most general Cartan decomposition ofgR is gR = u0 ⊕ iu0,
whereu0 is a compact real form ofg.

Corollaries 6.18 and 6.19 have shown for an arbitrary real semisimple Lie
algebrag0 that Cartan decompositions exist and are unique up to conjugacy
by Intg0. Let us see as a consequence that every real semisimple Lie algebra
can be realized as a Lie algebra of real matrices closed under transpose.

Lemma 6.27. If g0 is a real semisimple Lie algebra andθ is a Cartan
involution, then

(adX)∗ = −adθ X for all X ∈ g0,

where adjoint( · )∗ is defined relative to the inner productBθ .

PROOF. We have

Bθ ((adθ X)Y, Z) = −B([θ X, Y ], θ Z)

= B(Y, [θ X, θ Z ]) = B(Y, θ [ X, Z ])

= −Bθ (Y, (adX)Z) = −Bθ ((adX)∗Y, Z).

Proposition 6.28. If g0 is a real semisimple Lie algebra, theng0 is
isomorphic to a Lie algebra of real matrices that is closed under transpose.
If a Cartan involutionθ of g0 has been specified, then the isomorphism may
be chosen so thatθ is carried to negative transpose.
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PROOF. Letθ be a Cartan involution ofg0 (existence by Corollary 6.18),
and define the inner productBθ ong0 as in (6.13). Sinceg0 is semisimple,
g0

∼= adg0. The matrices of adg0 in an orthonormal basis relative toBθ

will be the required Lie algebra of matrices. We have only to show that
adg0 is closed under adjoint. But this follows from Lemma 6.27 and the
fact thatg0 is closed underθ .

Corollary 6.29. If g0 is a real semisimple Lie algebra andθ is a Cartan
involution, then anyθ stable subalgebras0 of g0 is reductive.

PROOF. Proposition 6.28 allows us to regardg0 as a real Lie algebra of
real matrices closed under transpose, andθ becomes negative transpose.
Thens0 is a Lie subalgebra of matrices closed under transpose, and the
result follows from Proposition 1.59.

3. Cartan Decomposition on the Lie Group Level

In this section we turn to a consideration of groups. LetG be a semisim-
ple Lie group, and letg0 be its Lie algebra. The results of §2 established
that g0 has a Cartan involution and that any two Cartan involutions are
conjugate by an inner automorphism. The theorem in this section lifts the
corresponding Cartan decompositiong0 = k0 ⊕ p0 given in (6.23) to a
decomposition ofG.

In the course of the proof, we shall consider Ad(G) first, proving the
theorem in this special case. Then we shall use the result for Ad(G) to
obtain the theorem forG. The following proposition clarifies one detail
about this process.

Proposition 6.30. If G is a semisimple Lie group andZ is its center,
thenG/Z has trivial center.

REMARK. The centerZ is discrete, being a closed subgroup ofG whose
Lie algebra is 0.

PROOF. Let g0 be the Lie algebra ofG. For x ∈ G, Ad(x) is the
differential of conjugation byx and is 1 if and only ifx is in Z . ThusG/Z ∼=
Ad(G). If g ∈ Ad(G) is central, we havegAd(x) = Ad(x)g for all x ∈ G.
Differentiation givesg(adX) = (adX)g for X ∈ g0, and application of
both sides of this equation toY ∈ g0 givesg([ X, Y ]) = [ X, gY ]. Replacing
Y by g−1Y , we obtain [gX, Y ] = [ X, Y ]. InterchangingX andY gives
[ X, gY ] = [ X, Y ] and henceg([ X, Y ]) = [ X, Y ]. Since [g0, g0] = g0 by
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Corollary 1.55, the linear transformationg is 1 on all ofg0, i.e., g = 1.
Thus Ad(G) has trivial center.

Theorem 6.31. Let G be a semisimple Lie group, letθ be a Cartan
involution of its Lie algebrag0, let g0 = k0 ⊕ p0 be the corresponding
Cartan decomposition, and letK be the analytic subgroup ofG with Lie
algebrak0. Then

(a) there exists a Lie group automorphism� of G with differentialθ ,
and� has�2 = 1,

(b) the subgroup ofG fixed by� is K ,
(c) the mappingK × p0 → G given by(k, X) �→ k expX is a diffeo-

morphism onto,
(d) K is closed,
(e) K contains the centerZ of G,
(f) K is compact if and only ifZ is finite,
(g) whenZ is finite, K is a maximal compact subgroup ofG.

REMARKS.
1) This theorem generalizes and extends Proposition 1.143, where (c)

reduces to the polar decomposition of matrices. Proposition 1.143 therefore
points to a host of examples of the theorem.

2) The automorphism� of the theorem will be called theglobal Cartan
involution , and (c) is theglobal Cartan decomposition. Many authors
follow the convention of writingθ for �, using the same symbol for the
involution ofG as for the involution ofg0, but we shall use distinct symbols
for the two kinds of involution.

PROOF. Let G = Ad(G). We shall prove the theorem forG and then
deduce as a consequence the theorem forG. For the case ofG, we begin
by constructing� as in (a), calling it�. Then we defineK

#
to be the

subgroup fixed by�, and we prove (c) withK replaced byK
#
. The rest

of the proof of the theorem forG is then fairly easy.
For G, the Lie algebra is adg0, and the Cartan involution̄θ is +1 on

adg0(k0) and−1 on adg0(p0). Let us write members of adg0 with bars over
them. Define the inner productBθ ong0 by (6.13), and let adjoint( · )∗ be
defined for linear maps ofg0 into itself by means ofBθ . Lemma 6.27 says
that

(6.32) (adW )∗ = −adθW for all W ∈ g0,
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and therefore

(6.33) θ̄W = −W
∗

for all W ∈ adg0.

If g is in Autg0, we shall prove thatg∗ is in Autg0. SinceBθ is definite,
we are to prove that

(6.34) Bθ ([g
∗ X, g∗Y ], Z)

?= Bθ (g
∗[ X, Y ], Z)

for all X, Y, Z ∈ g0. Using (6.32) three times, we have

Bθ ([g
∗ X, g∗Y ], Z) = −Bθ (g

∗Y, [θg∗ X, Z ]) = −Bθ (Y, [gθg∗ X, gZ ])

= Bθ ((adgZ)gθg∗ X, Y ) = −Bθ (gθg∗ X, [θgZ , Y ])

= B(gθg∗ X, [gZ , θY ]) = −Bθ (g
∗ X, g−1[gZ , θY ])

= −Bθ (X, [gZ , θY ]) = Bθ (X, (adθY )gZ)

= Bθ ([ X, Y ], gZ) = Bθ (g
∗[ X, Y ], Z),

and (6.34) is established.
We apply this fact wheng = x̄ is in Ad(G) = G. Thenx̄∗ x̄ is a positive

definite element in Autg0. By Lemma 6.15 the positive definiter th power,
which we write as(x̄∗ x̄)r , is in Intg0 = Ad(G) = G for every realr .
Hence

(6.35) (x̄∗ x̄)r = expr X

for someX ∈ adg0. Differentiating with respect tor and puttingr = 0,
we see thatX

∗ = X . By (6.32),X is in adg0(p0).
Specializing to the caser = 1, we see thatG is closed under adjoint.

Hence we may define�(x̄) = (x̄∗)−1, and� is an automorphism ofG
with �

2 = 1. The differential of� is Y �→ −Y
∗
, and (6.33) shows that

this is θ̄ . This proves (a) forG.
The fixed group for� is a closed subgroup ofG that we define to beK

#
.

The members̄k of K
#

have(k̄∗)−1 = k̄ and hence are in the orthogonal
group ong0. SinceG = Int g0 and since Propositions 1.120 and 1.121 show
that Intg0 = (Aut g0)0, K

#
is closed inGL(g0). SinceK

#
is contained

in the orthogonal group,K
#

is compact. The Lie algebra ofK
#

is the
subalgebra of allT ∈ adg0 whereθ̄ (T ) = T , and this is just adg0(k0).

Consider the smooth mappingϕḠ : K
# × adg0(p0) → G given by

ϕḠ(k̄, S) = k̄ expS. Let us prove thatϕḠ maps ontoG. Given x̄ ∈ G,
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defineX ∈ adg0(p0) by (6.35), and putp̄ = exp1
2 X . The elementp̄ is

in Ad(G), and p̄∗ = p̄. Put k̄ = x̄ p̄−1, so thatx̄ = k̄ p̄. Then k̄∗k̄ =
( p̄−1)∗ x̄∗ x̄ p̄−1 = (exp− 1

2 X)(expX)(exp− 1
2 X) = 1, and hencēk∗ = k̄−1.

Consequently�(k̄) = (k̄∗)−1 = k̄, and we conclude thatϕḠ is onto.
Let us see thatϕḠ is one-one. Ifx̄ = k̄ expX̄ , thenx̄∗ = (expX

∗
)k̄∗ =

(expX)k̄∗ = (expX)k̄−1. Hencex̄∗ x̄ = exp 2X . The two sides of this
equation are equal positive-definite linear transformations. Their positive-
definiter th powers must be equal for all realr , necessarily to exp 2r X .
Differentiating(x̄∗ x̄)r = exp 2r X with respect tor and puttingr = 0, we
see that̄x determinesX . Hencex̄ determines alsōk, andϕḠ is one-one.

To complete the proof of (c) (but withK replaced byK
#
), we are to show

that the inverse map is smooth. It is enough to prove that the corresponding
inverse map in the case of alln-by-n real nonsingular matrices is smooth,
wheren = dimg0. In fact, the given inverse map is a restriction of the
inverse map for all matrices, and we recall from §I.10 that ifM is an analytic
subgroup of a Lie groupM ′, then a smooth map intoM ′ with image inM
is smooth intoM .

Thus we are to prove smoothness of the inverse for the case of matrices.
The forward map isO(n) × p(n, R) → GL(n, R) with (k, X) �→ keX ,
wherep(n, R) denotes the vector space ofn-by-n real symmetric matrices.
It is enough to prove local invertibility of this mapping near(1, X0). Thus
we examine the differential atk = 1 andX = X0 of (k, X) �→ keX e−X0,
identifying tangent spaces as follows: Atk = 1, we use the linear Lie
algebra ofO(n), which is the spaceso(n) of skew-symmetric real matrices.
NearX = X0, write X = X0 + S, and use{S} = p(n, R) as tangent space.
In GL(n, R), we use the linear Lie algebra, which consists of all real
matrices.

To compute the differential, we consider restrictions of the forward map
with each coordinate fixed in turn. The differential of(k, X0) �→ k is
(T, 0) �→ T for T ∈ so(n). The map(1, X) �→ eX e−X0 has derivative at
t = 0 along the curveX = X0 + t S equal to

d

dt
eX0+t Se−X0|t=0.

Thus we ask whether it is possible to have

0
?= T + d

dt
eX0+t Se−X0|t=0

(6.36a)
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= T + d

dt

(
1 + (X0 + t S) + 1

2!(X0 + t S)2 + · · · )e−X0|t=0

= T + (
S + 1

2!(SX0 + X0S) + · · · + 1
(n+1)!

n∑
k=0

Xk
0SXn−k

0 + · · · )e−X0.

We left-bracket byX0, noting that

[
X0,

n∑
k=0

Xk
0SXn−k

0

] = Xn+1
0 S − SXn+1

0 .

Then we have

0
?= [ X0, T ] + (

(X0S − SX0) + 1
2!(X2

0S − SX2
0)

(6.36b)

+ · · · + 1
(n+1)! (Xn+1

0 S − SXn+1
0 ) + · · · )e−X0

= [ X0, T ] + (eX0 S − SeX0)e−X0

= [ X0, T ] + (eX0 Se−X0 − S).

Since [p(n, R), so(n)] ⊆ p(n, R), we conclude thateX0 Se−X0 − S is sym-
metric. Letv be an eigenvector, and letλ be the eigenvalue forv. Let
〈 · , · 〉 denote ordinary dot product onRn. SinceeX0 andS are symmetric,
eX0 S − SeX0 is skew symmetric, and we have

0 = 〈(eX0 S − SeX0)e−X0v, e−X0v〉
= 〈(eX0 Se−X0 − S)v, e−X0v〉
= λ〈v, e−X0v〉.

But e−X0 is positive definite, and henceλ = 0. Thus

(6.37) eX0 Se−X0 = S.

This equation forces

(6.38) X0S = SX0.

In fact, there is no loss of generality is assuming thatX0 is diagonal with
diagonal entriesdi . Then (6.37) impliesedi Si j = Si j edj . Considering the
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two casesSi j = 0 andSi j �= 0 separately, we deduce thatdi Si j = Si j dj ,
and (6.38) is the result. Because of (6.37), (6.36a) collapses to

0
?= T + S,

and we conclude thatT = S = 0. Thus the differential is everywhere
an isomorphism, and the proof of local invertibility of the forward map is
complete. This completes the proof of (c) forG, but with K replaced by
K

#
.
The homeomorphismK

# × adg0(p0)
∼→ G of (c) forcesK

#
to be con-

nected. ThusK
#

is the analytic subgroup ofG with Lie algebra adg0(k0),
which we denoteK . This proves (c) forK and also (b).

To complete the proof for the adjoint groupG, we need to verify (d)
through (g) withK in place ofK . SinceK is compact, (d) is immediate.
Proposition 6.30 shows thatG has trivial center, and then (e) and (f) follow.

For (g) suppose on the contrary thatK � K 1 with K 1 compact. Let̄x
be in K 1 but notK , and writex̄ = k̄ expX as in (c). Then expX is in K 1

and is not 1. The powers of expX have unbounded eigenvalues, and this
fact contradicts the compactness ofK 1. Thus (g) follows, and the proof of
the theorem is complete forG.

Now we shall prove the theorem forG. Write e : G → G for the
covering homomorphism Adg0( · ). Let K be the analytic subgroup ofG
with Lie algebra adk0, and letK = e−1(K ). The subgroupK is closed in
G sinceK is closed inG.

From the covering homomorphisme, we obtain a smooth mappingψ of
G/K into G/K by definingψ(gK ) = e(g)K . The definition ofK makes
ψ one-one, ande onto makesψ onto. Let us see thatψ−1 is continuous. Let
lim ḡn = ḡ in G, and choosegn andg in G with e(gn) = ḡn ande(g) = ḡ.
Thene(g−1gn) = ḡ−1ḡn tends to 1. Fix an open neighborhoodN of 1 in G
that is evenly covered bye. Then we can writeg−1gn = vnzn with vn ∈ N
andzn ∈ Z , and we have limvn = 1. SinceZ ⊆ K by definition of K ,
gn K = gvn K tends togK . Thereforeψ−1 is continuous.

HenceG/K is homeomorphic withG/K . Conclusion (c) forG shows
that G/K is simply connected. HenceG/K is simply connected, and it
follows that K is connected. ThusK is the analytic subgroup ofG with
Lie algebrak0. This proves (d) and (e) forG. SinceZ ⊆ K , the map
e|K : K → K has kernelZ , and henceK is compact if and only ifZ is
finite. This proves (f) forG.
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Now let us prove (c) forG. DefineϕG : K × p0 → G by ϕG(k, X) =
k expG X . From (1.82) we have

eϕG(k, X) = e(k)e(expG X) = e(k) expḠ(adg0(X)) = ϕḠ(e(k), adg0(X)),

and therefore the diagram

K × p0
ϕG−−−→ G

e|K ×adg0

� �e

K × adg0(p0)
ϕḠ−−−→ G

commutes. The maps on the sides are covering maps sinceK is connected,
andϕḠ is a diffeomorphism by (c) forG. If we show thatϕG is one-one
onto, then it follows thatϕG is a diffeomorphism, and (c) is proved forG.

First let us check thatϕG is one-one. Supposek expG X = k ′ expG X ′.
Applying e, we havee(k) expḠ(adg0(X)) = e(k ′) expḠ(adg0(X ′)). Then
X = X ′ from (c) for G, and consequentlyk = k ′.

Second let us check thatϕG is onto. Letx ∈ G be given. Write
e(x) = k̄ expḠ(adg0(X)) by (c) for G, and letk be any member ofe−1(k̄).
Thene(x) = e(k expG X), and we see thatx = zk expG X for somez ∈ Z .
Since Z ⊆ K , x = (zk) expG X is the required decomposition. This
completes the proof of (c) forG.

The next step is to construct�. Let G̃ be a simply connected covering
group ofG, let K̃ be the analytic subgroup of̃G with Lie algebrak0, let Z̃
be the center of̃G, and let̃e : G̃ → G be the covering homomorphism.
Since G̃ is simply connected, there exists a unique involution�̃ of G̃
with differential θ . Sinceθ is 1 on k0, �̃ is 1 on K̃ . By (e) for G̃,
Z̃ ⊆ K̃ . Therefore ker̃e ⊆ K̃ , and�̃ descends to an involution� of G
with differentialθ . This proves (a) forG.

Suppose thatx is a member ofG with �(x) = x . Using (c), we can
write x = k expG X and see that

k(expG X)−1 = k expG θ X = k�(expG X) = �(x) = x = k expG X.

Then expG 2X = 1, and it follows from (c) thatX = 0. Thusx is in K ,
and (b) is proved forG.

Finally we are to prove (g) forG. Suppose thatK is compact and that
K ⊆ K1 with K1 compact. Applyinge, we obtain a compact subgroup
e(K1) of G that containsK . By (g) for G, e(K1) = e(K ). Therefore
K1 ⊆ Z K = K , and we must haveK1 = K . This completes the proof of
the theorem.
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The Cartan decomposition on the Lie algebra level led in Proposition
6.28 to the conclusion that any real semisimple Lie algebra can be realized
as a Lie algebra of real matrices closed under transpose. There is no
corresponding proposition about realizing a semisimple Lie group as a
group of real matrices. It is true that a semisimple Lie group of matrices
is necessarily closed, and we shall prove this fact in Chapter VII. But the
following example shows that a semisimple Lie group need not be realizable
as a group of matrices.

EXAMPLE. By Proposition 1.143 the groupSL(2, R) has the same
fundamental group asSO(2), namelyZ, while SL(2, C) has the same
fundamental group asSU (2), namely{1}. ThenSL(2, R) has a two-fold
covering groupG that is unique up to isomorphism. Let us see thatG
is not isomorphic to a group ofn-by-n real matrices. If it were, then its
linear Lie algebrag0 would have the matrix Lie algebrag = g0 + ig0 as
complexification. LetGC be the analytic subgroup ofGL(n, C) with Lie
algebrag. The diagram

(6.39)

G −−−→ GC� �
SL(2, R) −−−→ SL(2, C)

has inclusions at the top and bottom, a two-fold covering map on the
left, and a homomorphism on the right that exists sinceSL(2, C) is simply
connected and has Lie algebra isomorphic tog. The corresponding diagram
of Lie algebras commutes, and hence so does the diagram (6.39) of Lie
groups. However, the top map of (6.39) is one-one, while the composition
of left, bottom, and right maps is not one-one. We have a contradiction,
and we conclude thatG is not isomorphic to a group of real matrices.

4. Iwasawa Decomposition

The Iwasawa decomposition is a second global decomposition of a
semisimple Lie group. Unlike with the Cartan decomposition, the factors
in the Iwasawa decomposition are closed subgroups. The prototype is the
Gram–Schmidt orthogonalization process in linear algebra.
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EXAMPLE. Let G = SL(m, C). The groupK from Proposition 1.143
or the global Cartan decomposition (Theorem 6.31) isSU (m). Let A be
the subgroup ofG of diagonal matrices with positive diagonal entries,
and let N be the upper-triangular group with 1 in each diagonal entry.
The Iwasawa decomposition isG = K AN in the sense that multiplication
K × A× N → G is a diffeomorphism onto. To see that this decomposition
of SL(m, C) amounts to the Gram–Schmidt orthogonalization process, let
{e1, . . . , em} be the standard basis ofCm, let g ∈ G be given, and form the
basis{ge1, . . . , gem}. The Gram–Schmidt process yields an orthonormal
basisv1, . . . , vm such that

span{ge1, . . . , gej} = span{v1, . . . , vj}
vj ∈ R+(gej) + span{v1, . . . , vj−1}

for 1 ≤ j ≤ m. Define a matrixk ∈ U (m) by k−1vj = ej . Thenk−1g is
upper triangular with positive diagonal entries. Sinceg has determinant 1
andk has determinant of modulus 1,k must have determinant 1. Then
k is in K = SU (m), k−1g is in AN , andg = k(k−1g) exhibits g as in
K (AN ). This proves thatK × A × N → G is onto. It is one-one since
K ∩ AN = {1}, and the inverse is smooth because of the explicit formulas
for the Gram–Schmidt process.

The decomposition in the example extends to all semisimple Lie groups.
To prove such a theorem, we first obtain a Lie algebra decomposition, and
then we lift the result to the Lie group.

Throughout this section,G will denote a semisimple Lie group. Chang-
ing notation from earlier sections of this chapter, we writeg for the Lie
algebra ofG. (We shall have relatively little use for the complexification
of the Lie algebra in this section and writeg in place ofg0 to make the
notation less cumbersome.) Letθ be a Cartan involution ofg (Corollary
6.18), letg = k⊕p be the corresponding Cartan decomposition (6.23), and
let K be the analytic subgroup ofG with Lie algebrak.

Insistence on using the Killing form as our nondegenerate symmetric
invariant bilinear form ong will turn out to be inconvenient later when we
want to compare the form ong with a corresponding form on a semisimple
subalgebra ofg. Thus we shall allow some flexibility in choosing a form
B. For now it will be enough to letB be any nondegenerate symmetric
invariant bilinear form ong such thatB(θ X, θY ) = B(X, Y ) for all X and
Y in g and such that the formBθ defined in terms ofB by (6.13) is positive
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definite. Then it follows thatB is negative definite on the compact real form
k ⊕ ip. ThereforeB is negative definite on a maximal abelian subspace of
k⊕ ip, and we conclude as in the remarks with Corollary 2.38 that, for any
Cartan subalgebra ofgC, B is positive definite on the real subspace where
all the roots are real valued.

The Killing form is one possible choice forB, but there are others. In
any event,Bθ is an inner product ong, and we use it to define orthogonality
and adjoints.

Let a be a maximal abelian subspace ofp. This exists becausep is
finite dimensional. Since(adX)∗ = −adθ X by Lemma 6.27, the set
{adH | H ∈ a} is a commuting family of self-adjoint transformations of
g. Theng is the orthogonal direct sum of simultaneous eigenspaces, all
the eigenvalues being real. If we fix such an eigenspace and ifλH is the
eigenvalue of adH , then the equation(adH)X = λH X shows thatλH is
linear in H . Hence the simultaneous eigenvalues are members of the dual
spacea∗. Forλ ∈ a∗, we write

gλ = {X ∈ g | (adH)X = λ(H)X for all H ∈ a}.

If gλ �= 0 andλ �= 0, we callλ arestricted root of g or aroot of (g, a). The
set of restricted roots is denoted�. Any nonzerogλ is called arestricted-
root space, and each member ofgλ is called arestricted-root vector for
the restricted rootλ.

Proposition 6.40. The restricted roots and the restricted-root spaces
have the following properties:

(a) g is the orthogonal direct sumg = g0 ⊕ ⊕
λ∈� gλ,

(b) [gλ, gµ] ⊆ gλ+µ ,
(c) θgλ = g−λ, and henceλ ∈ � implies−λ ∈ �,
(d) g0 = a ⊕ m orthogonally, wherem = Zk(a).

REMARK. The decomposition in (a) is called therestricted-root space
decompositionof g.

PROOF. We saw (a) in the course of the construction of restricted-root
spaces, and (b) follows from the Jacobi identity. For (c) letX be ingλ; then
[H, θ X ] = θ [θ H, X ] = −θ [H, X ] = −λ(H)θ X .

In (d) we haveθg0 = g0 by (c). Henceg0 = (k ∩ g0) ⊕ (p ∩ g0). Since
a ⊆ p∩ g0 anda is maximal abelian inp, a = p∩ g0. Also k∩ g0 = Zk(a).
This proves (d).
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EXAMPLES.

1) Let G = SL(n, K), whereK is R, C, or H. The Lie algebra is
g = sl(n, K) in the sense of §I.8. For a Cartan decomposition we can take
k to consist of the skew-Hermitian members ofg andp to consist of the
Hermitian members. The space of real diagonal matrices of trace 0 is a
maximal abelian subspace ofp, and we use it asa. Note that dima = n−1.
The restricted-root space decomposition ofg is rather similar to Example 1
in §II.1. Let fi be evaluation of thei th diagonal entry of members ofa.
Then the restricted roots are all linear functionalsfi − f j with i �= j , and
g fi − f j consists of all matrices with all entries other than the(i, j)th equal
to 0. The dimension of each restricted-root space is 1, 2, or 4 whenK is
R, C, or H. The subalgebram of Proposition 6.40d consists of all skew-
Hermitian diagonal matrices ing. ForK = R this is 0, and forK = C it
is all purely imaginary matrices of trace 0 and has dimensionn − 1. For
K = H, m consists of all diagonal matrices whose diagonal entriesxj have
x̄ j = −xj and is isomorphic to the direct sum ofn copies ofsu(2); its
dimension is 3n.

2) Let G = SU (p, q) with p ≥ q. We can write the Lie algebra in
block form as

(6.41) g =

p q(
a b
b∗ d

)
p
q

with all entries complex, witha and d skew Hermitian, and with
Tr a + Tr d = 0. We takek to be all matrices ing with b = 0, and
we takep to be all matrices ing with a = 0 andd = 0. One way of
forming a maximal abelian subspacea of p is to allowb to have nonzero
real entries only in the lower-left entry and the entries extending diagonally
up from that one:

(6.42) b =


... · · · ...

0 · · · 0
0 · · · aq

·
·

.

a1 · · · 0

 ,

with p − q rows of 0’s at the top. Letfi be the member ofa∗ whose value
on thea matrix indicated in (6.42) isai . Then the restricted roots include
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all linear functionals± fi ± f j with i �= j and±2 fi for all i . Also the± fi

are restricted roots ifp �= q. The restricted-root spaces are described as
follows: Let i < j , and letJ (z), I+(z), andI−(z) be the 2-by-2 matrices

J (z) =
(

0 z

−z̄ 0

)
, I+(z) =

(
z 0

0 z̄

)
, I−(z) =

(
z 0

0 −z̄

)
.

Herez is any complex number. The restricted-root spaces for± fi ± f j are
2-dimensional and are nonzero only in the 16 entries corresponding to row
and column indicesp − j + 1, p − i + 1, p + i , p + j , where they are

g fi − f j =
{(

J (z) −I+(z)
−I+(z̄) −J (z̄)

)}
, g− fi + f j =

{(
J (z) I+(z)
I+(z̄) −J (z̄)

)}
,

g fi + f j =
{(

J (z) −I−(z)
−I−(z̄) J (z̄)

)}
, g− fi − f j =

{(
J (z) I−(z)
I−(z̄) J (z̄)

)}
.

The restricted-root spaces for±2 fi have dimension 1 and are nonzero only
in the 4 entries corresponding to row and column indicesp − i + 1 and
p + i , where they are

g2 fi = iR
(

1 −1
1 −1

)
and g−2 fi = iR

(
1 1

−1 −1

)
.

The restricted-root spaces for± fi have dimension 2(p−q) and are nonzero
only in the entries corresponding to row and column indices 1 top − q,
p − i + 1, andp + i , where they are

g fi =
{( 0 v −v

−v∗ 0 0
−v∗ 0 0

)}
and g− fi =

{( 0 v v

−v∗ 0 0
v∗ 0 0

)}
.

Herev is any member ofCp−q . The subalgebram of Proposition 6.40d
consists of all skew-Hermitian matrices of trace 0 that are arbitrary in
the upper left block of sizep − q, are otherwise diagonal, and have the
(p−i+1)st diagonal entry equal to the(p+i)th diagonal entry for 1≤ i ≤ q;
thusm ∼= su(p − q) ⊕ Rq . In the next section we shall see that� is an
abstract root system; this example shows that this root system need not be
reduced.

3) Let G = SO(p, q)0 with p ≥ q. We can write the Lie algebra in
block form as in (6.41) but with all entries real and witha andd skew
symmetric. As in Example 2, we takek to be all matrices ing with b = 0,
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and we takep to be all matrices ing with a = 0 andd = 0. We again
choosea as in (6.42). Letfi be the member whose value on the matrix
in (6.42) is ai . Then the restricted roots include all linear functionals
± fi ± f j with i �= j . Also the± fi are restricted roots ifp �= q. The
restricted-root spaces are the intersections withso(p, q) of the restricted-
root spaces in Example 2. Then the restricted-root spaces for± fi ± f j are
1-dimensional, and the restricted-root spaces for± fi have dimensionp−q.
The linear functionals±2 fi are no longer restricted roots. The subalgebra
m of Proposition 6.40d consists of all skew-symmetric matrices that are
nonzero only in the upper left block of sizep − q; thusm ∼= so(p − q).

Choose a notion of positivity fora∗ in the manner of §II.5, as for example
by using a lexicographic ordering. Let�+ be the set of positive roots, and
definen = ⊕

λ∈�+ gλ. By Proposition 6.40b,n is a Lie subalgebra ofg and
is nilpotent.

Proposition 6.43(Iwasawa decomposition of Lie algebra). With nota-
tion as above,g is a vector-space direct sumg = k⊕a⊕n. Herea is abelian,
n is nilpotent,a⊕n is a solvable Lie subalgebra ofg, and [a⊕n, a⊕n] = n.

PROOF. We know thata is abelian and thatn is nilpotent. Since [a, gλ] =
gλ for eachλ �= 0, we see that [a, n] = n and thata ⊕ n is a solvable
subalgebra with [a ⊕ n, a ⊕ n] = n.

To prove thatk + a + n is a direct sum, letX be ink ∩ (a ⊕ n). Then
θ X = X with θ X ∈ a ⊕ θn. Sincea ⊕ n ⊕ θn is a direct sum (by (a) and
(c) in Proposition 6.40),X is in a. But thenX is in k ∩ p = 0.

The sumk ⊕ a ⊕ n is all of g because we can write anyX ∈ g, using
someH ∈ a, someX0 ∈ m, and elementsXλ ∈ gλ, as

X = H + X0 +
∑
λ∈�

Xλ

= (
X0 +

∑
λ∈�+

(X−λ + θ X−λ)
) + H + ( ∑

λ∈�+
(Xλ − θ X−λ)

)
,

and the right side is ink ⊕ a ⊕ n.

To prepare to prove a group decomposition, we prove two lemmas.

Lemma 6.44. Let H be an analytic group with Lie algebrah, and
suppose thath is a vector-space direct sum of Lie subalgebrash = s ⊕ t.
If S andT denote the analytic subgroups ofH corresponding tos andt,
then the multiplication map�(s, t) = st of S × T into H is everywhere
regular.
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PROOF. The tangent space at(s0, t0) in S × T can be identified by left
translation withinS and withinT with s ⊕ t = h, and the tangent space at
s0t0 in H can be identified by left translation withinH with h. With these
identifications we compute the differentiald� at(s0, t0). Let X be ins and
Y be int. Then

�(s0 expr X, t0) = s0 exp(r X)t0 = s0t0 exp(Ad(t−1
0 )r X)

�(s0, t0 exprY ) = s0t0 exprY,and

from which it follows that

d�(X) = Ad(t−1
0 )X

d�(Y ) = Y.and

In matrix form,d� is therefore block triangular, and hence

detd� = det Adh(t
−1
0 )

det Adt(t
−1
0 )

= det Adt(t0)

det Adh(t0)
.

This is nonzero, and hence� is regular.

Lemma 6.45. There exists a basis{Xi} of g such that the matrices
representing adg have the following properties:

(a) the matrices of adk are skew symmetric,
(b) the matrices of ada are diagonal with real entries,
(c) the matrices of adn are upper triangular with 0’s on the diagonal.

PROOF. Let {Xi} be an orthonormal basis ofg compatible with the
orthogonal decomposition ofg in Proposition 6.40a and having the property
that Xi ∈ gλi and X j ∈ gλj with i < j impliesλi ≥ λj . For X ∈ k, we
have(adX)∗ = −adθ X = −adX from Lemma 6.27, and this proves (a).
Since eachXi is a restricted-root vector or is ing0, the matrices of ada
are diagonal, necessarily with real entries. This proves (b). Conclusion (c)
follows from Proposition 6.40b.

Theorem 6.46(Iwasawa decomposition). LetG be a semisimple Lie
group, letg = k⊕a⊕n be an Iwasawa decomposition of the Lie algebrag of
G, and letA andN be the analytic subgroups ofG with Lie algebrasa and
n. Then the multiplication mapK × A×N → G given by(k, a, n) �→ kan
is a diffeomorphism onto. The groupsA andN are simply connected.
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PROOF. Let G = Ad(G), regarded as the closed subgroup(Aut g)0 of
GL(g) (Propositions 1.120 and 1.121). We shall prove the theorem forG
and then lift the result toG.

We impose the inner productBθ on g and write matrices for elements
of G and adg relative to the basis in Lemma 6.45. LetK = Adg(K ),
A = Adg(A), and N = Adg(N ). Lemma 6.45 shows that the matrices
of K are rotation matrices, those forA are diagonal with positive entries
on the diagonal, and those forN are upper triangular with 1’s on the
diagonal. We know thatK is compact (Proposition 6.30 and Theorem
6.31f). The diagonal subgroup ofGL(g) with positive diagonal entries is
simply connected abelian, andA is an analytic subgroup of it. By Corollary
1.134,A is closed inGL(g) and hence closed inG. Similarly the upper-
triangular subgroup ofGL(g) with 1’s on the diagonal is simply connected
nilpotent, andN is an analytic subgroup of it. By Corollary 1.134,N is
closed inGL(g) and hence closed inG.

The mapA × N into GL(g) given by(ā, n̄) �→ ān̄ is one-one since
we can recover̄a from the diagonal entries, and it is onto a subgroupA N
sinceā1n̄1ā2n̄2 = ā1ā2(ā

−1
2 n̄1ā2)n̄2 and(ān̄)−1 = n̄−1ā−1 = ā−1(ān̄ā−1).

This subgroup is closed. In fact, if lim̄amn̄m = x , let ā be the diagonal
matrix with the same diagonal entries asx . Then limām = ā, andā must
be in A sinceA is closed inGL(g). Also n̄m = ā−1

m (āmn̄m) has limitā−1x ,
which has to be inN sinceN is closed inG. Thus limāmn̄m is in A N , and
A N is closed.

Clearly the closed subgroupA N has Lie algebraa ⊕ n. By Lemma
6.44,A × N → A N is a diffeomorphism.

The subgroupK is compact, and thus the image ofK × A × N →
K × A N → G is the product of a compact set and a closed set and is closed.
Also the image is open since the map is everywhere regular (Lemma 6.44)
and since the equalityg = k⊕a⊕n shows that the dimensions add properly.
Since the image ofK × A× N is open and closed and sinceG is connected,
the image is all ofG.

Thus the multiplication map is smooth, regular, and onto. Finally
K ∩ A N = {1} since a rotation matrix with positive eigenvalues is 1.
Since A × N → A N is one-one, it follows thatK × A × N → G is
one-one. This completes the proof for the adjoint groupG.

We now lift the above result toG. Let e : G → G = Ad(G) be the
covering homomorphism. Using a locally defined inverse ofe, we can
write the map(k, a, n) �→ kan locally as

(k, a, n) �→ (e(k), e(a), e(n)) �→ e(k)e(a)e(n) = e(kan) �→ kan,
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and therefore the multiplication map is smooth and everywhere regular.
Since A and N are connected,e|A ande|N are covering maps toA and
N , respectively. SinceA andN are simply connected, it follows thate is
one-one onA and onN and thatA andN are simply connected.

Let us prove that the multiplication map is ontoG. If g ∈ G is given,
write e(g) = k̄ān̄. Puta = (e|A)

−1(ā) ∈ A andn = (e|N )−1(N ) ∈ N .
Let k be ine−1(k̄). Thene(kan) = k̄ān̄, so thate(g(kan)−1) = 1. Thus
g(kan)−1 = z is in the center ofG. By Theorem 6.31e,z is in K . Therefore
g = (zk)an exhibitsg as in the image of the multiplication map.

Finally we show that the multiplication map is one-one. SinceA× N →
A N is one-one, so isA×N → AN . The set of productsAN is a group, just
as in the adjoint case, and therefore it is enough to prove thatK ∩AN = {1}.
If x is in K ∩ AN , thene(x) is in K ∩ A N = {1}. Hencee(x) = 1. Write
x = an ∈ AN . Then 1= e(x) = e(an) = e(a)e(n), and the result for the
adjoint case implies thate(a) = e(n) = 1. Sincee is one-one onA and on
N , a = n = 1. Thusx = 1. This completes the proof.

Recall from §IV.5 that a subalgebrah of g is called aCartan subalgebra
if hC is a Cartan subalgebra ofgC. Therank of g is the dimension of any
Cartan subalgebra; this is well defined since Proposition 2.15 shows that
any two Cartan subalgebras ofgC are conjugate via IntgC.

Proposition 6.47. If t is a maximal abelian subspace ofm = Zk(a),
thenh = a ⊕ t is a Cartan subalgebra ofg.

PROOF. By Proposition 2.13 it is enough to show thathC is maximal
abelian ingC and that adgC hC is simultaneously diagonable.

CertainlyhC is abelian. Let us see that it is maximal abelian. IfZ =
X + iY commutes withhC, then so doX andY . Thus there is no loss
in generality in considering onlyX . The elementX commutes withhC,
hence commutes witha, and hence is ina ⊕ m. The same thing is true of
θ X . ThenX + θ X , being ink, is in m and commutes witht, hence is in
t, while X − θ X is in a. ThusX is in a ⊕ t, and we conclude thathC is
maximal abelian.

In the basis of Lemma 6.45, the matrices representing adt are skew
symmetric and hence are diagonable overC, while the matrices represent-
ing ada are already diagonal. Since all the matrices in question form a
commuting family, the members of adhC are diagonable.

With notation as in Proposition 6.47,h = a⊕ t is a Cartan subalgebra of
g, and it is meaningful to speak of the set� = �(gC, hC) of roots ofgC with
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respect tohC. We can write the corresponding root-space decomposition
as

(6.48a) g
C = h

C ⊕
⊕
α∈�

(gC)α.

Then it is clear that

(6.48b) gλ = g ∩
⊕
α∈�,
α|a=λ

(gC)α

and

(6.48c) m
C = t

C ⊕
⊕
α∈�,
α|a=0

(gC)α.

That is, the restricted roots are the nonzero restrictions toa of the roots,
andm arises fromt and the roots that restrict to 0 ona.

Corollary 6.49. If t is a maximal abelian subspace ofm = Zk(a), then
the Cartan subalgebrah = a ⊕ t of g has the property that all of the roots
are real ona ⊕ it. If m = 0, theng is a split real form ofgC.

PROOF. In view of (6.48) the values of the roots on a memberH of h

are the eigenvalues of adH . For H ∈ a, these are real since adH is self
adjoint. ForH ∈ t, they are purely imaginary since adH is skew adjoint.
The first assertion follows.

If m = 0, thent = 0. So the roots are real onh = a. Thusg contains
the real subspace of a Cartan subalgebrahC of gC where all the roots are
real, andg is a split real form ofgC.

EXAMPLE. Corollary 6.49 shows that the Lie algebrasso(n + 1, n) and
so(n, n) are split real forms of their complexifications, since Example 3
earlier in this section showed thatm = 0 in each case. For anyp and
q, the complexification ofso(p, q) is conjugate toso(p + q, C) by a
diagonal matrix whose diagonal consists ofp entriesi and thenq entries 1.
Consequentlyso(n+1, n) is isomorphic to a split real form ofso(2n+1, C),
andso(n, n) is isomorphic to a split real form ofso(2n, C).

With � as above, we can impose a positive system on� so that�+

extends�+. Namely we just takea beforeit in forming a lexicographic
ordering of(a + it)∗. If α ∈ � is nonzero ona, then the positivity ofα
depends only on thea part, and thus positivity for� has been extended
to �.
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5. Uniqueness Properties of the Iwasawa Decomposition

We continue withG as a semisimple Lie group, withg as the Lie algebra
of G, and with other notation as in §4. In this section we shall show that an
Iwasawa decomposition ofg is unique up to conjugacy by Intg; therefore
an Iwasawa decomposition ofG is unique up to inner automorphism.

We already know from Corollary 6.19 that any two Cartan decomposi-
tions are conjugate via Intg. Hencek is unique up to conjugacy. Next we
show that withk fixed, a is unique up to conjugacy. Finally withk anda

fixed, we show that the various possibilities forn are conjugate.

Lemma 6.50. If H ∈ a hasλ(H) �= 0 for all λ ∈ �, thenZg(H) =
m ⊕ a. HenceZp(H) = a.

PROOF. Let X be in Zg(H), and use Proposition 6.40 to writeX =
H0 + X0 + ∑

λ∈� Xλ with H0 ∈ a, X0 ∈ m, and Xλ ∈ gλ. Then 0=
[H, X ] = ∑

λ(H)Xλ, and henceλ(H)Xλ = 0 for all λ. Sinceλ(H) �= 0
by assumption,Xλ = 0.

Theorem 6.51.If a anda′ are two maximal abelian subspaces ofp, then
there is a memberk of K with Ad(k)a′ = a. Consequently the spacep
satisfiesp = ⋃

k∈K Ad(k)a.

REMARKS.
1) In the case ofSL(m, C), this result amounts to the Spectral Theorem

for Hermitian matrices.
2) The proof should be compared with the proof of Theorem 4.34.

PROOF. There are only finitely many restricted roots relative toa,
and the union of their kernels therefore cannot exhausta. By Lemma
6.50 we can findH ∈ a such thatZp(H) = a. Similarly we can find
H ′ ∈ a′ such thatZp(H ′) = a′. Choose by compactness of Ad(K ) a
memberk = k0 of K that minimizesB(Ad(k)H ′, H). For anyZ ∈ k,
r �→ B(Ad(expr Z)Ad(k0)H ′, H) is then a smooth function ofr that is
minimized forr = 0. Differentiating and settingr = 0, we obtain

0 = B((adZ)Ad(k0)H ′, H) = B(Z , [Ad(k0)H ′, H ]).

Here [Ad(k0)H ′, H ] is in k, and Z is arbitrary ink. SinceB(k, p) = 0
by (6.25) and sinceB is nondegenerate, we obtain [Ad(k0)H ′, H ] = 0.
Thus Ad(k0)H ′ is in Zp(H) = a. Sincea is abelian, this means

a ⊆ Zp(Ad(k0)H ′) = Ad(k0)Zp(H ′) = Ad(k0)a
′.
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Equality must hold sincea is maximal abelian inp. Thusa = Ad(k0)a
′.

If X is any member ofp, then we can extendRX to a maximal abelian
subspacea′ of p. As above, we can writea′ = Ad(k)a, and henceX is in⋃

k∈K Ad(k)a. Thereforep = ⋃
k∈K Ad(k)a.

Now we think ofk anda as fixed and consider the various possibilities
for n. The inner productBθ ong can be restricted toa and transferred toa∗

to give an inner product and norm denoted by〈 · , · 〉 and| · |, respectively.
We write Hλ for the element ofa that corresponds toλ ∈ a∗.

Proposition 6.52. Let λ be a restricted root, and letEλ be a nonzero
restricted-root vector forλ.

(a) [Eλ, θ Eλ] = B(Eλ, θ Eλ)Hλ, andB(Eλ, θ Eλ) < 0.
(b) RHλ ⊕REλ ⊕Rθ Eλ is a Lie subalgebra ofg isomorphic tosl(2, R),

and the isomorphism can be defined so that the vectorH ′
λ = 2|λ|−2Hλ

corresponds toh =
(

1 0

0 −1

)
.

(c) If Eλ is normalized so thatB(Eλ, θ Eλ) = −2/|λ|2, then k =
expπ

2 (Eλ + θ Eλ) is a member of the normalizerNK (a), and Ad(k) acts as
the reflectionsλ ona∗.

PROOF.
(a) By Proposition 6.40 the vector [Eλ, θ Eλ] is in [gλ, g−λ] ⊆ g0 = a⊕m,

andθ [Eλ, θ Eλ] = [θ Eλ, Eλ] = −[Eλ, θ Eλ]. Thus [Eλ, θ Eλ] is in a. Then
H ∈ a gives

B([Eλ, θ Eλ], H) = B(Eλ, [θ Eλ, H ]) = λ(H)B(Eλ, θ Eλ)

= B(Hλ, H)B(Eλ, θ Eλ) = B(B(Eλ, θ Eλ)Hλ, H).

By nondegeneracy ofB on a, [Eλ, θ Eλ] = B(Eλ, θ Eλ)Hλ. Finally
B(Eλ, θ Eλ) = −Bθ (Eλ, Eλ) < 0 sinceBθ is positive definite.

(b) Put

H ′
λ = 2

|λ|2 Hλ, E ′
λ = 2

|λ|2B(Eλ, θ Eλ)
Eλ, E ′

−λ = θ Eλ.

Then (a) shows that

[H ′
λ, E ′

λ] = 2E ′
λ, [H ′

λ, E ′
−λ] = −2E ′

−λ, [E ′
λ, E ′

−λ] = H ′
λ,

and (b) follows.
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(c) Note from (a) that the normalizationB(Eλ, θ Eλ) = −2/|λ|2 is
allowable. Ifλ(H) = 0, then

Ad(k)H = Ad(expπ

2 (Eλ + θ Eλ))H

= (exp adπ

2 (Eλ + θ Eλ))H

=
∞∑

n=0

1
n! (adπ

2 (Eλ + θ Eλ))
n H

= H.

On the other hand, for the elementH ′
λ, we first calculate that

(adπ

2 (Eλ + θ Eλ))H ′
λ = π(θ Eλ − Eλ)

(adπ

2 (Eλ + θ Eλ))
2H ′

λ = −π2H ′
λ.and

Therefore

Ad(k)H ′
λ =

∞∑
n=0

1
n! (adπ

2 (Eλ + θ Eλ))
n H ′

λ

=
∞∑

m=0

1
(2m)! ((adπ

2 (Eλ + θ Eλ))
2)m H ′

λ

+
∞∑

m=0

1
(2m+1)! (adπ

2 (Eλ + θ Eλ))((adπ

2 (Eλ + θ Eλ))
2)m H ′

λ

=
∞∑

m=0

1
(2m)! (−π2)m H ′

λ +
∞∑

m=0

1
(2m+1)! (−π2)mπ(θ Eλ − Eλ)

= (cosπ)H ′
λ + (sinπ)(θ Eλ − Eλ)

= −H ′
λ,

and (c) follows.

Corollary 6.53. � is an abstract root system ina∗.

REMARKS. Examples of� appear in §4 after Proposition 6.40. The
example ofSU (p, q) for p > q shows that the abstract root system�
need not be reduced.

PROOF. We verify that� satisfies the axioms for an abstract root system.
To see that� spansa∗, let λ(H) = 0 for all λ ∈ �. Then [H, gλ] = 0 for
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all λ and hence [H, g] = 0. Butg has 0 center, and thereforeH = 0. Thus
� spansa∗.

Let us show that 2〈µ, λ〉/|λ|2 is an integer wheneverµ andλ are in�.
Consider the subalgebra of Proposition 6.52b, calling itslλ. This acts by
ad ong and hence ongC. Complexifying, we obtain a representation of
(slλ)

C ∼= sl(2, C) on gC. We know from Corollary 1.72 that the element
H ′

λ = 2|λ|−2Hλ, which corresponds toh, has to act diagonably with integer
eigenvalues. The action ofH ′

λ on gµ is by the scalarµ(2|λ|−2Hλ) =
2〈µ, λ〉/|λ|2. Hence 2〈µ, λ〉/|λ|2 is an integer.

Finally we are to show thatsλ(µ) is in � wheneverµ andλ are in�.
Definek as in Proposition 6.52c, letH be ina, and letX be ingµ. Then
we have

(6.54)
[H, Ad(k)X ] = Ad(k)[Ad(k)−1H, X ] = Ad(k)[s−1

λ (H), X ]

= µ(s−1
λ (H))Ad(k)X = (sλµ)(H)Ad(k)X,

and hencegsλµ is not 0. This completes the proof.

The possibilities for the subalgebran are given by all possible�+’s
resulting from different orderings ofa∗, and it follows from Corollary 6.53
that the�+’s correspond to all possible simple systems for�. Any two
such simple systems are conjugate by the Weyl groupW (�) of �, and it
follows from Proposition 6.52c that the conjugation can be achieved by
a member ofNK (a). The same computation as in (6.54) shows that if
k ∈ NK (a) represents the members of W (�), then Ad(k)gλ = gsλ. We
summarize this discussion in the following corollary.

Corollary 6.55. Any two choices ofn are conjugate by Ad of a member
of NK (a).

This completes our discussion of the conjugacy of different Iwasawa
decompositions.

We now examineNK (a) further. Define

W (G, A) = NK (a)/Z K (a).

This is a group of linear transformations ofa, telling all possible ways that
members ofK can act ona by Ad. We have already seen thatW (�) ⊆
W (G, A), and we are going to prove thatW (�) = W (G, A).

We writeM for the groupZ K (a). Modulo the center ofG, M is a compact
group (being a closed subgroup ofK ) with Lie algebraZk(a) = m. After
Proposition 6.40 we saw examples of restricted-root space decompositions
and the associated Lie algebrasm. The following examples continue that
discussion.
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EXAMPLES.

1) LetG = SL(n, K), whereK is R, C, orH. The subgroupM consists
of all diagonal members ofK . WhenK = R, the diagonal entries are
±1, but there are onlyn − 1 independent signs since the determinant is 1.
Thus M is finite abelian and is the product ofn − 1 groups of order 2.
WhenK = C, the diagonal entries are complex numbers of modulus 1,
and again the determinant is 1. ThusM is a torus of dimensionn − 1.
WhenK = H, the diagonal entries are quaternions of absolute value 1,
and there is no restriction on the determinant. ThusM is the product ofn
copies ofSU (2).

2) Let G = SU (p, q) with p ≥ q. The groupM consists of all unitary
matrices of determinant 1 that are arbitrary in the upper left block of size
p − q, are otherwise diagonal, and have the(p − i + 1)st diagonal entry
equal to the(p + i)th diagonal entry for 1≤ i ≤ q. Let us abbreviate such
a matrix as

m = diag(ω, eiθq , . . . , eiθ1, eiθ1, . . . , eiθq ),

whereω is the upper left block of sizep − q. Whenp = q, the condition
that the determinant be 1 says that

∑q
j=1 θj ∈ πZ. Thus we can take

θ1, . . . , θq−1 to be arbitrary and useeiθq = ±e−i(θ1+···+θq−1). Consequently
M is the product of a torus of dimensionq − 1 and a 2-element group.
When p > q, M is connected. In fact, the homomorphism that maps the
above matrixm to the 2q-by-2q diagonal matrix

diag(eiθq , . . . , eiθ1, eiθ1, . . . , eiθq )

has a (connected)q-dimensional torus as image, and the kernel is isomor-
phic to the connected groupSU (p − q); thusM itself is connected.

3) Let G = SO(p, q)0 with p ≥ q. The subgroupM for this example
is the intersection ofSO(p)× SO(q) with theM of the previous example.
Thus M here consists of matrices that are orthogonal matrices of total
determinant 1, are arbitrary in the upper left block of sizep − q, are
otherwise diagonal, haveq diagonal entries±1 after the upper left block,
and then have thoseq diagonal entries±1 repeated in reverse order. For
the lower rightq entries to yield a matrix inSO(q), the product of the
q entries±1 must be 1. For the upper leftp entries to yield a matrix in
SO(p), the orthogonal matrix in the upper left block of sizep−q must have
determinant 1. ThereforeM is isomorphic to the product ofSO(p − q)

and the product ofq − 1 groups of order 2.
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Lemma 6.56.The Lie algebra ofNK (a) is m. ThereforeW (G, A) is a
finite group.

PROOF. The second conclusion follows from the first, since the first
conclusion implies thatW (G, A) is 0-dimensional and compact, hence
finite. For the first conclusion, the Lie algebra in question isNk(a). Let
X = H0 + X0 + ∑

λ∈� Xλ be a member ofNk(a), with H0 ∈ a, X0 ∈ m,
andXλ ∈ gλ. SinceX is to be ink, θ must fix X , and we see thatX may
be rewritten asX = X0 + ∑

λ∈�+(Xλ + θ Xλ). When we apply adH for
H ∈ a, we obtain [H, X ] = ∑

λ∈�+ λ(H)(Xλ − θ Xλ). This element is
supposed to be ina, since we started withX in the normalizer ofa, and
that means [H, X ] is 0. But thenXλ = 0 for all λ, andX reduces to the
memberX0 of m.

Theorem 6.57.The groupW (G, A) coincides withW (�).

REMARK. This theorem should be compared with Theorem 4.54.

PROOF. Let us observe thatW (G, A) permutes the restricted roots. In
fact, letk be in NK (a), let λ be in�, and letEλ be ingλ. Then

[H, Ad(k)Eλ] = Ad(k)[Ad(k)−1H, Eλ] = Ad(k)(λ(Ad(k)−1H)Eλ)

= λ(Ad(k)−1H)Ad(k)Eλ = (kλ)(H)Ad(k)Eλ

shows thatkλ is in � and that Ad(k)Eλ is a restricted-root vector forkλ.
ThusW (G, A) permutes the restricted roots.

We have seen thatW (�) ⊆ W (G, A). Fix a simple system�+ for
�. In view of Theorem 2.63, it suffices to show that ifk ∈ NK (a) has
Ad(k)�+ = �+, thenk is in Z K (a).

The element Ad(k) = w acts as a permutation of�+. Let 2δ denote
the sum of the reduced members of�+, so thatw fixes δ. If λi is a
simple restricted root, then Lemma 2.91 and Proposition 2.69 show that
2〈δ, λi〉/|λi |2 = 1. Therefore〈δ, λ〉 > 0 for all λ ∈ �+.

Let u = k ⊕ ip be the compact real form ofgC associated toθ , and let
U be the adjoint group ofu. Then AdgC(K ) ⊆ U , and in particular Ad(k)

is a member ofU . FormS = {expiradHδ} ⊆ U . HereS is a torus inU ,
and we lets be the Lie algebra ofS. The element Ad(k) is in ZU (S), and
the claim is that every member ofZU (S) centralizesa. If so, then Ad(k)

is 1 ona, andk is in Z K (a), as required.
By Corollary 4.51 we can verify thatZU (S) centralizesa by showing

that Zu(s) centralizesa. Here

Zu(s) = u ∩ ZgC(s) = u ∩ ZgC(Hδ).
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To evaluate the right side, we complexify the statement of Lemma 6.50.
Since〈λ, δ〉 �= 0, the centralizerZgC(Hδ) is justaC ⊕ mC. Therefore

Zu(s) = u ∩ (aC ⊕ m
C) = ia ⊕ m.

Every member of the right side centralizesa, and the proof is complete.

6. Cartan Subalgebras

Proposition 6.47 showed that every real semisimple Lie algebra has a
Cartan subalgebra. But as we shall see shortly, not all Cartan subalgebras
are conjugate. In this section and the next we investigate the conjugacy
classes of Cartan subalgebras and some of their relationships to each other.

We revert to the use of subscripted Gothic letters for real Lie algebras and
to unsubscripted letters for complexifications. Letg0 be a real semisimple
Lie algebra, letθ be a Cartan involution, and letg0 = k0 ⊕ p0 be the
corresponding Cartan decomposition. Letg be the complexification ofg0,
and writeg = k ⊕ p for the complexification of the Cartan decomposition.
Let B be any nondegenerate symmetric invariant bilinear form ong0 such
thatB(θ X, θY ) = B(X, Y ) and such thatBθ , defined by (6.13), is positive
definite.

All Cartan subalgebras ofg0 have the same dimension, since their
complexifications are Cartan subalgebras ofg and are conjugate via Intg,
according to Theorem 2.15.

Let K = Intg0(k0). This subgroup of Intg0 is compact.

EXAMPLE. Let G = SL(2, R) andg0 = sl(2, R). A Cartan subalgebra
h0 complexifies to a Cartan subalgebra ofsl(2, C) and therefore has dimen-
sion 1. Therefore let us consider which 1-dimensional subspacesRX of
sl(2, R) are Cartan subalgebras. The matrixX has trace 0, and we divide
matters into cases according to the sign of detX . If det X < 0, thenX has
real eigenvaluesµ and−µ, andX is conjugate viaSL(2, R) to a diagonal
matrix. Thus, for someg ∈ SL(2, R),

RX = {Ad(g)Rh}.

whereh =
(

1 0

0 −1

)
as usual. The subspaceRh is maximal abelian ing0 and

adh acts diagonably ong with eigenvectorsh, e, f . Since (1.82) gives

ad(Ad(g)h) = Ad(g)(adh)Ad(g)−1,
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ad(Ad(g)h) acts diagonably with eigenvectors Ad(g)h, Ad(g)e, Ad(g) f .
ThereforeRX is a Cartan subalgebra when detX < 0, and it is conjugate
via Intg0 to Rh.

If det X > 0, thenX has purely imaginary eigenvaluesµ and−µ, and
X is conjugate viaSL(2, R) to a real multiple ofihB , where

(6.58a) hB =
(

0 i
−i 0

)
.

Thus, for someg ∈ SL(2, R),

RX = {Ad(g)RihB}.

The subspaceRihB is maximal abelian ing0 and adihB acts diagonably
ong with eigenvectorshB, eB, fB , where

(6.58b) eB = 1

2

(
1 −i

−i −1

)
and fB = 1

2

(
1 i
i −1

)
.

Then ad(Ad(g)ihB) acts diagonably with eigenvectors Ad(g)hB , Ad(g)eB ,
Ad(g) fB . ThereforeRX is a Cartan subalgebra when detX > 0, and it is
conjugate via Intg0 to RihB .

If det X = 0, thenX has both eigenvalues equal to 0, andX is conjugate

via SL(2, R) to a real multiple ofe =
(

0 1

0 0

)
. Thus, for someg ∈ SL(2, R),

RX = {Ad(g)Re}.

The subspaceRe is maximal abelian ing0, but the element ade does not
act diagonably ong. It follows that ad(Ad(g)e) does not act diagonably.
ThereforeRX is not a Cartan subalgebra when detX = 0.

In the above example every Cartan subalgebra is conjugate either toRh
or toRihB , and these two areθ stable. We shall see in Proposition 6.59 that
this kind of conjugacy remains valid for all real semisimple Lie algebras
g0.

Another feature of the above example is that the two Cartan subalgebras
Rh andRihB are not conjugate. In fact,h has nonzero real eigenvalues,
andihB has nonzero purely imaginary eigenvalues, and thus the two cannot
be conjugate.
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Proposition 6.59.Any Cartan subalgebrah0 of g0 is conjugate via Intg0

to aθ stable Cartan subalgebra.

PROOF. Leth be the complexification ofh0, and letσ be the conjugation
of g with respect tog0. Let u0 be the compact real form constructed from
h and other data in Theorem 6.11, and letτ be the conjugation ofg with
respect tou0. The construction ofu0 has the property thatτ(h) = h.

The conjugationsσ and τ are involutions ofgR, and τ is a Cartan
involution by Proposition 6.14. Theorem 6.16 shows that the element
ϕ of Int gR = Int g given by ϕ = ((στ)2)1/4 has the property that the
Cartan involutioñη = ϕτϕ−1 of gR commutes withσ . Sinceσ(h) = h

andτ(h) = h, it follows thatϕ(h) = h. Thereforẽη(h) = h.
Sincẽη andσ commute, it follows that̃η(g0) = g0. Sinceh0 = h ∩ g0,

we obtaiñη(h0) = h0.
Putη = η̃|g0, so thatη(h0) = h0. Sinceη̃ is the conjugation ofg with

respect to the compact real formϕ(u0), the proof of Corollary 6.18 shows
thatη is a Cartan involution ofg0. Corollary 6.19 shows thatη andθ are
conjugate via Intg0, sayθ = ψηψ−1 with ψ ∈ Int g0. Thenψ(h0) is a
Cartan subalgebra ofg0, and

θ(ψ(h0)) = ψηψ−1ψ(h0) = ψ(ηh0) = ψ(h0),

shows that it isθ stable.

Thus it suffices to studyθ stable Cartan subalgebras. Whenh0 isθ stable,
we can writeh0 = t0⊕a0 with t0 ⊆ k0 anda0 ⊆ p0. By the same argument as
for Corollary 6.49, roots of(g, h) are real valued ona0⊕ it0. Consequently
thecompact dimensiondim t0 and thenoncompact dimensiondima0 of
h0 are unchanged whenh0 is conjugated via Intg0 to anotherθ stable Cartan
subalgebra.

We say that aθ stable Cartan subalgebrah0 = t0 ⊕ a0 is maximally
compact if its compact dimension is as large as possible,maximally
noncompact if its noncompact dimension is as large as possible. In
sl(2, R), Rh is maximally noncompact, andRihB is maximally compact.
In any casea0 is an abelian subspace ofp0, and thus Proposition 6.47
implies thath0 is maximally noncompact if and only ifa0 is a maximal
abelian subspace ofp0.

Proposition 6.60. Let t0 be a maximal abelian subspace ofk0. Then
h0 = Zg0(t0) is aθ stable Cartan subalgebra ofg0 of the formh0 = t0 ⊕ a0

with a0 ⊆ p0.
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PROOF. The subalgebrah0 is θ stable and hence is a vector-space direct
sumh0 = t0 ⊕ a0, wherea0 = h0 ∩ p0. Sinceh0 is θ stable, Proposition
6.29 shows that it is reductive. By Corollary 1.56, [h0, h0] is semisimple.

We have [h0, h0] = [a0, a0], and [a0, a0] ⊆ t0 sincea0 ⊆ p0 andh0∩k0 =
t0. Thus the semisimple Lie algebra [h0, h0] is abelian and must be 0.
Consequentlyh0 is abelian.

It is clear thath = (h0)
C is maximal abelian ing, and adh0 is certainly

diagonable ong since the members of adg0(t0) are skew adjoint, the mem-
bers of adg0(a0) are self adjoint, andt0 commutes witha0. By Proposition
2.13,h is a Cartan subalgebra ofg, and henceh0 is a Cartan subalgebra
of g0.

With any θ stable Cartan subalgebrah0 = t0 ⊕ a0, t0 is an abelian
subspace ofk0, and thus Proposition 6.60 implies thath0 is maximally
compact if and only ift0 is a maximal abelian subspace ofk0.

Proposition 6.61. Among θ stable Cartan subalgebrash0 of g0, the
maximally noncompact ones are all conjugate viaK , and the maximally
compact ones are all conjugate viaK .

PROOF. Let h0 andh′
0 be given Cartan subalgebras. In the first case,

as we observed above,h0 ∩ p0 andh′
0 ∩ p0 are maximal abelian inp0, and

Theorem 6.51 shows that there is no loss of generality in assuming that
h0 ∩p0 = h′

0 ∩p0. Thush0 = t0 ⊕a0 andh′
0 = t′0 ⊕a0, wherea0 is maximal

abelian inp0. Definem0 = Zk0(a0). Then t0 and t′0 are inm0 and are
maximal abelian there. LetM = Z K (a0). This is a compact subgroup of
K with Lie algebram0, and we letM0 be its identity component. Theorem
4.34 says thatt0 andt′0 are conjugate viaM0, and this conjugacy clearly
fixesa0. Henceh0 andh′

0 are conjugate viaK .
In the second case, as we observed above,h0∩k0 andh′

0∩k0 are maximal
abelian ink0, and Theorem 4.34 shows that there is no loss of generality in
assuming thath0 ∩ k0 = h′

0 ∩ k0. Then Proposition 6.60 shows thath0 = h′
0,

and the proof is complete.

If we examine the proof of the first part of Proposition 6.61 carefully,
we find that we can adjust it to obtain root data that determine a Cartan
subalgebra up to conjugacy. As a consequence there are only finitely many
conjugacy classes of Cartan subalgebras.

Lemma 6.62. Let h0 andh′
0 beθ stable Cartan subalgebras ofg0 such

thath0 ∩ p0 = h′
0 ∩ p0. Thenh0 andh′

0 are conjugate viaK .
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PROOF. Since thep0 parts of the two Cartan subalgebras are the same
and since Cartan subalgebras are abelian, thek0 partsh0 ∩ k0 andh′

0 ∩ k0 are
both contained iñm0 = Zk0(h0 ∩ p0). The Cartan subalgebras are maximal
abelian ing0, and thereforeh0 ∩ k0 andh′

0 ∩ k0 are both maximal abelian in
m̃0. Let M̃ = Z K (h0 ∩ p0). This is a compact Lie group with Lie algebra
m̃0, and we letM̃0 be its identity component. Theorem 4.34 says thath0∩k0

andh′
0 ∩ k0 are conjugate viãM0, and this conjugacy clearly fixesh0 ∩ p0.

Henceh0 andh′
0 are conjugate viaK .

Lemma 6.63.Let a0 be a maximal abelian subspace ofp0, and let� be
the set of restricted roots of(g0, a0). Suppose thath0 is aθ stable Cartan
subalgebra such thath0 ∩ p0 ⊆ a0. Let �′ = {λ ∈ � | λ(h0 ∩ p0) = 0}.
Thenh0 ∩ p0 is the common kernel of allλ ∈ �′.

PROOF. Let a′
0 be the common kernel of allλ ∈ �′. Thenh0 ∩ p0 ⊆ a′

0,
and we are to prove that equality holds. Sinceh0 is maximal abelian ing0,
it is enough to prove thath0 + a′

0 is abelian.
Letg0 = a0⊕m0⊕

⊕
λ∈�(g0)λ be the restricted-root space decomposition

of g0, and letX = H0 + X0 +∑
λ∈� Xλ be an element ofg0 that centralizes

h0 ∩ p0. Bracketing the formula forX with H ∈ h0 ∩ p0, we obtain
0 = ∑

λ∈�−�′ λ(H)Xλ, from which we conclude thatλ(H)Xλ = 0 for all
H ∈ h0 ∩ p0 and allλ ∈ � − �′. Since theλ’s in � − �′ haveλ(h0 ∩ p0)

not identically 0, we see thatXλ = 0 for all λ ∈ � − �′. Thus anyX that
centralizesh0 ∩ p0 is of the form

X = H0 + X0 +
∑
λ∈�′

Xλ.

Sinceh0 is abelian, the elementsX ∈ h0 are of this form, anda′
0 commutes

with anyX of this form. Henceh0+a′
0 is abelian, and the proof is complete.

Proposition 6.64. Up to conjugacy by Intg0, there are only finitely
many Cartan subalgebras ofg0.

PROOF. Fix a maximal abelian subspacea0 of p0. Let h0 be a Cartan
subalgebra. Proposition 6.59 shows that we may assume thath0 is θ stable,
and Theorem 6.51 shows that we may assume thath0 ∩ p0 is contained in
a0. Lemma 6.63 associates toh0 a subset of the set� of restricted roots that
determinesh0 ∩p0, and Lemma 6.62 shows thath0 ∩p0 determinesh0 up to
conjugacy. Hence the number of conjugacy classes of Cartan subalgebras
is bounded by the number of subsets of�.
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7. Cayley Transforms

The classification of real semisimple Lie algebras later in this chapter
will use maximally compact Cartan subalgebras, but much useful infor-
mation about a semisimple Lie algebrag0 comes about from a maximally
noncompact Cartan subalgebra. To correlate this information, we need to
be able to track down the conjugacy viag = (g0)

C of a maximally compact
Cartan subalgebra and a maximally noncompact one.

Cayley transforms are one-step conjugacies ofθ stable Cartan subalge-
bras whose iterates explicitly relate anyθ stable Cartan subalgebra with
any other. We develop Cayley transforms in this section and show that
in favorable circumstances we can see past the step-by-step process to
understand the composite conjugation all at once.

There are two kinds of Cayley transforms, essentially inverse to each
other. They are modeled on what happens insl(2, R). In the case of
sl(2, R), we start with the standard basish, e, f for sl(2, C) as in (1.5),
as well as the membershB, eB, fB of sl(2, C) defined in (6.58). The latter
elements satisfy the familiar bracket relations

[hB, eB ] = 2eB, [hB, fB ] = −2 fB, [eB, fB ] = hB .

The definitions ofeB and fB makeeB + fB andi(eB − fB) be insl(2, R),
while i(eB+ fB) andeB− fB are insu(2). The first kind of Cayley transform
within sl(2, C) is the mapping

Ad

(√
2

2

(
1 i
i 1

))
= Ad(expπ

4 ( fB − eB)),

which carrieshB, eB, fB to complex multiples ofh, e, f and carries the

Cartan subalgebraR
(

0 1

−1 0

)
to iR

(
1 0

0 −1

)
. When generalized below, this

Cayley transform will be calledcβ .
The second kind of Cayley transform withinsl(2, C) is the mapping

Ad

(√
2

2

(
1 −i

−i 1

))
= Ad(expi π

4 (− f − e)),

which carriesh, e, f to complex multiples ofhB, eB, fB and carries the

Cartan subalgebraR
(

1 0

0 −1

)
to iR

(
0 1

−1 0

)
. In view of the explicit formula

for the matrices of the Cayley transforms, the two transforms are inverse to
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one another. When generalized below, this second Cayley transform will
be calleddα.

The idea is to embed each of these constructions into constructions in the
complexification of our underlying semisimple algebra that depend upon a
single root of a special kind, leaving fixed the part of the Cartan subalgebra
that is orthogonal to the embedded copy ofsl(2, C).

Turning to the case of a general real semisimple Lie algebra, we continue
with the notation of the previous section. We extend the inner productBθ

ong0 to a Hermitian inner product ong by the definition

Bθ (Z1, Z2) = −B(Z1, θ Z2),

where bar denotes the conjugation ofg with respect tog0. In this expression
θ and bar commute.

If h0 = t0 ⊕ a0 is aθ stable Cartan subalgebra ofg0, we have noted that
roots of(g, h) are imaginary ont0 and real ona0. A root is real if it takes
on real values onh0 (i.e., vanishes ont0), imaginary if it takes on purely
imaginary values onh0 (i.e., vanishes ona0), andcomplexotherwise.

For any rootα, θα is the rootθα(H) = α(θ−1H). To see thatθα is a
root, we letEα be a nonzero root vector forα, and we calculate

[H, θ Eα] = θ [θ−1H, Eα] = α(θ−1H)θ Eα = (θα)(H)θ Eα.

If α is imaginary, thenθα = α. Thusgα is θ stable, and we havegα =
(gα ∩ k) ⊕ (gα ∩ p). Sincegα is 1-dimensional,gα ⊆ k or gα ⊆ p. We call
an imaginary rootα compact if gα ⊆ k, noncompactif gα ⊆ p.

We introduce two kinds of Cayley transforms, starting from a givenθ

stable Cartan subalgebra:

(i) Using an imaginary noncompact rootβ, we construct a new Cartan
subalgebra whose intersection withp0 goes up by 1 in dimension.

(ii) Using a real rootα, we construct a new Cartan subalgebra whose
intersection withp0 goes down by 1 in dimension.

First we give the construction that starts from a Cartan subalgebrah0 and
uses an imaginary noncompact rootβ. Let Eβ be a nonzero root vector.
Sinceβ is imaginary,Eβ is in g−β . Sinceβ is noncompact, we have

0 < Bθ (Eβ, Eβ) = −B(Eβ, θ Eβ) = B(Eβ, Eβ).

Thus we are allowed to normalizeEβ to makeB(Eβ, Eβ) be any positive
constant. We choose to makeB(Eβ, Eβ) = 2/|β|2. From Lemma 2.18a
we have

[Eβ, Eβ ] = B(Eβ, Eβ)Hβ = 2|β|−2Hβ.
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Put H ′
β = 2|β|−2Hβ . Then we have the bracket relations

[H ′
β, Eβ ] = 2Eβ, [H ′

β, Eβ ] = −2Eβ, [Eβ, Eβ ] = H ′
β.

Also the elementsEβ + Eβ andi(Eβ − Eβ) are fixed by bar and hence are
in g0. In terms of our discussion above ofsl(2, C), the correspondence is

H ′
β ↔

(
0 i

−i 0

)
Eβ ↔ 1

2

(
1 −i

−i −1

)
Eβ ↔ 1

2

(
1 i

i −1

)
Eβ − Eβ ↔

(
0 i

i 0

)
.

Define

(6.65a) cβ = Ad(expπ

4 (Eβ − Eβ))

and

(6.65b) h
′
0 = g0 ∩ cβ(h) = ker(β|h0) ⊕ R(Eβ + Eβ).

The vectorEβ is not uniquely determined by the conditions on it, and both
formulas (6.65) depend on the particular choice we make forEβ . To see
that (6.65b) is valid, we can use infinite series to calculate that

cβ(H ′
β) = Eβ + Eβ(6.66a)

cβ(Eβ − Eβ) = Eβ − Eβ(6.66b)

cβ(Eβ + Eβ) = −H ′
β.(6.66c)

Then (6.66a) implies (6.65b).
Next we give the construction that starts from a Cartan subalgebrah′

0

and uses a real rootα. Let Eα be a nonzero root vector. Sinceα is real,
Eα is in gα. Adjusting Eα, we may therefore assume thatEα is in g0.
Sinceα is real,θ Eα is in g−α, and we know from Proposition 6.52a that
[Eα, θ Eα] = B(Eα, θ Eα)Hα with B(Eα, θ Eα) < 0. We normalizeEα by
a real constant to makeB(Eα, θ Eα) = −2/|α|2, and putH ′

α = 2|α|−2Hα.
Then we have the bracket relations

[H ′
α, Eα] = 2Eα, [H ′

α, θ Eα] = −2θ Eα, [Eα, θ Eα] = −H ′
α.
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In terms of our discussion above ofsl(2, C), the correspondence is

H ′
α ↔

(
1 0

0 −1

)
Eα ↔

(
0 1

0 0

)
θ Eα ↔

(
0 0

−1 0

)
i(θ Eα − Eα) ↔

(
0 −i

−i 0

)
.

Define

(6.67a) dα = Ad(expi π

4 (θ Eα − Eα))

and

(6.67b) h0 = g0 ∩ dα(h
′) = ker(α|h′

0
) ⊕ R(Eα + θ Eα).

To see that (6.67b) is valid, we can use infinite series to calculate that

dα(H ′
α) = i(Eα + θ Eα)(6.68a)

dα(Eα − θ Eα) = Eα − θ Eα(6.68b)

dα(Eα + θ Eα) = i H ′
α.(6.68c)

Then (6.68a) implies (6.67b).

Proposition 6.69. The two kinds of Cayley transforms are essentially
inverse to each other in the following senses:

(a) If β is a noncompact imaginary root, then in the computation of
dcβ (β) ◦ cβ the root vectorEcβ (β) can be taken to beicβ(Eβ) and this choice
makes the composition the identity.

(b) If α is a real root, then in the the computation ofcdα(α) ◦ dα the
root vectorEdα(α) can be taken to be−idα(Eα) and this choice makes the
composition the identity.

PROOF.
(a) By (6.66),

cβ(Eβ) = 1
2cβ(Eβ + Eβ) + 1

2cβ(Eβ − Eβ) = − 1
2 H ′

β + 1
2(Eβ − Eβ).



7. Cayley Transforms 393

Both terms on the right side are inig0, and henceicβ(Eβ) is in g0. Since
H ′

β is in k while Eβ andEβ are inp,

θcβ(Eβ) = − 1
2 H ′

β − 1
2(Eβ − Eβ).

Put Ecβ (β) = icβ(Eβ). From B(Eβ, Eβ) = 2/|β|2, we obtain

B(Ecβ (β), θ Ecβ (β)) = −2/|β|2 = −2/|cβ(β)|2.
ThusEcβ (β) is properly normalized. Thendcβ (β) becomes

dcβ (β) = Ad(expi π

4 (θ Ecβ (β) − Ecβ (β)))

= Ad(expπ

4 (cβ(Eβ) − θcβ(Eβ)))

= Ad(expπ

4 (Eβ − Eβ)),

and this is the inverse of

cβ = Ad(expπ

4 (Eβ − Eβ)).

(b) By (6.68),

dα(Eα) = 1
2dα(Eα + θ Eα) + 1

2dα(Eα − θ Eα) = 1
2i H ′

α + 1
2(Eα − θ Eα).

SinceH ′
α, Eα, andθ Eα are ing0,

dα(Eα) = − 1
2i H ′

α + 1
2(Eα − θ Eα).

Put Edα(α) = −idα(Eα). From B(Eα, θ Eα) = −2/|α|2, we obtain

B(Edα(α), Edα(α)) = 2/|α|2 = 2/|dα(α)|2.
ThusEdα(α) is properly normalized. Thencdα(α) becomes

cdα(α) = Ad(expπ

4 (Edα(α) − Edα(α)))

= Ad(expi π

4 (dα(Eα) + dα(Eα)))

= Ad(expi π

4 (Eα − θ Eα)),

and this is the inverse of

dα = Ad(expi π

4 (θ Eα − Eα)).

Proposition 6.70. Let h0 be aθ stable Cartan subalgebra ofg0. Then
there are no noncompact imaginary roots if and only ifh0 is maximally
noncompact, and there are no real roots if and only ifh0 is maximally
compact.
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PROOF. The Cayley transform constructioncβ tells us that ifh0 has
a noncompact imaginary rootβ, thenh0 is not maximally noncompact.
Similarly the Cayley transform constructiondα tells us that ifh0 has a real
rootα, thenh0 is not maximally compact.

For the converses writeh0 = t0 ⊕ a0, and let� = �(g, h) be the set of
roots. Form the expansion

(6.71) g = h ⊕
⊕
α∈�

gα.

Suppose there are no noncompact imaginary roots. Then

Zg(a0) = h ⊕
⊕
α∈�,

α imaginary

gα = h ⊕
⊕
α∈�,

α compact
imaginary

gα

and p0 ∩ Zg(a0) = g0 ∩ (p ∩ Zg(a0)) = g0 ∩ (p ∩ h) = a0.

Hencea0 is maximal abelian inp0, andh0 is maximally noncompact.
Suppose there are no real roots. From the expansion (6.71) we obtain

Zg(t0) = h ⊕
⊕
α∈�,
α real

gα = h

andk0 ∩ Zg(t0) = k0 ∩ h = t0. Thereforet0 is maximal abelian ink0, and
h0 is maximally compact.

The Cayley transforms and the above propositions give us a method of
finding all Cartan subalgebras up to conjugacy. In fact, if we start with
a θ stable Cartan subalgebra, we can apply various Cayley transformscβ

as long as there are noncompact imaginary roots, and we know that the
resulting Cartan subalgebra will be maximally noncompact when we are
done. Consequently if we apply various Cayley transformsdα in the reverse
order, starting from a maximally noncompact Cartan subalgebra, we obtain
all Cartan subalgebras up to conjugacy.

Alternatively if we start with aθ stable Cartan subalgebra, we can apply
various Cayley transformsdα as long as there are real roots, and we know
that the resulting Cartan subalgebra will be maximally compact when we
are done. Consequently if we apply various Cayley transformscβ in the
reverse order, starting from a maximally compact Cartan subalgebra, we
obtain all Cartan subalgebras up to conjugacy.
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EXAMPLE. Let g0 = sp(2, R) with θ given by negative transpose. We
can take the Iwasawaa0 to be the diagonal subalgebra

a0 = {diag(s, t, −s, −t)}.
Let f1 and f2 be the linear functionals ona0 that gives andt on the indicated
matrix. For this example,m0 = 0. Thus Proposition 6.47 shows thata0 is
a maximally noncompact Cartan subalgebra. The roots are±2 f1, ±2 f2,
±( f1 + f2), ±( f1 − f2). All of them are real. We begin with adα type
Cayley transform, noting that±α give the same thing. The data for 2f1 and
2 f2 are conjugate withing0, and so are the data forf1 + f2 and f1 − f2. So
there are only two essentially different first steps, sayd2 f2 andd f1− f2. After
d2 f2, the only real roots are±2 f1 (or more preciselyd2 f2(±2 f1)). A second
Cayley transformd2 f1 leads to all roots imaginary, hence to a maximally
compact Cartan subalgebra, and we can go no further. Similarly after
d f1− f2, the only real roots are±( f1 + f2), and the second Cayley transform
d f1+ f2 leads to all roots imaginary. A little computation shows that we have
produced 

s 0 0 0
0 t 0 0
0 0 −s 0
0 0 0 −t

 ,


s 0 0 0
0 0 0 θ

0 0 −s 0
0 −θ 0 0

 ,


t θ 0 0

−θ t 0 0
0 0 −t θ

0 0 −θ −t

 ,


0 0 θ1 0
0 0 0 θ2

−θ1 0 0 0
0 −θ2 0 0

 .

The second Cartan subalgebra results from the first by applyingd2 f2, the
third results from the first by applyingd f1− f2, and the fourth results from
the first by applyingd2 f1d2 f2.

As in the example, when we pass fromh′
0 to h0 by dα, we can anticipate

what roots will be real forh0. What we need in order to do a succession of
such Cayley transforms is a sequence of real roots that become imaginary
one at a time. In other words, we can do a succession of such Cayley
transforms with ease if we have an orthogonal sequence of real roots.

Similarly when we applycα to pass fromh0 toh′
0, we can anticipate what

roots will be imaginary forh′
0. But a further condition on a root beyond

“imaginary” is needed to do a Cayley transformcα; we need the imaginary
root to be noncompact. The following proposition tells how to anticipate
which imaginary roots are noncompact after a Cayley transform.
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Proposition 6.72. Let α be a noncompact imaginary root. Letβ be a
root orthogonal toα, so that theα string containingβ is symmetric about
β. Let Eα andEβ be nonzero roots vectors forα andβ, and normalizeEα

as in the definition of the Cayley transformcα.

(a) If β ± α are not roots, thencα(Eβ) = Eβ . Thus if β is imaginary,
thenβ is compact if and only ifcα(β) is compact.

(b) If β ± α are roots, thencα(Eβ) = 1
2([Eα, Eβ ] − [Eα, Eβ ]). Thus if

β is imaginary, thenβ is compact if and only ifcα(β) is noncompact.

PROOF. Recall thatcα = Ad(expπ

4 (Eα − Eα)) with [Eα, Eα] = H ′
α.

(a) In this casecα(Eβ) = Eβ clearly. If β is imaginary, then the equal
vectorscα(Eβ) andEβ are both ink or both inp.

(b) Here we use Corollary 2.37 and Proposition 2.48g to calculate that

adπ

4 (Eα − Eα)Eβ = π

4 ([Eα, Eβ ] − [Eα, Eβ ])

ad2(π

4 (Eα − Eα))Eβ = −(π

4 )2([Eα, [Eα, Eβ ]] + [Eα, [Eα, Eβ ]])

= −(π

4 )2(2Eβ + 2Eβ)

= −(π

2 )2Eβ.

Then we have

cα(Eβ) =
∞∑

n=0

1
(2n)! ad2n(π

4 (Eα − Eα))Eβ

+
∞∑

n=0

1
(2n+1)! ad(π

4 (Eα − Eα))ad2n(π

4 (Eα − Eα))Eβ

=
∞∑

n=0

1
(2n)! (−1)n(π

2 )2n Eβ

+
∞∑

n=0

1
(2n+1)! (−1)n(π

2 )2n(π

4 )([Eα, Eβ ] − [Eα, Eβ ])

= (cosπ

2 )Eβ + 1
2(sin π

2 )([Eα, Eβ ] − [Eα, Eβ ])

= 1
2([Eα, Eβ ] − [Eα, Eβ ]).

If β is imaginary, thencα(Eβ) is in k if and only if Eβ is in p sinceEα and
Eα are inp.

We say that two orthogonal rootsα andβ arestrongly orthogonal if
β±α are not roots. Proposition 6.72 indicates that we can do a succession of
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Cayley transformscβ with ease if we have a strongly orthogonal sequence
of noncompact imaginary roots.

If α andβ are orthogonal but not strongly orthogonal, then

(6.73) |β ± α|2 = |β|2 + |α|2

shows that there are at least two root lengths. Actually we must have
|β|2 = |α|2, since otherwise (6.73) would produce three root lengths, which
is forbidden within a simple component of a reduced root system. Thus
(6.73) becomes|β ± α|2 = 2|α|2, and the simple component of the root
system containingα andβ has a double line in its Dynkin diagram. In other
words, whenever the Dynkin diagram of the root system has no double line,
then orthogonal roots are automatically strongly orthogonal.

8. Vogan Diagrams

To a real semisimple Lie algebrag0, in the presence of some other
data, we shall associate a diagram consisting of the Dynkin diagram of
g = (g0)

C with some additional information superimposed. This diagram
will be called a “Vogan diagram.” We shall see that the same Vogan diagram
cannot come from two nonisomorphicg0’s and that every diagram that looks
formally like a Vogan diagram comes from someg0. Thus Vogan diagrams
give us a handle on the problem of classification, and all we need to do is
to sort out which Vogan diagrams come from the sameg0.

Let g0 be a real semisimple Lie algebra, letg be its complexification,
let θ be a Cartan involution, letg0 = k0 ⊕ p0 be the corresponding Cartan
decomposition, and letB be as in §§6–7. We introduce a maximally com-
pactθ stable Cartan subalgebrah0 = t0 ⊕ a0 of g0, with complexification
h = t⊕a, and we let� = �(g, h) be the set of roots. By Proposition 6.70
there are no real roots, i.e., no roots that vanish ont.

Choose a positive system�+ for � that takesit0 beforea. For example,
�+ can be defined in terms of a lexicographic ordering built from a basis
of it0 followed by a basis ofa0. Sinceθ is +1 on t0 and−1 on a0 and
since there are no real roots,θ(�+) = �+. Thereforeθ permutes the
simple roots. It must fix the simple roots that are imaginary and permute
in 2-cycles the simple roots that are complex.

By theVogan diagram of the triple(g0, h0, �
+), we mean the Dynkin

diagram of�+ with the 2-element orbits underθ so labeled and with the
1-element orbits painted or not, according as the corresponding imaginary
simple root is noncompact or compact.
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For example ifg0 = su(3, 3), let us takeθ to be negative conjugate
transpose,h0 = t0 to be the diagonal subalgebra, and�+ to be determined
by the conditionse1 ≥ e2 ≥ e4 ≥ e5 ≥ e3 ≥ e6. The Dynkin diagram is of
type A5, and all simple roots are imaginary sincea0 = 0. In particular,θ
acts as the identity in the Dynkin diagram. The compact rootsei − ej are
those withi and j in the same set{1, 2, 3} or{4, 5, 6}, while the noncompact
roots are those withi and j in opposite sets. Then among the simple roots,
e1 − e2 is compact,e2 − e4 is noncompact,e4 − e5 is compact,e5 − e3 is
noncompact, ande3 − e6 is noncompact. Hence the Vogan diagram is

Here are two infinite classes of examples.

EXAMPLES.

1) Letg0 = su(p, q) with negative conjugate transpose as Cartan invo-
lution. We takeh0 = t0 to be the diagonal subalgebra. Thenθ is 1 on all
the roots. We use the standard ordering, so that the positive roots areei −ej

with i < j . A positive root is compact ifi and j are both in{1, . . . , p} or
both in {p + 1, . . . , p + q}. It is noncompact ifi is in {1, . . . , p} and j
is in {p + 1, . . . , p + q}. Thus among the simple rootsei − ei+1, the root
ep − ep+1 is noncompact, and the others are compact. The Vogan diagram
is

e1 − e2 ep − ep+1 ep+q−1−ep+q

2) Letg0 = sl(2n, R) with negative transpose as Cartan involution, and
define

h0 =




x1 θ1

−θ1 x1
. . .

xn θn

−θn xn


 .

The matrices here are understood to be built from 2-by-2 blocks and to have∑n
j=1 xj = 0. The subspacet0 corresponds to theθj part, 1≤ j ≤ n, i.e., it

is the subspace where allxj are 0. The subspacea0 similarly corresponds
to thexj part, 1≤ j ≤ n. We define linear functionalsej and f j to depend
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only on thej th block, the dependence being

ej

(
xj −iyj

iyj xj

)
= yj and f j

(
xj −iyj

iyj xj

)
= xj .

Computation shows that

� = {±ej ± ek ± ( f j − fk) | j �= k} ∪ {±2el | 1 ≤ l ≤ n}.
Roots that involve onlyej ’s are imaginary, those that involve onlyf j ’s are
real, and the remainder are complex. It is apparent that there are no real
roots, and thereforeh0 is maximally compact. The involutionθ acts as+1
on theej ’s and−1 on thef j ’s. We define a lexicographic ordering by using
the spanning set

e1, . . . , en, f1, . . . , fn,

and we obtain

�+ =


ej + ek ± ( f j − fk), all j �= k

ej − ek ± ( f j − fk), j < k

2el, 1 ≤ l ≤ n.

The Vogan diagram is

en−1−en+( fn−1− fn) e1−e2+( f1− f2)

2en

en−1−en−( fn−1− fn) e1−e2−( f1− f2)

Theorem 6.74. Let g0 andg′
0 be real semisimple Lie algebras. With

notation as above, if two triples(g0, h0, �
+) and(g′

0, h
′
0, (�

′)+) have the
same Vogan diagram, theng0 andg′

0 are isomorphic.

REMARK. This theorem is an analog for real semisimple Lie algebras of
the Isomorphism Theorem (Theorem 2.108) for complex semisimple Lie
algebras.

PROOF. Since the Dynkin diagrams are the same, the Isomorphism
Theorem (Theorem 2.108) shows that there is no loss of generality in
assuming thatg0 andg′

0 have the same complexificationg. Letu0 = k0⊕ip0
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andu′
0 = k′

0 ⊕ ip′
0 be the associated compact real forms ofg. By Corollary

6.20, there existsx ∈ Int g such thatxu′
0 = u0. The real formxg′

0 of g is
isomorphic tog′

0 and has Cartan decompositionxg′
0 = xk′

0 ⊕ xp′
0. Since

xk′
0 ⊕ i xp′

0 = xu′
0 = u0, there is no loss of generality in assuming that

u′
0 = u0 from the outset. Then

(6.75) θ(u0) = u0 and θ ′(u0) = u0.

Let us write the effect of the Cartan decompositions on the Cartan
subalgebras ash0 = t0⊕a0 andh′

0 = t′0⊕a′
0. Thent0⊕ ia0 andt′0⊕ ia′

0 are
maximal abelian subspaces ofu0. By Theorem 4.34 there existsk ∈ Int u0

with k(t′0 ⊕ ia′
0) = t0 ⊕ ia0. Replacingg′

0 by kg′
0 and arguing as above, we

may assume thatt′0 ⊕ ia′
0 = t0 ⊕ ia0 from the outset. Thereforeh0 andh′

0

have the same complexification, which we denoteh. The space

u0 ∩ h = t0 ⊕ ia0 = t
′
0 ⊕ ia′

0

is a maximal abelian subspace ofu0.
Now that the complexificationsg and h have been aligned, the root

systems are the same. Let the positive systems given in the respective
triples be�+ and�+′. By Theorems 4.54 and 2.63 there existsk ′ ∈ Int u0

normalizingu0 ∩ h with k ′�+′ = �+. Replacingg′
0 by k ′g′

0 and arguing as
above, we may assume that�+′ = �+ from the outset.

The next step is to choose normalizations of root vectors relative toh.
For this proof letB be the Killing form ofg. We start with root vectorsXα

produced fromh as in Theorem 6.6. Using (6.12), we construct a compact
real formũ0 of g. The subalgebrãu0 contains the real subspace ofh where
the roots are imaginary, which is justu0 ∩ h. By Corollary 6.20, there
existsg ∈ Int g such thatgũ0 = u0. Thengũ0 = u0 is built by (6.12) from
g(u0 ∩h) and the root vectorsgXα. Sinceu0 ∩h andg(u0 ∩h) are maximal
abelian inu0, Theorem 4.34 producesu ∈ Int u0 with ug(u0 ∩ h) = u0 ∩ h.
Thenu0 is built by (6.12) fromug(u0 ∩ h) and the root vectorsugXα. For
α ∈ �, putYα = ugXα. Then we have established that

(6.76) u0 =
∑
α∈�

R(i Hα) +
∑
α∈�

R(Yα − Y−α) +
∑
α∈�

Ri(Yα + Y−α).

We have not yet used the information that is superimposed on the Dynkin
diagram of�+. Since the automorphisms of�+ defined byθ andθ ′ are
the same,θ andθ ′ have the same effect onh∗. Thus

(6.77) θ(H) = θ ′(H) for all H ∈ h.
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If α is an imaginary simple root, then

θ(Yα) = Yα = θ ′(Yα) if α is unpainted,(6.78a)

θ(Yα) = −Yα = θ ′(Yα) if α is painted.(6.78b)

We still have to deal with the complex simple roots. Forα ∈ �, write
θYα = aαYθα. From (6.75) we know that

θ(u0 ∩ span{Yα, Y−α}) ⊆ u0 ∩ span{Yθα, Y−θα}.
In view of (6.76) this inclusion means that

θ(R(Yα − Y−α) + Ri(Yα + Y−α)) ⊆ R(Yθα − Y−θα) + Ri(Yθα + Y−θα).

If x andy are real and ifz = x + yi , then we have

x(Yα − Y−α) + yi(Yα + Y−α) = zYα − z̄Y−α.

Thus the expressionθ(zYα − z̄Y−α) = zaαYθα − z̄a−αY−θα must be of the
form wYθα − w̄Y−θα, and we conclude that

(6.79) a−α = aα.

Meanwhile

(6.80) aαa−α = B(aαYθα, a−αY−θα) = B(θYα, θY−α) = B(Yα, Y−α) = 1.

Combining (6.79) and (6.80), we see that

(6.81) |aα| = 1.

Next we observe that

(6.82) aαaθα = 1

sinceYα = θ2Yα = θ(aαYθα) = aαaθαYα.
For each pair of complex simple rootsα andθα, choose square roots

a1/2
α anda1/2

θα so that

(6.83) a1/2
α a1/2

θα = 1.

This is possible by (6.82).
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Similarly write θ ′Yα = bαYθα with

(6.84) |bα| = 1,

and defineb1/2
α andb1/2

θα for α andθα simple so that

(6.85) b1/2
α b1/2

θα = 1.

By (6.81) and (6.84), we can defineH andH ′ in u0 ∩ h by the conditions
thatα(H) = α(H ′) = 0 for α imaginary simple and

exp
(

1
2α(H)

) = a1/2
α , exp

(
1
2θα(H)

) = a1/2
θα ,

exp
(

1
2α(H ′)

) = b1/2
α , exp

(
1
2θα(H ′)

) = b1/2
θα

for α andθα complex simple.
We shall show that

(6.86) θ ′ ◦ Ad(exp1
2(H − H ′)) = Ad(exp1

2(H − H ′)) ◦ θ.

In fact, the two sides of (6.86) are equal onh and also on eachXα for α

imaginary simple, by (6.77) and (6.78), since the Ad factor drops out from
each side. Ifα is complex simple, then

θ ′ ◦ Ad(exp1
2(H − H ′))Yα = θ ′(e

1
2α(H−H ′)Yα)

= bαa1/2
α b−1/2

α Yθα

= b1/2
α a−1/2

α θYα

= b−1/2
θα a1/2

θα θYα by (6.83) and (6.85)

= Ad(exp1
2(H − H ′)) ◦ θYα.

This proves (6.86).
Applying (6.86) tok and then top, we see that

(6.87)
Ad(exp1

2(H − H ′))(k) ⊆ k
′

Ad(exp1
2(H − H ′))(p) ⊆ p

′,

and then equality must hold in each line of (6.87). Since the element
Ad(exp1

2(H−H ′))carriesu0 to itself, it must carryk0 = u0∩k tok′
0 = u0∩k′

andp0 = u0 ∩ p to p′
0 = u0 ∩ p′. Hence it must carryg0 = k0 ⊕ p0 to

g′
0 = k′

0 ⊕ p′
0. This completes the proof.
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Now let us address the question of existence. We define anabstract
Vogan diagram to be an abstract Dynkin diagram with two pieces of
additional structure indicated: One is an automorphism of order 1 or 2
of the diagram, which is to be indicated by labeling the 2-element orbits.
The other is a subset of the 1-element orbits, which is to be indicated by
painting the vertices corresponding to the members of the subset. Every
Vogan diagram is of course an abstract Vogan diagram.

Theorem 6.88.If an abstract Vogan diagram is given, then there exist a
real semisimple Lie algebrag0, a Cartan involutionθ , a maximally compact
θ stable Cartan subalgebrah0 = t0 ⊕ a0, and a positive system�+ for
� = �(g, h) that takesit0 beforea0 such that the given diagram is the
Vogan diagram of(g0, h0, �

+).

REMARK. Briefly the theorem says that any abstract Vogan diagram
comes from someg0. Thus the theorem is an analog for real semisimple
Lie algebras of the Existence Theorem (Theorem 2.111) for complex semi-
simple Lie algebras.

PROOF. By the Existence Theorem (Theorem 2.111) letg be a complex
semisimple Lie algebra with the given abstract Dynkin diagram as its
Dynkin diagram, and leth be a Cartan subalgebra (Theorem 2.9). Put
� = �(g, h), and let�+ be the positive system determined by the given
data. Introduce root vectorsXα normalized as in Theorem 6.6, and define a
compact real formu0 of g in terms ofh and theXα by (6.12). The formula
for u0 is

(6.89) u0 =
∑
α∈�

R(i Hα) +
∑
α∈�

R(Xα − X−α) +
∑
α∈�

Ri(Xα + X−α).

The given data determine an automorphismθ of the Dynkin diagram,
which extends linearly toh∗ and is isometric. Let us see thatθ(�) = �. It
is enough to see thatθ(�+) ⊆ �. We prove thatθ(�+) ⊆ � by induction
on the level

∑
ni of a positive rootα = ∑

niαi . If the level is 1, then the
rootα is simple and we are given thatθα is a simple root. Letn > 1, and
assume inductively thatθα is in � if α ∈ �+ has level< n. Let α have
level n. If we chooseαi simple with〈α, αi〉 > 0, thensαi (α) is a positive
rootβ with smaller level thanα. By inductive hypothesis,θβ andθαi are
in �. Sinceθ is isometric,θα = sθαi (θβ), and thereforeθα is in �. This
completes the induction. Thusθ(�) = �.
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We can then transferθ to h, retaining the same nameθ . Defineθ on the
root vectorsXα for simple roots by

θ Xα =


Xα if α is unpainted and forms a 1-element orbit

−Xα if α is painted and forms a 1-element orbit

Xθα if α is in a 2-element orbit.

By the Isomorphism Theorem (Theorem 2.108),θ extends to an automor-
phism ofg consistently with these definitions onh and on theXα ’s for α

simple. The uniqueness in Theorem 2.108 implies thatθ2 = 1.
The main step is to prove thatθu0 = u0. Let B be the Killing form

of g. For α ∈ �, define a constantaα by θ Xα = aα Xθα. Thenaαa−α =
B(aα Xθα, a−α X−θα) = B(θ Xα, θ X−α) = B(Xα, X−α) = 1 shows that

(6.90) aαa−α = 1.

We shall prove that

(6.91) aα = ±1 for all α ∈ �.

To prove (6.91), it is enough because of (6.90) to prove the result for
α ∈ �+. We do so by induction on the level ofα. If the level is 1, then
aα = ±1 by definition. Thus it is enough to prove that if (6.91) holds for
positive rootsα andβ and ifα + β is a root, then it holds forα + β. In the
notation of Theorem 6.6, we have

θ Xα+β = N −1
α,βθ [ Xα, Xβ ] = N −1

α,β [θ Xα, θ Xβ ]

= N −1
α,βaαaβ [ Xθα, Xθβ ] = N −1

α,β Nθα,θβaαaβ Xθα+θβ .

Therefore
aα+β = N −1

α,β Nθα,θβaαaβ.

Hereaαaβ = ±1 by assumption, while Theorem 6.6 and the fact thatθ is
an automorphism of� say thatNα,β andNθα,θβ are real with

N 2
α,β = 1

2q(1 + p)|α|2 = 1
2q(1 + p)|θα|2 = N 2

θα,θβ .

Henceaα+β = ±1, and (6.91) is proved.
Let us see that

θ(R(Xα−X−α) + Ri(Xα+X−α)) ⊆ R(Xθα−X−θα) + Ri(Xθα+X−θα).

(6.92)
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If x andy are real and ifz = x + yi , then we have

x(Xα − X−α) + yi(Xα + X−α) = zXα − z̄ X−α.

Thus (6.92) amounts to the assertion that the expression

θ(zXα − z̄ X−α) = zaα Xθα − z̄a−α X−θα

is of the formwXθα − w̄X−θα, and this follows from (6.91) and (6.90).
Sinceθ carries roots to roots,

(6.93) θ
( ∑

α∈�

R(i Hα)
) =

∑
α∈�

R(i Hα).

Combining (6.92) and (6.93) with (6.89), we see thatθu0 = u0.
Let k andp be the+1 and−1 eigenspaces forθ in g, so thatg = k ⊕ p.

Sinceθu0 = u0, we have

u0 = (u0 ∩ k) ⊕ (u0 ∩ p).

Definek0 = u0 ∩ k andp0 = i(u0 ∩ p), so that

u0 = k0 ⊕ ip0.

Sinceu0 is a real form ofg as a vector space, so is

g0 = k0 ⊕ p0.

Sinceθu0 = u0 and sinceθ is an involution, we have the bracket relations

[k0, k0] ⊆ k0, [k0, p0] ⊆ p0, [p0, p0] ⊆ k0.

Thereforeg0 is closed under brackets and is a real form ofg as a Lie algebra.
The involutionθ is +1 onk0 and is−1 onp0; it is a Cartan involution of
g0 by the remarks following (6.26), sincek0 ⊕ ip0 = u0 is compact.

Formula (6.93) shows thatθ mapsu0 ∩ h to itself, and therefore

u0 ∩ h = (u0 ∩ k ∩ h) ⊕ (u0 ∩ p ∩ h)

= (k0 ∩ h) ⊕ (ip0 ∩ h)

= (k0 ∩ h) ⊕ i(p0 ∩ h).

The abelian subspaceu0 ∩ h is a real form ofh, and hence so is

h0 = (k0 ∩ h) ⊕ (p0 ∩ h).
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The subspaceh0 is contained ing0, and it is therefore aθ stable Cartan
subalgebra ofg0.

A real rootα relative toh0 has the property thatθα = −α. Sinceθ

preserves positivity relative to�+, there are no real roots. By Proposition
6.70,h0 is maximally compact.

Let us verify that�+ results from a lexicographic ordering that takes
i(k0 ∩ h) beforep0 ∩ h. Let {βi}l

i=1 be the set of simple roots of�+ in
1-element orbits underθ , and let{γi , θγi}m

i=1 be the set of simple roots of
�+ in 2-element orbits. Relative to basis{αi}l+2m

i=1 consisting of all simple
roots, let{ωi} be the dual basis defined by〈ωi , αj〉 = δi j . We shall write
ωβj or ωγj or ωθγj in place ofωi in what follows. We define a lexicographic
ordering by using inner products with the ordered basis

ωβ1, . . . , ωβl , ωγ1 + ωθγ1, . . . , ωγm + ωθγm , ωγ1 − ωθγ1, . . . , ωγm − ωθγm ,

which takesi(k0 ∩ h) beforep0 ∩ h. Let α be in�+, and write

α =
l∑

i=1

niβi +
m∑

j=1

rjγj +
m∑

j=1

sjθγj .

〈α, ωβj 〉 = nj ≥ 0Then

〈α, ωγj + ωθγj 〉 = rj + sj ≥ 0.and

If all these inner products are 0, then all coefficients ofα are 0, contradiction.
Thusα has positive inner product with the first member of our ordered basis
for which the inner product is nonzero, and the lexicographic ordering
yields�+ as positive system. Consequently(g0, h0, �

+) is a triple.
Our definitions ofθ on h∗ and on theXα for α simple make it clear

that the Vogan diagram of(g0, h0, �
+) coincides with the given data. This

completes the proof.

9. Complexification of a Simple Real Lie Algebra

This section deals with some preliminaries for the classification of simple
real Lie algebras. Our procedure in the next section is to start from a
complex semisimple Lie algebra and pass to all possible real forms that
are simple. In order to use this method effectively, we need to know what
complex semisimple Lie algebras can arise in this way.
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Theorem 6.94.Let g0 be a simple Lie algebra overR, and letg be its
complexification. Then there are just two possibilities:

(a) g0 is complex, i.e., is of the formsR for some complexs, and then
g is C isomorphic tos ⊕ s,

(b) g0 is not complex, and theng is simple overC.

PROOF.
(a) Let J be multiplication by

√−1 in g0, and define anR linear map
L : g → s⊕ s by L(X + iY ) = (X + JY, X − JY ) for X andY in g0. We
readily check thatL is one-one and respects brackets. Since the domain
and range have the same real dimension,L is anR isomorphism.

MoreoverL satisfies

L(i(X + iY )) = L(−Y + i X)

= (−Y + J X, −Y − J X)

= (J (X + JY ), −J (X − JY )).

This equation exhibitsL as aC isomorphism ofg with s⊕ s̄, wheres̄ is the
same real Lie algebra asg0 but where the multiplication by

√−1 is defined
as multiplication by−i .

To complete the proof of (a), we show thats̄ is C isomorphic tos. By
Theorem 6.11,s has a compact real formu0. The conjugationτ of s with
respect tou0 is R linear and respects brackets, and the claim is thatτ is a
C isomorphism ofs with s̄. In fact, if U andV are inu0, then

τ(J (U + J V )) = τ(−V + JU ) = −V − JU

= −J (U − J V ) = −Jτ(U + J V ),

and (a) follows.
(b) Let bar denote conjugation ofg with respect tog0. If a is a simple

ideal ing, thena ∩ ā anda + ā are ideals ing invariant under conjugation
and hence are complexifications of ideals ing0. Thus they are 0 org. Since
a �= 0, a + ā = g.

If a ∩ ā = 0, theng = a ⊕ ā. The inclusion ofg0 into g, followed
by projection toa, is anR homomorphismϕ of Lie algebras. If kerϕ is
nonzero, then kerϕ must beg0. In this caseg0 is contained inā. But
conjugation fixesg0, and thusg0 ⊆ a∩ ā = 0, contradiction. We conclude
thatϕ is one-one. A count of dimensions shows thatϕ is anR isomorphism
of g0 ontoa. But theng0 is complex, contradiction.

We conclude thata ∩ ā = g and hencea = g. Thereforeg is simple, as
asserted.
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Proposition 6.95.If g is a complex Lie algebra simple overC, thengR

is simple overR.

PROOF. Suppose thata is an ideal ingR. SincegR is semisimple,
[a, gR] ⊆ a = [a, a] ⊆ [a, gR]. Thereforea = [a, gR]. Let X be ina, and
write X = ∑

j [ X j , Yj ] with X j ∈ a andYj ∈ g. Then

i X =
∑

j

i [ X j , Yj ] =
∑

[ X j , iYj ] ∈ [a, gR] = a.

Soa is a complex ideal ing. Sinceg is complex simple,a = 0 or a = g.
ThusgR is simple overR.

10. Classification of Simple Real Lie Algebras

Before taking up the problem of classification, a word of caution is in
order. The virtue of classification is that it provides a clear indication of
the scope of examples in the subject. It is rarely a sound idea to prove
a theorem by proving it case-by-case for all simple real Lie algebras.
Instead the important thing about classification is the techniques that are
involved. Techniques that are subtle enough to identify all the examples are
probably subtle enough to help in investigating all semisimple Lie algebras
simultaneously.

Theorem 6.94 divided the simple real Lie algebras into two kinds, and
we continue with that distinction in this section.

The first kind is a complex simple Lie algebra that is regarded as a
real Lie algebra and remains simple when regarded that way. Proposition
6.95 shows that every complex simple Lie algebra may be used for this
purpose. In view of the results of Chapter II, the classification of this kind
is complete. We obtain complex Lie algebras of the usual typesAn through
G2. Matrix realizations of the complex Lie algebras of the classical types
An throughDn are listed in (2.43).

The other kind is a noncomplex simple Lie algebrag0, and its complex-
ification is then simple overC. Since the complexification is simple, any
Vogan diagram forg0 will have its underlying Dynkin diagram connected.
Conversely any real semisimple Lie algebrag0 with a Vogan diagram having
connected Dynkin diagram has(g0)

C simple, and thereforeg0 has to be
simple. We know from Theorem 6.74 that the same Vogan diagram cannot
come from nonisomorphicg0’s, and we know from Theorem 6.88 that every
abstract Vogan diagram is a Vogan diagram. Therefore the classification
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of this type of simple real Lie algebra comes down to classifying abstract
Vogan diagrams whose underlying Dynkin diagram is connected.

Thus we want to eliminate the redundancy in connected Vogan diagrams.
There is no redundancy from the automorphism. The only connected
Dynkin diagrams admitting nontrivial automorphisms of order 2 areAn,
Dn, and E6. In these cases a nontrivial automorphism of order 2 of the
Dynkin diagram is unique up to an automorphism of the diagram (and is
absolutely unique except inD4). A Vogan diagram forg0 incorporates a
nontrivial automorphism of order 2 if and only if there exist complex roots,
and this condition depends only ong0.

The redundancy comes about through having many allowable choices
for the positive system�+. The idea, partly but not completely, is that we
can always change�+ so that at most one imaginary simple root is painted.

Theorem 6.96(Borel and de Siebenthal Theorem). Letg0 be a non-
complex simple real Lie algebra, and let the Vogan diagram ofg0 be given
that corresponds to the triple(g0, h0, �

+). Then there exists a simple
system�′ for � = �(g, h), with corresponding positive system�+′,
such that(g0, h0, �

+′) is a triple and there is at most one painted simple
root in its Vogan diagram. Furthermore suppose that the automorphism
associated with the Vogan diagram is the identity, that�′ = {α1, . . . , αl},
and that{ω1, . . . , ωl} is the dual basis given by〈ωj , αk〉 = δjk . Then the
single painted simple rootαi may be chosen so that there is noi ′ with
〈ωi − ωi ′, ωi ′ 〉 > 0.

REMARKS.
1) The proof will be preceded by two lemmas. The main conclusion of

the theorem is that we can arrange that at most one simple root is painted.
The second conclusion (concerningωi and therefore limiting which simple
root can be painted) is helpful only when the Dynkin diagram is exceptional
(E6, E7, E8, F4, or G2).

2) The proof simplifies somewhat when the automorphism marked as
part of the Vogan diagram is the identity. This is the case thath0 is contained
in k0, and most examples will turn out to have this property.

Lemma 6.97.Let � be an irreducible abstract reduced root system in a
real vector spaceV, let � be a simple system, and letω andω′ be nonzero
members ofV that are dominant relative to�. Then〈ω, ω′〉 > 0.

PROOF. The first step is to show that in the expansionω = ∑
α∈� aαα,
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all theaα are≥ 0. Let us enumerate� asα1, . . . , αl so that

ω =
r∑

i=1

aiαi −
s∑

i=r+1

biαi = ω+ − ω−

with all ai ≥ 0 and allbi > 0. We shall show thatω− = 0. Since
ω− = ω+ − ω, we have

0 ≤ |ω−|2 = 〈ω+, ω−〉−〈ω−, ω〉 =
r∑

i=1

s∑
j=r+1

ai bj〈αi , αj〉−
l∑

j=r+1

bj〈ω, αj〉.

The first term on the right side is≤ 0 by Lemma 2.51, and the second term
on the right side (with the minus sign included) is term-by-term≤ 0 by
hypothesis. Therefore the right side is≤ 0, and we conclude thatω− = 0.

Thus we can writeω = ∑l
j=1 ajαj with all aj ≥ 0. The next step is

to show from the irreducibility of� thataj > 0 for all j . Assuming the
contrary, suppose thatai = 0. Then

0 ≤ 〈ω, αi〉 =
∑
j �=i

aj〈αj , αi〉,

and every term on the right side is≤ 0 by Lemma 2.51. Thusaj = 0
for every αj such that〈αj , αi〉 < 0, i.e., for all neighbors ofαi in the
Dynkin diagram. Since the Dynkin diagram is connected (Proposition
2.54), iteration of this argument shows that all coefficients are 0 once one
of them is 0.

Now we can complete the proof. For at least one indexi , 〈αi , ω
′〉 > 0,

sinceω′ �= 0. Then

〈ω, ω′〉 =
∑

j

aj〈αj , ω
′〉 ≥ ai〈αi , ω

′〉,

and the right side is> 0 sinceai > 0. This proves the lemma.

Lemma 6.98. Let g0 be a noncomplex simple real Lie algebra, and let
the Vogan diagram ofg0 be given that corresponds to the triple(g0, h0, �

+).
Write h0 = t0 ⊕ a0 as usual. LetV be the span of the simple roots that are
imaginary, let�0 be the root system�∩ V, letH be the subset ofit0 paired
with V, and let� be the subset ofH where all roots of�0 take integer
values and all noncompact roots of�0 take odd-integer values. Then�
is nonempty. In fact, ifα1, . . . , αm is any simple system for�0 and if
ω1, . . . , ωm in V are defined by〈ωj , αk〉 = δjk , then the element

ω =
∑

i with αi
noncompact

ωi .

is in �.
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PROOF. Fix a simple systemα1, . . . , αm for �0, and let�+
0 be the

set of positive roots of�0. Define ω1, . . . , ωm by 〈ωj , αk〉 = δjk . If
α = ∑m

i=1 niαi is a positive root of�0, then〈ω, α〉 is the sum of theni for
whichαi is noncompact. This is certainly an integer.

We shall prove by induction on the level
∑m

i=1 ni that〈ω, α〉 is even ifα
is compact, odd ifα is noncompact. When the level is 1, this assertion is
true by definition. In the general case, letα andβ be in�+

0 with α + β in
�, and suppose that the assertion is true forα andβ. Since the sum of the
ni for which αi is noncompact is additive, we are to prove that imaginary
roots satisfy

(6.99)

compact+ compact= compact

compact+ noncompact= noncompact

noncompact+ noncompact= compact.

But this is immediate from Corollary 2.35 and the bracket relations (6.24).

PROOF OFTHEOREM 6.96. DefineV, �0, and� as in Lemma 6.98.
Before we use Lemma 6.97, it is necessary to observe that the Dynkin
diagram of�0 is connected, i.e., that the roots in the Dynkin diagram of�

fixed by the given automorphism form a connected set. There is no problem
when the automorphism is the identity, and we observe the connectedness
in the other cases one at a time by inspection.

Let �+
0 = �+ ∩ V . The set� is discrete, being a subset of a lattice, and

Lemma 6.98 has just shown that it is nonempty. LetH0 be a member of�
with norm as small as possible. By Proposition 2.67 we can choose a new
positive system�+

0
′ for �0 that makesH0 dominant. The main step is to

show that

(6.100) at most one simple root of�+
0

′ is painted.

SupposeH0 = 0. If α is in�0, then〈H0, α〉 is 0 and is not an odd integer.
By definition of�, α is compact. Thus all roots of�0 are compact, and
(6.100) is true.

Now supposeH0 �= 0. Letα1, . . . , αm be the simple roots of�0 relative
to �+

0
′, and defineω1, . . . , ωm by 〈ωj , αk〉 = δjk . We can writeH0 =∑m

j=1 njωj with nj = 〈H0, αj〉. The numbernj is an integer sinceH0 is in
�, and it is≥ 0 sinceH0 is dominant relative to�+

0
′.

SinceH0 �= 0, we haveni > 0 for somei . ThenH0 − ωi is dominant
relative to�+

0
′, and Lemma 6.97 shows that〈H0−ωi , ωi〉 ≥ 0 with equality
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only if H0 = ωi . If strict inequality holds, then the elementH0 − 2ωi is in
� and satisfies

|H0 − 2ωi |2 = |H0|2 − 4〈H0 − ωi , ωi〉 < |H0|2,

in contradiction with the minimal-norm condition onH0. Hence equality
holds, andH0 = ωi .

SinceH0 is in�, a simple rootαj in �+
0

′ is noncompact only if〈H0, αj〉 is
an odd integer. Since〈H0, αj〉 = 0 for j �= i , the only possible noncompact
simple root in�+

0
′ is αi . This proves (6.100).

If the automorphism associated with the Vogan diagram is the identity,
then (6.100) proves the first conclusion of the theorem. For the second con-
clusion we are assuming thatH0 = ωi ; then an inequality〈ωi −ωi ′, ωi ′ 〉 > 0
would imply that

|H0 − 2ωi ′ |2 = |H0|2 − 4〈ωi − ωi ′, ωi ′ 〉 < |H0|2,

in contradiction with the minimal-norm condition onH0.
To complete the proof of the theorem, we have to prove the first conclu-

sion when the automorphism associated with the Vogan diagram is not the
identity. Choose by Theorem 2.63 an elements ∈ W (�0)with�+

0
′ = s�+

0 ,
and define�+′ = s�+. With h0 = t0 ⊕ a0 as usual, the elements mapsit0

to itself. Since�+ is defined by an ordering that takesit0 beforea0, so is
�+′. Let the simple roots of�+ beβ1, . . . , βl with β1, . . . , βm in �0. Then
the simple roots of�+′ aresβ1, . . . , sβl . Among these,sβ1, . . . , sβm are
the simple rootsα1, . . . , αm of �+

0
′ considered above, and (6.100) says that

at most one of them is noncompact. The rootssβm+1, . . . , sβl are complex
sinceβm+1, . . . , βl are complex ands carries complex roots to complex
roots. Thus�+′ has at most one simple root that is noncompact imaginary.
This completes the proof.

Now we can mine the consequences of the theorem. To each connected
abstract Vogan diagram that survives the redundancy tests of Theorem
6.96, we associate a noncomplex simple real Lie algebra. If the underlying
Dynkin diagram is classical, we find a known Lie algebra of matrices with
that Vogan diagram, and we identify any isomorphisms among the Lie
algebras obtained. If the underlying Dynkin digram is exceptional, we
give the Lie algebra a name, and we eliminate any remaining redundancy.

As we shall see, the data at hand from a Vogan diagram forg0 readily
determine the Lie subalgebrak0 in the Cartan decompositiong0 = k0 ⊕ p0.
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This fact makes it possible to decide which of the Lie algebras obtained
are isomorphic to one another.

First suppose that the automorphism of the underlying Dynkin diagram
is trivial. When no simple root is painted, theng0 is a compact real form.
For the classical Dynkin diagrams, the compact real forms are as follows:

(6.101)

Diagram Compact Real Form
An su(n + 1)
Bn so(2n + 1)
Cn sp(n)
Dn so(2n)

For the situation in which one simple root is painted, we treat the classical
Dynkin diagrams separately from the exceptional ones. Let us begin with
the classical cases. For each classical Vogan diagram with just one simple
root painted, we attach a known Lie algebra of matrices to that diagram.
The result is that we are associating a Lie algebra of matrices to each simple
root of each classical Dynkin diagram. We can assemble all the information
for one Dynkin diagram in one picture by labeling each root of the Dynkin
diagram with the associated Lie algebra of matrices. Those results are in
Figure 6.1.

Verification of the information in Figure 6.1 is easy for the most part.
For An, Example 1 in §8 gives the outcome, which is thatsu(p, q) results
when p + q = n + 1 and thepth simple root from the left is painted.

For Bn, suppose thatp + q = 2n + 1 and thatp is even. Represent

so(p, q) by real matrices

(
a b
b∗ d

)
with a andd skew symmetric. Forh0,

we use block-diagonal matrices whose firstn blocks areR
(

0 1
−1 0

)
of

size 2-by-2 and whose last block is of size 1-by-1. With linear functionals
on (h0)

C as in Example 2 of §II.1 and with the positive system as in that
example, the Vogan diagram is as indicated by Figure 6.1.

For Cn, the analysis for the firstn − 1 simple roots usessp(p, q) with
p + q = n in the same way that the analysis forAn usessu(p, q) with
p + q = n + 1. The analysis for the last simple root is different. For this
case we take the Lie algebra to besp(n, R). Actually it is more convenient
to use the isomorphic Lie algebrag0 = su(n, n) ∩ sp(n, C), which is

conjugate tosp(n, R) by the matrix given in block form as

√
2

2

(
1 i
i 1

)
.



414 VI. Structure Theory of Semisimple Groups

An

su(1, n) su(2, n − 1) su(n − 1, 2) su(n, 1)

2 2 2 1

Bn

so(2, 2n − 1) so(4, 2n − 3) so(2n − 2, 3) so(2n, 1)

1 1 1 2

Cn

sp(1, n − 1) sp(2, n − 2) sp(n − 1, 1) sp(n, R)

so
∗(2n)

Dn

so(2, 2n − 2) so(4, 2n − 4) so(2n−4, 4)

so
∗(2n)

FIGURE 6.1. Association of classical matrix algebras
to Vogan diagrams with the trivial automorphism

Within g0, we take

(6.102) h0 = {diag(iy1, . . . , iyn, −iy1, . . . , −iyn)}.
If we defineej of the indicated matrix to beiyj , then the roots are those
of typeCn on (2.43), and we choose as positive system the customary one
given in (2.50). The rootsei − ej are compact, and the roots±(ei + ej) and
±2ej are noncompact. Thus 2en is the unique noncompact simple root.

For Dn, the analysis for the firstn − 2 simple roots usesso(p, q) with p
andq even andp + q = 2n. It proceeds in the same way as withBn. The
analysis for either of the last two simple roots is different. For one of the
two simple roots we takeg0 = so∗(2n). We use the sameh0 andej as in
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(6.102). Then the roots are those of typeDn in (2.43), and we introduce the
customary positive system (2.50). The rootsei − ej are compact, and the
roots±(ei + ej) are noncompact. Thusen−1 + en is the unique noncompact
simple root. The remaining Vogan diagram is isomorphic to the one we
have just considered, and hence it too must correspond toso∗(2n).

For the exceptional Dynkin diagrams we make use of the additional
conclusion in Theorem 6.96; this says that we can disregard the case in
which αi is the unique simple noncompact root if〈ωi − ωi ′, ωi ′ 〉 > 0
for somei ′. First let us see how to apply this test in practice. Write
αi = ∑

k dikωk . Taking the inner product withαj shows thatdi j = 〈αi , αj〉.
If we putωj = ∑

l cl jαl , then

δi j = 〈αi , ωj〉 =
∑

k,l

dikcl j〈ωk, αl〉 =
∑

k

dikck j .

Thus the matrix(ci j) is the inverse of the matrix(di j). Finally the quantity
of interest is just〈ωj , ωj ′ 〉 = cj ′ j .

The Cartan matrix will serve as(di j) if all roots have the same length
because we can assume that|αi |2 = 2 for all i ; then the coefficientsci j are
obtained by inverting the Cartan matrix. When there are two root lengths,
(di j) is a simple modification of the Cartan matrix.

Appendix C gives all the information necessary to make the compu-
tations quickly. Let us indicate details forE6. Let the simple roots be
α1, . . . , α6 as in (2.86c). Then Appendix C gives

ω1 = 1
3(4α1 + 3α2 + 5α3 + 6α4 + 4α5 + 2α6)

ω2 = 1α1 + 2α2 + 2α3 + 3α4 + 2α5 + 1α6

ω3 = 1
3(5α1 + 6α2 + 10α3 + 12α4 + 8α5 + 4α6)

ω4 = 2α1 + 3α2 + 4α3 + 6α4 + 4α5 + 2α6

ω5 = 1
3(4α1 + 6α2 + 8α3 + 12α4 + 10α5 + 5α6)

ω6 = 1
3(2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6).

Let us use Theorem 6.96 to rule outi = 3, 4, and 5. Fori = 3, we take
i ′ = 1; we have〈ω3, ω1〉 = 5

3 and〈ω1, ω1〉 = 4
3, so that〈ω3 − ω1, ω1〉 > 0.

For i = 4, we takei ′ = 1; we have〈ω4, ω1〉 = 2 and〈ω1, ω1〉 = 4
3, so that

〈ω4 − ω1, ω1〉 > 0. Fori = 5, we takei ′ = 6; we have〈ω5, ω6〉 = 5
3 and

〈ω6, ω6〉 = 4
3, so that〈ω5 − ω6, ω6〉 > 0. Although there are six abstract
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E II k0 = su(6) ⊕ su(2)

E III k0 = so(10) ⊕ R

E V k0 = su(8)

E VI k0 = so(12) ⊕ su(2)

E VII k0 = e6 ⊕ R

E VIII k0 = so(16)

E IX k0 = e7 ⊕ su(2)

1 1 2 2
F I k0 = sp(3) ⊕ su(2)

1 1 2 2
F II k0 = so(9)

1 3
G k0 = su(2) ⊕ su(2)

FIGURE 6.2. Noncompact noncomplex exceptional simple real Lie
algebras with the trivial automorphism in the Vogan diagram
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Vogan diagrams ofE6 with trivial automorphism and with one noncom-
pact simple root, Theorem 6.96 says that we need to consider only the
three where the simple root isα1, α2, or α6. Evidentlyα6 yields a result
isomorphic to that forα1 and may be disregarded.

By similar computations for the other exceptional Dynkin diagrams, we
find that we may takeαi to be an endpoint vertex of the Dynkin diagram.
Moreover, inG2, αi may be taken to be the long simple root, while inE8,
we do not have to considerα2 (the endpoint vertex on the short branch).
Thus we obtain the 10 Vogan diagrams in Figure 6.2. We have given
each of them its name from the Cartan listing [1927a]. Computingk0 is
fairly easy. As a Lie algebra,k0 is reductive by Corollary 4.25. The root
system of its semisimple part is the system of compact roots, which we can
compute from the Vogan diagram if we remember (6.99) and use the tables
in Appendix C that tell which combinations of simple roots are roots. Then
we convert the result into a compact Lie algebra using (6.101), and we add
R as center if necessary to make the dimension of the Cartan subalgebra
work out correctly. A glance at Figure 6.2 shows that when the Vogan
diagrams for twog0’s have the same underlying Dynkin diagram, then the
k0’s are different; by Corollary 6.19 theg0’s are nonisomorphic.

Now we suppose that the automorphism of the underlying Dynkin dia-
gram is nontrivial. We already observed that the Dynkin diagram has to be
of type An, Dn, or E6.

For typeAn, we distinguishn even fromn odd. Forn even there is just
one abstract Vogan diagram, namely

It must correspond tosl(n + 1, R) since we have not yet found a Vogan
diagram forsl(n+1, R) and since the equalitysl(n+1, R)C = sl(n+1, C)

determines the underlying Dynkin diagram as beingAn.
For An with n odd, there are two abstract Vogan diagrams, namely
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and

The first of these, according to Example 2 in §8, comes fromsl(n + 1, R).
The second one comes fromsl( 1

2(n + 1), H). In the latter case we take

h0 = {
diag(x1 + iy1, . . . , x 1

2 (n+1) + iy 1
2 (n+1))

∣∣ ∑
xm = 0

}
.

If em and fm on the indicated member ofh0 areiym andxm, respectively,
then� is the same as in Example 2 of §8. The imaginary roots are the
±2em, and they are compact. (The root vectors for±2em generate the
complexification of thesu(2) in the j th diagonal entry formed by the skew-
Hermitian quaternions there.)

For type Dn, the analysis usesso(p, q) with p and q odd and with

p + q = 2n. Representso(p, q) by real matrices

(
a b
b∗ d

)
with a andd

skew symmetric. Forh0, we use block-diagonal matrices with all blocks of

size 2-by-2. The first12(p−1) and the last12(q−1) blocks areR
(

0 1
−1 0

)
,

and the remaining one isR
(

0 1
1 0

)
. The blocksR

(
0 1

−1 0

)
contribute

to t0, while R
(

0 1
1 0

)
contributes toa0. The linear functionalsej for

j �= 1
2(p + 1) are as in Example 4 of §II.1, ande 1

2 (p+1) on the embedded(
0 t
t 0

)
∈ R

(
0 1
1 0

)
is just t . The roots are±ei ± ej with i �= j , and

those involving index1
2(p + 1) are complex.

Supposeq = 1. Then the standard ordering takesit0 beforea0. The
simple roots as usual are

e1 − e2, . . . , en−2 − en−1, en−1 − en, en−1 + en.

The last two are complex, and the others are compact imaginary. Similarly
if p = 1, we can use the reverse of the standard ordering and conclude that
all imaginary roots are compact.
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Now supposep > 1 andq > 1. In this case we cannot use the standard
ordering. To haveit0 beforea0 in defining positivity, we take12(p +1) last,
and the simple roots are

e1 − e2, . . . , e 1
2 (p−1)−1 − e 1

2 (p−1), e 1
2 (p−1) − e 1

2 (p+1)+1,

e 1
2 (p+1)+1 − e 1

2 (p+1)+2, . . . , en−1 − en, en − e 1
2 (p+1), en + e 1

2 (p+1).

The last two are complex, and the others are imaginary. Among the imag-
inary simple roots,e 1

2 (p−1) − e 1
2 (p+1)+1 is the unique noncompact simple

root.
We can assemble our results forDn in a diagram like that in Figure 6.1.

As we observed above, the situation with all imaginary roots unpainted
corresponds toso(1, 2n − 1) ∼= so(2n − 1, 1). If one imaginary root is
painted, the associated matrix algebra may be seen from the diagram

so(3, 2n − 3) so(5, 2n − 5) so(2n−3, 3)

For type E6, Theorem 6.96 gives us three diagrams to consider. As
in (2.86c) letα2 be the simple root corresponding to the endpoint vertex
of the short branch in the Dynkin diagram, and letα4 correspond to the
triple point. The Vogan diagram in whichα4 is painted gives the same
g0 (up to isomorphism) as the Vogan diagram withα2 painted. In fact,
the Weyl group elementsα4sα2 carries the one withα2 painted to the one
with α4 painted. Thus there are only two Vogan diagrams that need to be
considered, and they are in Figure 6.3. The figure also gives the names of
the Lie algebrasg0 in the Cartan listing [1927a] and identifiesk0.

To computek0 for each case of Figure 6.3, we regroup the root-space
decomposition ofg as

g = (
t ⊕

⊕
α imaginary

compact

gα ⊕
⊕

complex pairs
{α,θα}

(Xα + θ Xα)
)

⊕ (
a ⊕

⊕
α imaginary
noncompact

gα ⊕
⊕

complex pairs
{α,θα}

(Xα − θ Xα)
)
,

(6.103)

and it is clear that the result isg = k ⊕ p. Therefore the roots in�(k, t)

are the restrictions tot of the imaginary compact roots in�(g, h), together
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with the restrictions tot of each pair{α, θα} of complex roots in�(g, h).
Also the dimension ofa0 is the number of 2-element orbits in the Vogan
diagram and is therefore 2 in each case.

We can tell which roots are complex, and we need to know how to decide
which imaginary roots are compact. This determination can be carried out
by induction on the level in the expansion in terms of simple roots. Thus
suppose thatα andβ are positive roots withβ simple, and

E I k0 = sp(4)

E IV k0 = f4

FIGURE 6.3. Noncompact noncomplex exceptional simple real Lie
algebras with a nontrivial automorphism in the Vogan diagram

supposeα + β is an imaginary root. Ifβ is imaginary, then (6.99) set-
tles matters. Otherwiseβ is complex simple, and Figure 6.3 shows that
〈β, θβ〉 = 0. Therefore the following proposition settles matters forg0 as
in Figure 6.3 and allows us to complete the induction.

Proposition 6.104. For a connected Vogan diagram involving a non-
trivial automorphism, suppose thatα andβ are positive roots, thatβ is
complex simple, thatβ is orthogonal toθβ, and thatα +β is an imaginary
root. Thenα − θβ is an imaginary root, andα − θβ andα + β have the
same type, compact or noncompact.

PROOF. Taking the common length of all roots to be 2, we have

1 = 2 − 1 = 〈β, β〉 + 〈β, α〉 = 〈β, α + β〉
= 〈θβ, θ(β + α)〉 = 〈θβ, α + β〉 = 〈θβ, α〉 + 〈θβ, β〉 = 〈θβ, α〉.

Thusα − θβ is a root, and we have

α + β = θβ + (α − θβ) + β.

Sinceα + β is imaginary,α − θβ is imaginary. Therefore we can write
θ Xα−θβ = s Xα−θβ with s = ±1. Writeθ Xβ = t Xθβ andθ Xθβ = t Xβ with
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t = ±1. Then we have

θ [[ Xθβ, Xα−θβ ], Xβ ] = [[θ Xθβ, θ Xα−θβ ], θ Xβ ]

= st2[[ Xβ, Xα−θβ ], Xθβ ]

= −s[[ Xα−θβ, Xθβ ], Xβ ] − s[[ Xθβ, Xβ ], Xα−θβ ]

= −s[[ Xα−θβ, Xθβ ], Xβ ]

= s[[ Xθβ, Xα−θβ ], Xβ ],

and the proof is complete.

Let us summarize our results.

Theorem 6.105(classification). Up to isomorphism every simple real
Lie algebra is in the following list, and everything in the list is a simple
real Lie algebra:

(a) the Lie algebragR, whereg is complex simple of typeAn for n ≥ 1,
Bn for n ≥ 2, Cn for n ≥ 3, Dn for n ≥ 4, E6, E7, E8, F4, or G2,

(b) the compact real form of anyg as in (a),
(c) the classical matrix algebras

su(p, q) with p ≥ q > 0, p + q ≥ 2
so(p, q) with p > q > 0, p + q odd, p + q ≥ 5

or with p ≥ q > 0, p + q even, p + q ≥ 8
sp(p, q) with p ≥ q > 0, p + q ≥ 3
sp(n, R) with n ≥ 3
so∗(2n) with n ≥ 4
sl(n, R) with n ≥ 3
sl(n, H) with n ≥ 2,

(d) the 12 exceptional noncomplex noncompact simple Lie algebras
given in Figures 6.2 and 6.3.

The only isomorphism among Lie algebras in the above list isso∗(8) ∼=
so(6, 2).

REMARKS. The restrictions on rank in (a) prevent coincidences in
Dynkin diagrams. These restrictions are maintained in (b) and (c) for
the same reason. In the case ofsl(n, R) andsl(n, H), the restrictions onn
force the automorphism to be nontrivial. In (c) there are no isomorphisms
within a series because thek0’s are different. To have an isomorphism
between members of two series, we need at least two series with the same
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Dynkin diagram and automorphism. Then we examine the possibilities
and are led to compareso∗(8) with so(6, 2). The standard Vogan diagrams
for these two Lie algebras are isomorphic, and hence the Lie algebras are
isomorphic by Theorem 6.74.

11. Restricted Roots in the Classification

Additional information about the simple real Lie algebras of §10 comes
by switching from a maximally compact Cartan subalgebra to a maximally
noncompact Cartan subalgebra. The switch exposes the system of restricted
roots, which governs the Iwasawa decomposition and some further structure
theory that will be developed in Chapter VII.

According to §7 the switch in Cartan subalgebra is best carried out
when we can find a maximal strongly orthogonal sequence of noncompact
imaginary roots such that, after application of the Cayley transforms, no
noncompact imaginary roots remain. Ifg0 is a noncomplex simple real Lie
algebra and if we have a Vogan diagram forg0 as in Theorem 6.96, such a
sequence is readily at hand by an inductive construction. We start with a
noncompact imaginary simple root, form the set of roots orthogonal to it,
label their compactness or noncompactness by means of Proposition 6.72,
and iterate the process.

EXAMPLE. Let g0 = su(p, n − p) with p ≤ n − p. The distinguished
Vogan diagram is of typeAn−1 with ep − ep+1 as the unique noncompact
imaginary simple root. Since the Dynkin diagram does not have a double
line, orthogonality implies strong orthogonality. The above process yields
the sequence of noncompact imaginary roots

(6.106)

2 fp = ep − ep+1

2 fp−1 = ep−1 − ep+2

...

2 f1 = e1 − e2p.

We do a Cayley transform with respect to each of these. The order is
irrelevant; since the roots are strongly orthogonal, the individual Cayley
transforms commute. It is helpful to use the same names for roots before
and after Cayley transform but always to remember what Cartan subalgebra
is being used. After Cayley transform the remaining imaginary roots are
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those roots involving only indices 2p + 1, . . . , n, and such roots are com-
pact. Thus a maximally noncompact Cartan subalgebra has noncompact
dimensionp. The restricted roots are obtained by projecting allek − el on
the linear span of (6.106). If 1≤ k < l ≤ p, we have

ek − el = 1
2(ek − e2p+1−k) − 1

2(el − e2p+1−l) + (orthogonal to (6.106))

= ( fk − fl) + (orthogonal to (6.106)).

Thus fk − fl is a restricted root. For the samek andl, ek − e2p+1−l restricts
to fk + fl . In addition, ifk + l = 2p +1, thenek − el restricts to 2fk , while
if k ≤ p andl > 2p, thenek − el restricts to fk . Consequently the set of
restricted roots is

� =
{ {± fk ± fl} ∪ {±2 fk} ∪ {± fk} if 2 p < n

{± fk ± fl} ∪ {±2 fk} if 2 p = n.

Thus� is of type(BC)p if 2 p < n and of typeCp if 2 p = n.

We attempt to repeat the construction in the above example for all of the
classical matrix algebras and exceptional algebras in Theorem 6.105, parts
(c) and (d). There is no difficulty when the automorphism in the Vogan
diagram is trivial. However, the cases where the automorphism is nontrivial
require special comment. Except forsl(2n + 1, R), which we can handle
manually, each of these Lie algebras hasβ orthogonal toθβ wheneverβ
is a complex simple root. Then it follows from Proposition 6.104 that any
positive imaginary root is the sum of imaginary simple roots and a number
of pairsβ, θβ of complex simple roots and that the complex simple roots can
be disregarded in deciding compactness or noncompactness. In particular,
sl(n, H) and E IV have no noncompact imaginary roots.

EXAMPLE. Let g0 = E I. The Vogan diagram is

α3 α1

α2 α4

α5 α6
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Let α2 be the first member in the orthogonal sequence of imaginary
noncompact roots. From the theory forD4, a nonobvious root orthogonal
to α2 is α0 = α2 + 2α4 + α3 + α5. This root is imaginary, and no smaller
imaginary root is orthogonal toα2. We can disregard the complex pairα3, α5

in deciding compactness or noncompactness (Proposition 6.104), and we
see thatα0 is noncompact. Following our algorithm, we can expand our
list to α2, α0. The Vogan diagram of the system orthogonal toα2 is

α1 α3

α0

α6 α5

This is the Vogan diagram ofsl(6, R), and we therefore know that the
list extends to

α2, α0, α1 + α0 + α6, α3 + (α1 + α0 + α6) + α5.

Thus the Cayley transforms increase the noncompact dimension of the
Cartan subalgebra by 4 from 2 to 6, and it follows that E I is a split real
form.

It is customary to refer to the noncompact dimension of a maximal
noncompact Cartan subalgebra ofg0 as thereal rank of g0. We are led to
the following information about restricted roots. In the case of the classical
matrix algebras, the results are

(6.107)

g0 Condition Real Rank Restricted Roots
su(p, q) p ≥ q q (BC)q if p > q, Cq if p = q
so(p, q) p ≥ q q Bq if p > q, Dq if p = q
sp(p, q) p ≥ q q (BC)q if p > q, Cq if p = q
sp(n, R) n Cn

so∗(2n) [ n
2] C 1

2 n if n even, (BC) 1
2 (n−1) if n odd

sl(n, R) n − 1 An−1

sl(n, H) n − 1 An−1
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For the exceptional Lie algebras the results are

(6.108)

g0 Real Rank Restricted Roots
E I 6 E6

E II 4 F4

E III 2 (BC)2

E IV 2 A2

E V 7 E7

E VI 4 F4

E VII 3 C3

E VIII 8 E8

E IX 4 F4

F I 4 F4

F II 1 (BC)1

G 2 G2

For the Lie algebras in Theorem 6.105a, the above analysis simplifies.
Hereg is complex simple, and we takeg0 = gR. Let J be multiplication
by

√−1 within gR. If θ is a Cartan involution ofgR, then Corollary 6.22
shows thatθ comes from conjugation ofg with respect to a compact real
form u0. In other words,gR = u0 ⊕ Ju0 with θ(X + JY ) = X − JY . Let
h0 = t0 ⊕ a0 be aθ stable Cartan subalgebra ofgR. Sincet0 commutes
with a0, t0 commutes withJa0. Also a0 commutes withJa0. Sinceh0

is maximal abelian,Ja0 ⊆ t0. Similarly J t0 ⊆ a0. ThereforeJ t0 = a0,
andh0 is actually a complex subalgebra ofg. By Proposition 2.7,h0 is a
(complex) Cartan subalgebra ofg. Let

g = h0 ⊕
⊕
α∈�

gα

be the root-space decomposition. Here eachα is complex linear on the
complex vector spaceh0. Thus distinctα’s have distinct restrictions toa0.
Hence

g
R = a0 ⊕ t0 ⊕

⊕
α∈�

gα

is the restricted-root space decomposition, each restricted-root space being
2-dimensional overR. Consequently the real rank ofgR equals the rank
of g, and the system of restricted roots ofgR is canonically identified (by
restriction or complexification) with the system of roots ofg. In particular
the system� of restricted roots is of the same type (An throughG2) as the
system� of roots.
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The simple real Lie algebras of real-rank one will play a special role in
Chapter VII. From Theorem 6.105 and our determination above of the real
rank of each example, the full list of such Lie algebras is

(6.109)

su(p, 1) with p ≥ 1
so(p, 1) with p ≥ 3
sp(p, 1) with p ≥ 2

F II

Low-dimensional isomorphisms show that other candidates are redundant:

(6.110)

sl(2, C) ∼= so(3, 1)

so(2, 1) ∼= su(1, 1)

sp(1, 1) ∼= so(4, 1)

sp(1, R) ∼= su(1, 1)

so
∗(4) ∼= su(2) ⊕ su(1, 1)

so
∗(6) ∼= su(3, 1)

sl(2, R) ∼= su(1, 1)

sl(2, H) ∼= so(5, 1).

12. Problems

1. Prove that ifg is a complex semisimple Lie algebra, then any two split real
forms ofg are conjugate via Autg.

2. Letg0 = k0 ⊕ p0 be a Cartan decomposition of a real semisimple Lie algebra.
Prove thatk0 is compactly embedded ing0 and that it is maximal with respect
to this property.

3. Let G be semisimple, letg0 = k0 ⊕ p0 be a Cartan decomposition of the Lie
algebra, and letX andY be inp0. Prove that expX expY expX is in expp0.

4. Let g ∈ SL(m, C) be positive definite. Prove thatg can be decomposed as
g = lu, wherel is lower triangular andu is upper triangular.

5. In the development of the Iwasawa decomposition forSO(p, 1)0 and
SU (p, 1), make particular choices of a positive system for the restricted roots,
and computeN in each case.

6. (a) Prove thatg0 = so∗(2n) consists in block form of all complex matrices(
a b

−b̄ ā

)
with a skew Hermitian andb skew symmetric.
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(b) In g0, leth0 be the Cartan subalgebra in (6.102). Assuming that the roots
are±ei ± ej , find the root vectors. Show thatei − ej is compact and
ei + ej is noncompact.

(c) Show that a choice of maximal abelian subspace ofp0 is to takea to be
0 and takeb to be block diagonal and real with blocks of sizes 2, . . . , 2
if n is even and 1, 2, . . . , 2 if n is odd.

(d) Find the restricted-root space decomposition ofg0 relative to the maximal
abelian subspace ofp0 given in (c).

7. Let h0 = t0 ⊕ a0 be a maximally noncompactθ stable Cartan subalgebra,
and leth = t ⊕ a be the complexification. Fix a positive system�+ for the
restricted roots, and introduce a positive system�+ for the roots so that a
nonzero restriction toa0 of a member of�+ is always in�+.
(a) Prove that every simple restricted root for�+ is the restriction of a simple

root for�+.
(b) LetV be the span of the imaginary simple roots. Prove for each simpleαi

not in V that−θαi is in αi ′ + V for a unique simpleαi ′ , so thatαi �→ αi ′

defines a permutation of order 2 on the simple roots not inV .
(c) For each orbit{i, i ′} of one or two simple roots not inV, define an element

H = H{i,i ′} ∈ h by αi (H) = αi ′(H) = 1 andαj (H) = 0 for all other j .
Prove thatH is in a.

(d) Using the elements constructed in (c), prove that the linear span of the
restrictions toa0 of the simple roots has dimension equal to the number
of orbits.

(e) Conclude from (d) that the nonzero restriction toa0 of a simple root for
�+ is simple for�+.

8. The groupK for G = SL(3, R) is K = SO(3), which has a double cover̃K .
ThereforeG itself has a double cover̃G. The groupM = Z K (A) is known
from Example 1 of §5 to be the direct sum of two 2-element groups. Prove
that M̃ = Z K̃ (A) is isomorphic to the subgroup{±1, ±i, ± j, ±k} of the unit
quaternions.

9. Suppose thatD and D′ are Vogan diagrams corresponding tog0 and g′
0,

respectively. Prove that an inclusionD ⊆ D′ induces a one-one Lie algebra
homomorphismg0 → g′

0.

10. LetG be a semisimple Lie group with Lie algebrag0. Fix a Cartan involution
θ and Cartan decompositiong0 = k0 ⊕ p0, and letK be the analytic subgroup
of G with Lie algebrak0. Suppose thatg0 has a Cartan subalgebra contained
in k0.
(a) Prove that there existsk ∈ K such thatθ = Ad(k).
(b) Prove that if� is the system of restricted roots ofg0, then−1 is in the

Weyl group of�.
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11. LetG be a semisimple Lie group with Lie algebrag0. Fix a Cartan involution
θ and Cartan decompositiong0 = k0 ⊕ p0, and letK be the analytic subgroup
of G with Lie algebrak0. Prove that ifg0 does not have a Cartan subalgebra
contained ink0, then there does not existk ∈ K such thatθ = Ad(k).

12. Let t0 ⊕ a0 be a maximally noncompactθ stable Cartan subalgebra. Prove
that if α is a root, thenα + θα is not a root.

13. Forg0 = sl(2n, R), let h(i)
0 consist of all block-diagonal matrices whose first

i blocks are of size 2 of the form

{(
tj θj

−θj tj

)}
, for 1 ≤ j ≤ i , and whose

remaining blocks are 2(n − i) blocks of size 1.

(a) Prove that theh(i)
0 , 0 ≤ i ≤ n, form a complete set of nonconjugate

Cartan subalgebras ofg0.

(b) Relateh
(i)
0 to the maximally compactθ stable Cartan subalgebra of

Example 2 in §8, using Cayley transforms.

(c) Relateh(i)
0 to the maximally noncompactθ stable Cartan subalgebra of

diagonal matrices, using Cayley transforms.

14. The example in §7 constructs four Cartan subalgebras forsp(2, R). The
first one h0 is maximally noncompact, and the last oneh′

0 is maximally
compact. The second one has noncompact part contained inh0 and compact
part contained inh′

0, but the third one does not. Show that the third one is not
even conjugate to a Cartan subalgebra whose noncompact part is contained in
h0 and whose compact part is contained inh′

0.

15. Let a(2n)-by-(2n) matrix be given in block form by

√
2

2

(
1 i
i 1

)
. Define

a mappingX �→ Y of the set of(2n)-by-(2n) complex matrices to itself by

Y =
(

1 i
i 1

)
X

(
1 i
i 1

)−1

.

(a) Prove that the map carriessu(n, n) to an image whose membersY are
characterized by TrY = 0 andJY +Y ∗ J = 0, whereJ is as in Example 2
of §I.8.

(b) Prove that the mapping exhibitssu(n, n) ∩ sp(n, C) as isomorphic with
sp(n, R).

(c) Within g0 = su(n, n) ∩ sp(n, C), let θ be negative conjugate transpose.
Defineh0 to be the Cartan subalgebra in (6.102). Referring to Example 3
in §II.1, find all root vectors and identify which are compact and which
are noncompact. Interpret the above mapping on(g0)

C as a product of
Cayley transformscβ . Which rootsβ are involved?

16. (a) Prove that every element ofSL(2, R) is conjugate to at least one matrix
of the form
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(
a 0
0 a−1

)
,

(
1 t
0 1

)
,

( −1 t
0 −1

)
, or

(
cosθ sinθ

− sinθ cosθ

)
.

Herea is nonzero, andt andθ are arbitrary inR.
(b) Prove that the exponential map fromsl(2, R) into SL(2, R) has image

{X | Tr X > −2} ∪ {−1}.
17. Letg be a simple complex Lie algebra. Describe the Vogan diagram ofgR.

18. This problem examines the effect on the painting in a Vogan diagram when
the positive system is changed from�+ to sα�+, whereα is an imaginary
simple root.
(a) Show that the new diagram is a Vogan diagram with the same Dynkin di-

agram and automorphism and with the painting unchanged at the position
of α and at all positions not adjacent toα.

(b) If α is compact, show that there is no change in the painting of imaginary
roots in positions adjacent toα.

(c) If α is noncompact, show that the painting of an imaginary root at a
position adjacent toα is reversed unless the root is connected by a double
line toα and is long, in which case it is unchanged.

(d) Devise an algorithm for a Vogan diagram of typeAn for a step-by-step
change of positive system so that ultimately at most one simple root is
painted (as is asserted to be possible by Theorem 6.96).

19. In the Vogan diagram from Theorem 6.96 for the Lie algebra F II of §10, the
simple root12(e1 − e2 − e3 − e4) is noncompact, and the simple rootse2 − e3,
e3 − e4, ande4 are compact.
(a) Verify that 1

2(e1 − e2 + e3 + e4) is noncompact.
(b) The roots1

2(e1 − e2 − e3 − e4) and 1
2(e1 − e2 + e3 + e4) are orthogonal

and noncompact, yet (6.108) says that F II has real rank one. Explain.

20. The Vogan diagram of F I, as given by Theorem 6.96, hase2−e3 as its one and
only noncompact simple root. What strongly orthogonal set of noncompact
roots is produced by the algorithm of §11?

21. Verify the assertion in (6.108) that E VII has real rank 3 and restricted roots
of typeC3.

Problems 22–24 give further information about the Cartan decompositiong0 =
k0 ⊕ p0 of a real semisimple Lie algebra. LetB be the Killing form ofg0.

22. Letp′
0 be an adk0 invariant subspace ofp0, and definep′

0
⊥ to be the set of

all X ∈ p0 such thatB(X, p′
0) = 0. Prove thatB([p′

0, p
′
0
⊥], k0) = 0, and

conclude that [p′
0, p

′
0
⊥] = 0.
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23. If p′
0 is an adk0 invariant subspace ofp0, prove that [p′

0, p0] ⊕ p′
0 is an ideal

in g0.

24. Under the additional assumption thatg0 is simple but not compact, prove that

(a) [p0, p0] = k0

(b) k0 is a maximal proper Lie subalgebra ofg0.

Problems 25–27 deal with low-dimensional isomorphisms.

25. Establish the following isomorphisms by using Vogan diagrams:
(a) the isomorphisms in (6.110)
(b) sl(4, R) ∼= so(3, 3), su(2, 2) ∼= so(4, 2), sp(2, R) ∼= so(3, 2)

(c) sp(2) ∼= so(5), su(4) ∼= so(6), su(2) ⊕ su(2) ∼= so(4).

26. (a) Prove that the mapping of Problem 36 of Chapter II gives an isomorphism
of sl(4, R) ontoso(3, 3).

(b) Prove that the mapping of Problem 38 of Chapter II gives an isomorphism
of sp(2, R) ontoso(3, 2).

27. Prove that the Lie algebra isomorphisms of Problem 25b induce Lie group
homomorphismsSL(4, R) → SO(3, 3)0, SU (2, 2) → SO(4, 2)0, and
Sp(2, R) → SO(3, 2)0. What is the kernel in each case?

Problems 28–35 concern quasisplit Lie algebras and inner forms. They use facts
about Borel subalgebras, which are defined in Chapter V. Letg0 be a real semi-
simple Lie algebra with complexificationg, and letσ be the conjugation ofg with
respect tog0: σ(X + iY ) = X − iY for X andY in g0. The Lie algebrag0 is said to
bequasisplit if g has a Borel subalgebrab such thatσ(b) = b. Any split real form
of g is quasisplit. Two real formsg0 andg′

0 of g, with respective conjugationsσ
andσ ′, are said to beinner forms of one another if there existsg ∈ Int g such that
σ ′ = Ad(g) ◦σ ; this is an equivalence relation. This sequence of problems shows
that any real form ofg is an inner form of a quasisplit form, the quasisplit form
being unique up to the action of Intg. The problems also give a useful criterion
for deciding which real forms are quasisplit.

28. Show that the conjugationσm,n of sl(m + n, C) with respect tosu(m, n)

is σm,n(X) = −Im,n X∗ Im,n. Deduce thatsu(m, n) andsu(m ′, n′) are inner
forms of one another ifm + n = m ′ + n′.

29. Letg0 be a real form ofg, and letσ be the corresponding conjugation ofg.
Prove that there exists an automorphism� of Int(gR) whose differential isσ .

30. Problem 35 of Chapter V dealt with a triple(b, h, {Xα}) consisting of a Borel
subalgebrab of g, a Cartan subalgebrah of g that lies inb, and a system
of nonzero root vectors for the simple roots in the positive system of roots
definingb. Let (b′, h′, {Xα′ }) be another such triple. Under the assumption
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that there is a compact Lie algebrau0 that is a real form ofgand has the property
thath0 = h ∩ u0 is a maximal abelian subalgebra ofu0, that problem showed
that there exists an elementg ∈ Int g such that Ad(g)b = b′, Ad(g)h = h′,
and Ad(g){Xα} = {Xα′ }. Prove that the assumption about the existence ofu0

is automatically satisfied and that the elementg is unique.

31. Let g0 be a real form ofg, let σ be the corresponding conjugation ofg,
and let(b, h, {Xα}) be a triple as in Problem 30. Chooseg ∈ Int g as in
that problem carrying the triple(b, h, {Xα}) to the tripleσ(b, h, {Xα}) =
(σ (b), σ (h), σ {Xα}), and letσ ′ = Ad(g)−1 ◦ σ . Prove that(σ ′)2 is in Intg,
deduce that(σ ′)2 = 1, and conclude thatσ ′ is the conjugation ofg with
respect to a quasisplit real formg′

0 of g such thatg0 andg′
0 are inner forms of

one another.

32. Letg0 be a quasisplit real form ofg, let σ be the corresponding conjugation
of g, and letb be a Borel subalgebra ofg such thatσ(b) = b. Writeb = h⊕n

for a Cartan subalgebrah of g, wheren = [b, b]. Let Hδ be the member ofh
corresponding to half the sum of the positive roots, and leth′ be the centralizer
Zb(Hδ + σ(Hδ)). Using Problem 34 of Chapter V, prove thath′ is a Cartan
subalgebra ofg such thatb = h′ ⊕ n andσ(h′) = h′.

33. Letg0 be a real form ofg, and letθ be a Cartan involution ofg0. Prove that
the following are equivalent:
(a) The real formg0 is quasisplit.
(b) If h0 = a0 ⊕ t0 is a maximally noncompactθ stable Cartan subalgebra

of g0 and ifh = hC
0 , then�(g, h) has no imaginary roots.

(c) If g0 = k0 ⊕ p0 is the Cartan decomposition ofg0 with respect toθ and
if a0 is maximal abelian inp0, thenm0 = Zk0(a0) is abelian.

34. Letg0 be a quasisplit real form ofg, letσ be the corresponding conjugation of
g, and letb be a Borel subalgebra ofg such thatσ(b) = b. Using Problem 32,
write b = h ⊕ n for a Cartan subalgebrah of g with σ(h) = h, where
n = [b, b]. Prove that the set{Xα} of root vectors for simple roots can be
chosen so thatσ {Xα} = {Xα}.

35. Let g0 and g′
0 be quasisplit real forms ofg, let σ and σ ′ be their corre-

sponding conjugations ofg, and suppose that(b, h, {Xα}) and(b′, h′, {Xα′ })
are triples as in Problem 30 such thatσ(b, h, {Xα}) = (b, h, {Xα}) and
σ ′(b′, h′, {Xα′ }) = (b′, h′, {Xα′ }). Chooseg ∈ Int g by that problem such
that Ad(g)(b, h, {Xα}) = (b′, h′, {Xα′ }). Prove that ifg0 andg′

0 are inner
forms of one another, then the automorphism Ad(g) ◦ σ ◦ Ad(g)−1 ◦ σ ′ of
g sends(b′, h′, {Xα′ }) to itself and is inner, and conclude thatg0 andg′

0 are
conjugate via Intg.





CHAPTER VII

Advanced Structure Theory

Abstract. The first main results are that simply connected compact semisimple Lie
groups are in one-one correspondence with abstract Cartan matrices and their associated
Dynkin diagrams and that the outer automorphisms of such a group correspond exactly to
automorphisms of the Dynkin diagram. The remainder of the first section prepares for the
definition of a reductive Lie group: A compact connected Lie group has a complexification
that is unique up to holomorphic isomorphism. A semisimple Lie group of matrices is
topologically closed and has finite center.

Reductive Lie groupsG are defined as 4-tuples(G, K , θ, B) satisfying certain com-
patibility conditions. HereG is a Lie group,K is a compact subgroup,θ is an involution
of the Lie algebrag0 of G, andB is a bilinear form ong0. Examples include semisimple
Lie groups with finite center, any connected closed linear group closed under conjugate
transpose, and the centralizer in a reductive group of aθ stable abelian subalgebra of the
Lie algebra. The involutionθ , which is called the “Cartan involution” of the Lie algebra, is
the differential of a global Cartan involution� of G. In terms of�, G has a global Cartan
decomposition that generalizes the polar decomposition of matrices.

A number of properties of semisimple Lie groups with finite center generalize to re-
ductive Lie groups. Among these are the conjugacy of the maximal abelian subspaces of
the−1 eigenspacep0 of θ , the theory of restricted roots, the Iwasawa decomposition, and
properties of Cartan subalgebras. The chapter addresses also some properties not discussed
in Chapter VI, such as theK ApK decomposition and the Bruhat decomposition. HereAp

is the analytic subgroup corresponding to a maximal abelian subspace ofp0.
The degree of disconnectedness of the subgroupMp = Z K (Ap) controls the disconnect-

edness of many other subgroups ofG. The most complete description ofMp is in the case
thatG has a complexification, and then serious results from Chapter V about representation
theory play a decisive role.

Parabolic subgroups are closed subgroups containing a conjugate ofMpApNp. They are
parametrized up to conjugacy by subsets of simple restricted roots. A Cartan subgroup is
defined to be the centralizer of a Cartan subalgebra. It has only finitely many components,
and each regular element ofG lies in one and only one Cartan subgroup ofG. WhenG has
a complexification, the component structure of Cartan subgroups can be identified in terms
of the elements that generateMp.

A reductive Lie groupG that is semisimple has the property thatG/K admits a complex
structure withG acting holomorphically if and only if the centralizer ing0 of the center of
the Lie algebrak0 of K is justk0. In this case,G/K may be realized as a bounded domain in
someCn by means of the Harish-Chandra decomposition. The proof of the Harish-Chandra
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decomposition uses facts about parabolic subgroups. The spacesG/K of this kind may be
classified easily by inspection of the classification of simple real Lie algebras in Chapter VI.

1. Further Properties of Compact Real Forms

Some aspects of compact real forms of complex semisimple Lie algebras
were omitted in Chapter VI in order to move more quickly toward the
classification of simple real Lie algebras. We take up these aspects now
in order to prepare for the more advanced structure theory to be discussed
in this chapter. The topics in this section are classification of compact
semisimple Lie algebras and simply connected compact semisimple Lie
groups, complex structures on semisimple Lie groups whose Lie algebras
are complex, automorphisms of complex semisimple Lie algebras, and
properties of connected linear groups with reductive Lie algebra. Toward
the end of this section we discuss Weyl’s unitary trick.

Proposition 7.1. The isomorphism classes of compact semisimple Lie
algebrasg0 and the isomorphism classes of complex semisimple Lie alge-
brasg are in one-one correspondence, the correspondence being thatg is
the complexification ofg0 andg0 is a compact real form ofg. Under this
correspondence simple Lie algebras correspond to simple Lie algebras.

REMARK. The proposition implies that the complexification of a com-
pact simple Lie algebra is simple. It then follows from Theorem 6.94 that
a compact simple Lie algebra is never complex.

PROOF. If a compact semisimpleg0 is given, we know that its complex-
ification g is complex semisimple. In the reverse direction Theorem 6.11
shows that any complex semisimpleg has a compact real form, and Corol-
lary 6.20 shows that the compact real form is unique up to isomorphism.
This proves the correspondence. If a complexg is simple, then it is trivial
that any real form is simple.

Conversely suppose thatg0 is compact simple. Arguing by contradiction,
suppose that the complexificationg is semisimple but not simple. Writeg
as the direct sum of simple idealsgi by Theorem 1.54, and let(gi)0 be a
compact real form ofgi as in Theorem 6.11. The Killing forms of distinct
gi ’s are orthogonal, and it follows that the Killing form of the direct sum of
the(gi)0’s is negative definite. By Proposition 4.27, the direct sum of the
(gi)0’s is a compact real form ofg. By Corollary 6.20 the direct sum of the
(gi)0’s is isomorphic tog0 and exhibitsg0 as semisimple but not simple,
contradiction.
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Proposition 7.2.The isomorphism classes of simply connected compact
semisimple Lie groups are in one-one correspondence with the isomor-
phism classes of compact semisimple Lie algebras by passage from a Lie
group to its Lie algebra.

PROOF. The Lie algebra of a compact semisimple group is compact
semisimple by Proposition 4.23. Conversely if a compact semisimple Lie
algebrag0 is given, then the Killing form ofg0 is negative definite by
Corollary 4.26 and Cartan’s Criterion for Semisimplicity (Theorem 1.45).
Consequently Intg0 is a subgroup of a compact orthogonal group. On the
other hand, Propositions 1.120 and 1.121 show that Intg0

∼= (Aut g0)0 and
hence that Intg0 is closed. Thus Intg0 is a compact connected Lie group
with Lie algebra adg0

∼= g0. By Weyl’s Theorem (Theorem 4.69) a uni-
versal covering group of Intg0 is a simply connected compact semisimple
group with Lie algebrag0. Since two simply connected analytic groups
with isomorphic Lie algebras are isomorphic, the proposition follows.

Corollary 7.3. The isomorphism classes of

(a) simply connected compact semisimple Lie groups,
(b) compact semisimple Lie algebras,
(c) complex semisimple Lie algebras,
(d) reduced abstract root systems, and
(e) abstract Cartan matrices and their associated Dynkin diagrams

are in one-one correspondence by passage from a Lie group to its Lie
algebra, then to the complexification of the Lie algebra, and then to the
underlying root system.

PROOF. The correspondence of (a) to (b) is addressed by Proposition
7.2, that of (b) to (c) is addressed by Proposition 7.1, and that of (c) to (d)
to (e) is addressed by Chapter II.

Proposition 7.4. A semisimple Lie groupG whose Lie algebrag is
complex admits uniquely the structure of a complex Lie group in such a
way that the exponential mapping is holomorphic.

REMARK. The proof will invoke Proposition 1.110, which in the general
case made use of the complex form of Ado’s Theorem (Theorem B.8). For
semisimpleG, the use of Ado’s Theorem is not necessary. One has only
to invoke the matrix-group form of Proposition 1.110 for the matrix group
Ad(G) and then lift the complex structure from Ad(G) to the covering
groupG. As a result of this proposition, we may speak unambiguously of
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acomplex semisimple Lie groupas being a semisimple Lie group whose
Lie algebra is complex.

PROOF. For existence, suppose thatg is complex. Then the converse
part of Proposition 1.110 shows thatG admits the structure of a complex
Lie group compatibly with the multiplication-by-i mapping withing, and
the direct part of Proposition 1.110 says that the exponential mapping is
holomorphic. For uniqueness, suppose thatG is complex with a holomor-
phic exponential mapping. Since exp is invertible as a smooth function on
some open neighborhoodV of the identity,(V, exp−1) is a chart for the
complex structure onG, and the left translates(LgV, exp−1 ◦L−1

g ) form an
atlas. This atlas does not depend on what complex structure makesG into
a complex Lie group with holomorphic exponential mapping, and thus the
complex structure is unique.

Proposition 7.5.A complex semisimple Lie group necessarily has finite
center. LetG andG ′ be complex semisimple Lie groups, and letK and
K ′ be the subgroups fixed by the respective global Cartan involutions of
G andG ′. ThenK andK ′ are compact, and a homomorphism ofK into
K ′ as Lie groups induces a holomorphic homomorphism ofG into G ′. If
the homomorphismK → K ′ is an isomorphism, then the holomorphic
homomorphismG → G ′ is a holomorphic isomorphism.

PROOF. If G has Lie algebrag, then the most general Cartan decom-
position ofgR is gR = g0 ⊕ ig0, whereg0 is a compact real form ofg
by Proposition 6.14 and Corollary 6.19. The Lie algebrag0 is compact
semisimple, and Weyl’s Theorem (Theorem 4.69) shows that the corre-
sponding analytic subgroupK is compact. Theorem 6.31f then shows that
G has finite center.

In a similar fashion letg′ be the Lie algebra ofG ′. We may suppose that
there is a Cartan decompositiong′R = g′

0 ⊕ ig′
0 of g′R such thatK ′ is the

analytic subgroup ofG ′ with Lie algebrag′
0. As with K , K ′ is compact.

A homomorphismϕ of K into K ′ yields a homomorphismdϕ of g0 into
g′

0, and this extends uniquely to a complex-linear homomorphism, also
denoteddϕ, of g into g′. Let G̃ be a universal covering group ofG, let
e : G̃ → G be the covering homomorphism, and letK̃ be the analytic
subgroup of̃G with Lie algebrag0. SinceG̃ is simply connected,dϕ lifts
to a smooth homomorphism̃ϕ of G̃ into G ′.

We want to see that̃ϕ descends to a homomorphism ofG into G ′. To
see this, we show that̃ϕ is 1 on the kernel ofe. The restrictioñϕ|K̃ and the
compositionϕ◦(e|K̃ )both havedϕ as differential. Therefore they are equal,
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andϕ̃ is 1 on the kernel ofe|K̃ . Theorem 6.31e shows that the kernel ofe
in G̃ is contained iñK , and it follows that̃ϕ descends to a homomorphism
of G into G ′ with differentialdϕ. Let us call this homomorphismϕ. Then
ϕ is a homomorphism between complex Lie groups, and its differential is
complex linear. By Proposition 1.110,ϕ is holomorphic.

If the given homomorphism is an isomorphism, then we can reverse the
roles ofG andG ′, obtaining a holomorphic homomorphismψ : G ′ → G
whose differential is the inverse ofdϕ. Sinceψ ◦ ϕ and ϕ ◦ ψ have
differential the identity,ϕ andψ are inverses. Thereforeϕ is a holomorphic
isomorphism.

Corollary 7.6. If G is a complex semisimple Lie group, thenG is
holomorphically isomorphic to a complex Lie group of matrices.

PROOF. Let g be the Lie algebra ofG, let gR = g0 ⊕ ig0 be a Cartan
decomposition ofgR, and letK be the analytic subgroup ofG with Lie
algebrag0. The groupK is compact by Proposition 7.5. By Corollary
4.22, K is isomorphic to a closed linear group, sayK ′, and there is no
loss of generality in assuming that the members ofK ′ are inGL(V ) for a
real vector spaceV . Let g′

0 be the linear Lie algebra ofK ′, and write the
complexificationg′ of g′

0 as a Lie algebra of complex endomorphisms of
V C. If G ′ is the analytic subgroup ofGL(V C) with Lie algebrag′, thenG ′

is a complex Lie group by Corollary 1.116 sinceGL(V C) is complex and
g′ is closed under multiplication byi . Applying Proposition 7.5, we can
extend the isomorphism ofK ontoK ′ to a holomorphic isomorphism ofG
ontoG ′. ThusG ′ provides the required complex Lie group of matrices.

Let G be a semisimple Lie group, and suppose thatGC is a complex
semisimple Lie group such thatG is an analytic subgroup ofGC and the Lie
algebra ofGC is the complexification of the Lie algebra ofG. Then we say
thatGC is acomplexificationof G and thatG has a complexificationGC.
For example,SU (n)andSL(n, R)both haveSL(n, C)as complexification.
Because of Corollary 7.6 it will follow from Proposition 7.9 below that ifG
has a complexificationGC, thenG is necessarily closed inGC. Not every
semisimple Lie group has a complexification; because of Corollary 7.6, the
example at the end of §VI.3 shows that a double cover ofSL(2, R) has no
complexification. IfG has a complexification, then the complexification
is not necessarily unique up to isomorphism. However, Proposition 7.5
shows that the complexification is unique ifG is compact.

We now use the correspondence of Corollary 7.3 to investigate automor-
phisms of complex semisimple Lie algebras.
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Lemma 7.7.Let G be a complex semisimple Lie group with Lie algebra
g, let h be a Cartan subalgebra ofg, and let�+(g, h) be a positive system
for the roots. IfH denotes the analytic subgroup ofG with Lie algebra
h, then any member of Intg carryingh to itself and�+(g, h) to itself is in
Adg(H).

PROOF. The construction of Theorem 6.11 produces a compact real
form g0 of g such thatg0 ∩ h = h0 is a maximal abelian subspace ofg0.
The decompositiongR = g0 ⊕ ig0 is a Cartan decomposition ofgR by
Proposition 6.14, and we letθ be the Cartan involution. LetK be the
analytic subgroup ofG with Lie algebrag0. The subgroupK is compact
by Proposition 7.5. IfT is the analytic subgroup ofK with Lie algebrah0,
thenT is a maximal torus ofK .

Let g be in G, and suppose that Ad(g) carriesh to itself and�+(g, h)

to itself. By Theorem 6.31 we can writeg = k expX with k ∈ K and
X ∈ ig0. The map Ad(�g) is the differential at 1 ofg �→ (�g)x(�g)−1 =
�(g(�x)g−1), hence isθAd(g)θ . Sinceθh = h, Ad(�g) carriesh to
itself. Therefore so does Ad((�g)−1g) = Ad(exp 2X).

The linear transformation Ad(exp 2X) is diagonable ongR with positive
eigenvalues. Since it carriesh to h, there exists a real subspaceh′ of gR

carried to itself by Ad(exp 2X) such thatgR = h ⊕ h′. The transformation
Ad(exp 2X) has a unique diagonable logarithm with real eigenvalues, and
there are two candidates for this logarithm. One is ad 2X , and the other
is the sum of the logarithms onh andh′ separately. By uniqueness we
conclude that ad 2X carriesh to h. By Proposition 2.7,X is in h.

Therefore expX is in H , and it is enough to show thatk is in T . Here
k is a member ofK such that Ad(k) leavesh0 stable and�+(g, h) stable.
Since Ad(k) leavesh0 stable, Theorem 4.54 says that Ad(k) is in the Weyl
groupW (g, h). Since Ad(k) leaves�+(g, h) stable, Theorem 2.63 says
that Ad(k) yields the identity element inW (g, h). Therefore Ad(k) is 1 on
h, andk commutes withT . By Corollary 4.52,k is in T .

Theorem 7.8. If g0 is a compact semisimple Lie algebra andg is its
complexification, then the following three groups are canonically isomor-
phic:

(a) AutR g0/Int g0,
(b) AutC g/Int g, and
(c) the group of automorphisms of the Dynkin diagram ofg.

PROOF. By Proposition 7.4 letG be a simply connected complex Lie
group with Lie algebrag, for example a universal covering group of Intg.
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The analytic subgroupK with Lie algebrag0 is simply connected by
Theorem 6.31, andK is compact by Proposition 7.5.

Fix a maximal abelian subspaceh0 of g0, let �+(g, h) be a positive
system of roots, and letT be the maximal torus ofK with Lie algebra
h0. Let D be the Dynkin diagram ofg, and let AutD be the group of
automorphisms ofD. Any member of AutR g0 extends by complexifying
to a member of AutC g, and members of Intg0 yield members of Intg. Thus
we obtain a group homomorphism� : AutRg0/Int g0 → AutC g/Int g.

Let us observe that� is onto. In fact, if a memberϕ of AutC g is given,
thenϕ(g0) is a compact real form ofg. By Corollary 6.20 we can adjustϕ by
a member of Intg so thatϕ carriesg0 into itself. Thus some automorphism
of g0 is carried to the coset ofϕ under�.

We shall construct a group homomorphism� : AutC g/Int g → Aut D.
Letϕ ∈ AutC gbe given. Sinceh is a Cartan subalgebra ofg (by Proposition
2.13),ϕ(h) is another Cartan subalgebra. By Theorem 2.15 there exists
ψ1 ∈ Int g with ψ1ϕ(h) = h. Thenψ1ϕ maps�(g, h) to itself and carries
�+(g, h) to another positive system(�+)′(g, h). By Theorem 2.63 there
exists a unique memberw of the Weyl groupW (g, h) carrying(�+)′(g, h)

to �+(g, h). Theorem 4.54 shows thatw is implemented by a member of
Ad(K ), hence by a memberψ2 of Int g. Thenψ2ψ1ϕ maps�+(g, h) to
itself and yields an automorphism of the Dynkin diagram.

Let us see the effect of the choices we have made. With different choices,
we would be led to someψ ′

2ψ
′
1ϕ mapping�+(g, h) to itself, and the claim

is that we get the same member of AutD. In fact the compositionψ =
(ψ ′

2ψ
′
1ϕ)◦(ψ2ψ1ϕ)−1 is in Intg. Lemma 7.7 shows thatψ acts as the identity

on h, and hence the automorphism of the Dynkin diagram corresponding
to ψ is the identity. Thereforeψ2ψ1ϕ andψ ′

2ψ
′
1ϕ lead to the same member

of Aut D.
Consequently the above construction yields a well defined function�

from AutC g/Int g into Aut D. Since we can adjust anyϕ ∈ AutC g by
a member of Intg so thath maps to itself and�+(g, h) maps to itself, it
follows that� is a homomorphism.

Let us prove that� ◦ � is one-one. Thus letϕ ∈ AutR g0 lead to the
identity element of AutD. Write ϕ also for the corresponding complex-
linear automorphism ong. Theorem 4.34 shows that we may adjustϕ by a
member of Intg0 so thatϕ carriesh0 to itself, and Theorems 2.63 and 4.54
show that we may adjustϕ further by a member of Intg0 so thatϕ carries
�+(g, h) to itself. Let Eαi be root vectors for the simple rootsα1, . . . , αl

of g. Sinceϕ is the identity onh, ϕ(Eαi ) = ci Eαi for nonzero constants



440 VII. Advanced Structure Theory

c1, . . . , cl . For each j , let xj be any complex number withexj = cj .
Choose, for 1≤ i ≤ l, membershj of h with αi(hj) = δi j , and put
g = exp

( ∑l
j=1 xj hj

)
. The elementg is in H . Then Ad(g)(Eαi ) = ci Eαi

for eachi . Consequently Ad(g) is a member of Intg that agrees withϕ
on h and on eachEαi . By the Isomorphism Theorem (Theorem 2.108),
ϕ = Ad(g).

To complete the proof that� ◦ � is one-one, we show thatg is in T .
We need to see that|cj | = 1 for all j , so thatxj can be chosen purely
imaginary. First we show thatEαj is a root vector for−αj if bar denotes
the conjugation ofg with respect tog0. In fact, write Eαj = X j + iYj

with X j andYj in g0. If h is in h0, thenαj(h) is purely imaginary. Since
[h0, g0] ⊆ g0, it follows from the equality

[h, X j ] + i [h, Yj ] = [h, Eαj ] = αj(h)Eαj = iαj(h)Yj + αj(h)X j

that [h, X j ] = iαj(h)Yj and i [h, Yj ] = αj(h)X j . Subtracting these two
formulas gives

[h, X j − iYj ] = iαj(h)Yj − αj(h)X j = −αj(h)(X j − iYj)

and shows thatEαj is indeed a root vector for−αj . Hence we find that
[Eαj , Eαj ] is in h. Sinceϕ is complex linear and carriesg0 to itself, ϕ

respects bar. Thereforeϕ(Eαj ) = c̄j Eαj . Sinceϕ fixes every element ofh,
ϕ fixes [Eαj , Eαj ], and it follows thatcj c̄j = 1. We conclude thatg is in T
and that� ◦ � is one-one.

Since� is onto and� ◦ � is one-one, both� and� are one-one. The
fact that� is onto is a consequence of the Isomorphism Theorem (Theorem
2.108) and is worked out in detail in the second example at the end of §II.10.
This completes the proof of the theorem.

Now we take up some properties of Lie groups of matrices to prepare
for the definition of “reductive Lie group” in the next section.

Proposition 7.9. Let G be an analytic subgroup of real or complex
matrices whose Lie algebrag0 is semisimple. ThenG has finite center and
is a closed linear group.

PROOF. Without loss of generality we may assume thatG is an analytic
subgroup ofGL(V ) for a real vector spaceV . Letg0 be the linear Lie alge-
bra ofG, and write the complexificationg of g0 as a Lie algebra of complex
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endomorphisms ofV C. Letg0 = k0⊕p0 be a Cartan decomposition, and let
K be the analytic subgroup ofG with Lie algebrak0. The Lie subalgebra
u0 = k0 ⊕ ip0 of EndC V is a compact semisimple Lie algebra, and we let
U be the analytic subgroup ofGL(V C) with Lie algebrau0. Proposition
7.2 implies that the universal covering group̃U of U is compact, and it
follows thatU is compact. SinceU has discrete center, the centerZU of
U must be finite.

The centerZG of G is contained inK by Theorem 6.31e, andK ⊆ U
sincek0 ⊆ u0. Since Adg(ZG) acts as 1 onu0, we conclude thatZG ⊆ ZU .
ThereforeZG is finite. This proves the first conclusion. By Theorem 6.31f,
K is compact.

SinceU is compact, Proposition 4.6 shows thatV C has a Hermitian inner
product preserved byU . ThenU is contained in the unitary groupU (V C).
Let p(V C) be the vector space of Hermitian transformations ofV C so that
GL(V C) has the polar decompositionGL(V C) = U (V C) expp(V C). The
members ofu0 are skew Hermitian, and hence the members ofk0 are skew
Hermitian and the members ofp0 are Hermitian. Therefore the global
Cartan decompositionG = K expp0 of G that is given in Theorem 6.31c
is compatible with the polar decomposition ofGL(V C).

We are to prove thatG is closed inGL(V C). Let gn = kn expXn tend to
g ∈ GL(V C). Using the compactness ofK and passing to a subsequence,
we may assume thatkn tends tok ∈ K . Therefore expXn converges. Since
the polar decomposition ofGL(V C) is a homeomorphism, it follows that
expXn has limit expX for someX ∈ p(V C). Sincep0 is closed inp(V C),
X is in p0. Thereforeg = k expX exhibitsg as inG, andG is closed.

Corollary 7.10. Let G be an analytic subgroup of real or complex
matrices whose Lie algebrag0 is reductive, and suppose that the identity
component of the center ofG is compact. ThenG is a closed linear group.

REMARK. In this result and some to follow, we shall work with analytic
groups whose Lie algebras are direct sums. IfG is an analytic group whose
Lie algebrag0 is a direct sumg0 = a0 ⊕ b0 of ideals and ifA and B are
the analytic subgroups corresponding toa0 andb0, thenG is a commuting
productG = AB. This fact follows from Proposition 1.122 or may be
derived directly, as in the proof of Theorem 4.29.

PROOF. Write g0 = Zg0 ⊕ [g0, g0] by Corollary 1.56. The analytic
subgroup ofG corresponding toZg0 is (ZG)0, and we letGss be the analytic
subgroup corresponding to [g0, g0]. By the remarks before the proof,G is
the commuting product(ZG)0Gss . The groupGss is closed as a group of
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matrices by Proposition 7.9, and(ZG)0 is compact by assumption. Hence
the set of products, which isG, is closed.

Corollary 7.11. Let G be a connected closed linear group whose Lie
algebrag0 is reductive. Then the analytic subgroupGss of G with Lie
algebra [g0, g0] is closed, andG is the commuting productG = (ZG)0Gss .

PROOF. The subgroupGss is closed by Proposition 7.9, andG is the
commuting product(ZG)0Gss by the remarks with Corollary 7.10.

Proposition 7.12.Let G be a compact connected linear Lie group, and
let g0 be its linear Lie algebra. Then the complex analytic groupGC of
matrices with linear Lie algebrag = g0 ⊕ ig0 is a closed linear group.

REMARKS. If G is a compact connected Lie group, then Corollary 4.22
implies thatG is isomorphic to a closed linear group. IfG is realized
as a closed linear group in two different ways, then this proposition in
principle produces two different groupsGC. However, Proposition 7.5
shows that the two groupsGC are isomorphic. Therefore with no reference
to linear groups, we can speak of the complexificationGC of a compact
connected Lie groupG, andGC is unique up to isomorphism. Proposition
7.5 shows that a homomorphism between two such groupsG andG ′ induces
a holomorphic homomorphism between their complexifications.

PROOF. By Theorem 4.29 let us writeG = (ZG)0Gss with Gss compact
semisimple. Proposition 4.6 shows that we may assume without loss of
generality thatG is a connected closed subgroup of a unitary groupU (n)

for somen, and Corollary 4.7 shows that we may take(ZG)0 to be diagonal.
Let us complexify the decompositiong0 = Zg0 ⊕ [g0, g0] to obtain

gR = Zg0 ⊕ i Zg0 ⊕ [g, g]. The analytic subgroup corresponding toZg0

is G1 = (ZG)0 and is compact. Sincei Zg0 consists of real diagonal
matrices, Corollary 1.134 shows that its corresponding analytic subgroup
G2 is closed. In addition the analytic subgroupG3 with Lie algebra [g, g] is
closed by Proposition 7.9. By the remarks with Corollary 7.10, the group
GC is the commuting product of these three subgroups, and we are to show
that the product is closed.

For G3, negative conjugate transpose is a Cartan involution of its Lie
algebra, and therefore conjugate transpose inverse is a global Cartan in-
volution of G3. ConsequentlyG3 has a global Cartan decomposition
G3 = Gss exp(p3)0, where(p3)0 = i [g0, g0]. Sincei Zg0 commutes with
(p3)0 and since the polar decomposition of all matrices is a homeomor-
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phism, it follows that the productG2G3 is closed. SinceG1 is compact,
GC = G1G2G3 is closed.

Lemma 7.13.On matrices let� be conjugate transpose inverse, and let
θ be negative conjugate transpose. LetG be a connected abelian closed
linear group that is stable under�, and letg0 be its linear Lie algebra,
stable underθ . Let g0 = k0 ⊕ p0 be the decomposition ofg0 into +1 and
−1 eigenspaces underθ , and letK = {x ∈ G | �x = x}. Then the map
K × p0 → G given by(k, X) �→ k expX is a Lie group isomorphism.

PROOF. The groupK is a closed subgroup of the unitary group and
is compact with Lie algebrak0. Sincep0 is abelian, expp0 is the analytic
subgroup ofG with Lie algebrap0. By the remarks following the statement
of Corollary 7.10,G = K expp0. The smooth mapK × p0 → G is
compatible with the polar decomposition of matrices and is therefore one-
one. It is a Lie group homomorphism sinceG andp0 are abelian. Its
inverse is smooth since the inverse of the polar decomposition of matrices
is smooth (by an argument in the proof of Theorem 6.31).

Proposition 7.14. On matrices let� be conjugate transpose inverse,
and letθ be negative conjugate transpose. LetG be a connected closed
linear group that is stable under�, and letg0 be its linear Lie algebra,
stable underθ . Let g0 = k0 ⊕ p0 be the decomposition ofg0 into +1 and
−1 eigenspaces underθ , and letK = {x ∈ G | �x = x}. Then the map
K × p0 → G given by(k, X) �→ k expX is a diffeomorphism onto.

PROOF. By Proposition 1.59,g0 is reductive. Therefore Corollary 1.56
allows us to writeg0 = Zg0⊕[g0, g0] with [g0, g0] semisimple. The analytic
subgroup ofG with Lie algebraZg0 is (ZG)0, and we letGss be the analytic
subgroup ofG with Lie algebra [g0, g0]. By Corollary 7.11,(ZG)0 andGss

are closed, andG = (ZG)0Gss . It is clear thatZg0and [g0, g0] are stable
underθ , and hence(ZG)0 andGss are stable under�.

Because of the polar decomposition of matrices, the mapK × p0 → G
is smooth and one-one. The parts of this map associated with(ZG)0 and
Gss are onto by Lemma 7.13 and Theorem 6.31, respectively. Since(ZG)0

andGss commute with each other, it follows thatK ×p0 → G is onto. The
inverse is smooth since the inverse of the polar decomposition of matrices
is smooth (by an argument in the proof of Theorem 6.31).

Proposition 7.15(Weyl’s unitary trick). LetG be an analytic subgroup
of complex matrices whose linear Lie algebrag0 is semisimple and is stable
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under the mapθ given by negative conjugate transpose. Letg0 = k0⊕p0 be
the Cartan decomposition ofg0 defined byθ , and suppose thatk0∩ ip0 = 0.
Let U andGC be the analytic subgroups of matrices with respective Lie
algebrasu0 = k0 ⊕ ip0 andg = (k0 ⊕ p0)

C. The groupU is compact.
Suppose thatU is simply connected. IfV is any finite-dimensional complex
vector space, then a representation of any of the following kinds onV leads,
via the formula

(7.16) g = g0 ⊕ ig0 = u0 ⊕ iu0,

to a representation of each of the other kinds. Under this correspondence
invariant subspaces and equivalences are preserved:

(a) a representation ofG on V ,
(b) a representation ofU on V ,
(c) a holomorphic representation ofGC on V ,
(d) a representation ofg0 on V ,
(e) a representation ofu0 on V ,
(f) a complex-linear representation ofg on V .

PROOF. The groupsG,U , andGC are closed linear groups by Proposition
7.9, andU is compact, being a closed subgroup of the unitary group. Since
U is simply connected and its Lie algebra is a compact real form ofg, GC

is simply connected.
We can pass from (c) to (a) or (b) by restriction. Since continuous

homomorphisms between Lie groups are smooth, we can pass from (a)
or (b) to (d) or (e) by taking differentials. Formula (7.16) allows us to
pass from (d) or (e) to (f). SinceGC is simply connected, a Lie algebra
homomorphism as in (f) lifts to a group homomorphism, and the group
homomorphism must be holomorphic since the Lie algebra homomorphism
is assumed complex linear (Proposition 1.110). Thus we can pass from (f)
to (c). If we follow the steps all the way around, starting from (c), we
end up with the original representation, since the differential at the identity
uniquely determines a homomorphism of connected Lie groups. Thus
invariant subspaces and equivalence are preserved.

EXAMPLE. Weyl’s unitary trick gives us a new proof of the fact that
finite-dimensional complex-linear representations of complex semisimple
Lie algebras are completely reducible (Theorem 5.29); the crux of the new
proof is the existence of a compact real form (Theorem 6.11). For the
argument let the Lie algebrag be given, and letG be a simply connected
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complex semisimple group with Lie algebrag. Corollary 7.6 allows us to
regardG as a subgroup ofGL(V C) for some finite-dimensional complex
vector spaceV C. Letu0 be a compact real form ofg, so thatgR = u0 ⊕ iu0,
and letU be the analytic subgroup ofG with Lie algebrau0. Proposition
7.15 notes thatU is compact. By Proposition 4.6 we can introduce a
Hermitian inner product intoV C so thatU is a subgroup of the unitary
group. If a complex-linear representation ofg is given, we can use the
passage (f) to (b) in Proposition 7.15 to obtain a representation ofU . This
is completely reducible by Corollary 4.7, and the complete reducibility of
the given representation ofg follows.

The final proposition shows how to recognize a Cartan decomposition
of a real semisimple Lie algebra in terms of a bilinear form other than the
Killing form.

Proposition 7.17. Let g0 be a real semisimple Lie algebra, letθ be an
involution ofg0, and letB be a nondegenerate symmetric invariant bilinear
form on g0 such thatB(θ X, θY ) = B(X, Y ) for all X and Y in g0. If
the form Bθ (X, Y ) = −B(X, θY ) is positive definite, thenθ is a Cartan
involution ofg0.

PROOF. Let g0 = k0 ⊕ p0 be the decomposition ofg0 into +1 and
−1 eigenspaces underθ , and extendB to be complex bilinear on the
complexificationg of g0. Sinceθ is an involution,u0 = k0 ⊕ ip0 is a Lie
subalgebra ofg = (g0)

C, necessarily a real form. Hereg is semisimple,
and then so isu0. SinceBθ is positive definite,B is negative definite on
k0 and onip0. Also k0 andip0 are orthogonal sinceX ∈ k0 andY ∈ ip0

implies

B(X, Y ) = B(θ X, θY ) = B(X, −Y ) = −B(X, Y ).

HenceB is real valued and negative definite onu0.
By Propositions 1.120 and 1.121, Intu0 = (AutR u0)0. Consequently

Int u0 is a closed subgroup ofGL(u0). On the other hand, we have just
seen that−B is an inner product onu0, and in this inner product every
member of adu0 is skew symmetric. Therefore the corresponding analytic
subgroup Intu0 of GL(u0) acts by orthogonal transformations. Since Intu0

is then exhibited as a closed subgroup of the orthogonal group, Intu0 is
compact. Henceu0 is a compact real form ofg. By the remarks preceding
Lemma 6.27,θ is a Cartan involution ofg0.
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2. Reductive Lie Groups

We are ready to define the class of groups that will be the objects of study
in this chapter. The intention is to study semisimple groups, but, as was
already the case in Chapters IV and VI, we shall often have to work with
centralizers of abelian analytic subgroups invariant under a Cartan involu-
tion, and these centralizers may be disconnected and may have positive-
dimensional center. To be able to use arguments that take advantage of
such subgroups and proceed by induction on the dimension, we are forced
to enlarge the class of groups under study. Groups in the enlarged class
are always called “reductive,” but their characterizing properties vary from
author to author. We shall use the following definition.

A reductive Lie group is actually a 4-tuple(G, K , θ, B) consisting of
a Lie groupG, a compact subgroupK of G, a Lie algebra involutionθ of
the Lie algebrag0 of G, and a nondegenerate, Ad(G) invariant,θ invariant,
bilinear formB ong0 such that

(i) g0 is a reductive Lie algebra,
(ii) the decomposition ofg0 into +1 and−1 eigenspaces underθ is

g0 = k0 ⊕ p0, wherek0 is the Lie algebra ofK ,
(iii) k0 andp0 are orthogonal underB, andB is positive definite onp0

and negative definite onk0,
(iv) multiplication, as a map fromK × expp0 into G, is a diffeomor-

phism onto, and
(v) every automorphism Ad(g) of g = (g0)

C is inner for g ∈ G, i.e.,
is given by somex in Int g.

When informality permits, we shall refer to the reductive Lie group
simply asG. Thenθ will be called theCartan involution , g0 = k0 ⊕ p0

will be called theCartan decomposition of g0, K will be called the
associatedmaximal compact subgroup(a name justified by Proposition
7.19a below), andB will be called theinvariant bilinear form .

The idea is that a reductive Lie groupG is a Lie group whose Lie algebra
is reductive, whose center is not too wild, and whose disconnectedness is
not too wild. The various properties make precise the notion “not too wild.”
In particular, property (iv) and the compactness ofK say thatG has only
finitely many components.

We writeGss for the semisimple analytic subgroup ofG with Lie algebra
[g0, g0]. The decomposition ofG in property (iv) is called theglobal
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Cartan decomposition. Sometimes one assumes about a reductive Lie
group that also

(vi) Gss has finite center.

In this case the reductive group will be said to be in theHarish-Chandra
classbecause of the use of axioms equivalent with (i) through (vi) by
Harish-Chandra. Reductive groups in the Harish-Chandra class have often
been the groups studied in representation theory.

EXAMPLES.

1) G is any semisimple Lie group with finite center,θ is a Cartan invo-
lution, K is the analytic subgroup with Lie algebrak0, andB is the Killing
form. Property (iv) and the compactness ofK follow from Theorem 6.31.
Property (v) is automatic sinceG connected makes Ad(G) = Int g0 ⊆ Int g.
Property (vi) has been built into the definition for this example.

2) G is any connected closed linear group of real or complex matrices
closed under conjugate transpose inverse,θ is negative conjugate trans-
pose,K is the intersection ofG with the unitary group, andB(X, Y ) is
Re Tr(XY ). The compactness ofK follows sinceK is the intersection
of the unitary group with the closed group of matricesG. Property (iv)
follows from Proposition 7.14, and property (v) is automatic sinceG is
connected. Property (vi) is automatic for any linear group by Proposition
7.9.

3) G is any compact Lie group satisfying property (v). ThenK = G,
θ = 1, andB is the negative of an inner product constructed as in Propo-
sition 4.24. Properties (i) through (iv) are trivial, and property (vi) follows
from Theorem 4.21. Every finite groupG is trivially an example where
property (v) holds. Property (v) is satisfied by the orthogonal groupO(n)

if n is odd but not byO(n) if n is even.

4) G is any closed linear group of real or complex matrices closed
under conjugate transpose inverse, given as the common zero locus of
some set of real-valued polynomials in the real and imaginary parts of the
matrix entries, and satisfying property (v). Hereθ is negative conjugate
transpose,K is the intersection ofG with the unitary group, andB(X, Y )

is Re Tr(XY ). The compactness ofK follows sinceK is the intersection
of the unitary group with the closed group of matricesG. Properties (iv)
and (vi) follow from Propositions 1.143 and 7.9, respectively. The closed
linear group of real matrices of determinant±1 satisfies property (v) since

Ad(diag(−1, 1, . . . , 1)) = Ad(diag(eiπ(n−1)/n, e−iπ/n, . . . , e−iπ/n)).
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But as noted in Example 3, the orthogonal groupO(n) does not satisfy
property (v) ifn is even.

5) G is the centralizer in a reductive group̃G of a θ stable abelian
subalgebra of the Lie algebra of̃G. HereK is obtained by intersection,
and θ and B are obtained by restriction. The verification thatG is a
reductive Lie group will be given below in Proposition 7.25.

If G is semisimple with finite center and ifK , θ , andB are specified so
that G is considered as a reductive group, thenθ is forced to be a Cartan
involution in the sense of Chapter VI. This is the content of Proposition 7.17.
Hence the new terms “Cartan involution” and “Cartan decomposition”
are consistent with the terminology of Chapter VI in the case thatG is
semisimple.

An alternative way of saying (iii) is that the symmetric bilinear form

(7.18) Bθ (X, Y ) = −B(X, θY )

is positive definite ong0.
We use the notationg, k, p, etc., to denote the complexifications ofg0,

k0, p0, etc. Using complex linearity, we extendθ from g0 to g andB from
g0 × g0 to g × g.

Proposition 7.19.If G is a reductive Lie group, then

(a) K is a maximal compact subgroup ofG,
(b) K meets every component ofG, i.e.,G = K G0,
(c) each member of Ad(K ) leavesk0 andp0 stable and therefore com-

mutes withθ ,
(d) (adX)∗ = −adθ X relative toBθ if X is in g0,
(e) θ leavesZg0 and [g0, g0] stable, and the restriction ofθ to [g0, g0]

is a Cartan involution,
(f) the identity componentG0 is a reductive Lie group (with maxi-

mal compact subgroup obtained by intersection and with Cartan
involution and invariant form unchanged).

PROOF. For (a) assume the contrary, and letK1 be a compact sub-
group of G properly containingK . If k1 is in K1 but not K , write
k1 = k expX according to (iv). Then expX is in K1. By compactness
of K1, (expX)n = expnX has a convergent subsequence inG, but this
contradicts the homeomorphism in (iv).
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Conclusion (b) is clear from (iv). In (c), Ad(K )(k0) ⊆ k0 sinceK has Lie
algebrak0. SinceB is Ad(K ) invariant, Ad(K ) leaves stable the subspace
of g0 orthogonal tok0, and this is justp0.

For (d) we have

Bθ ((adX)Y, Z) = −B((adX)Y, θ Z) = B(Y, [ X, θ Z ])

= B(Y, θ [θ X, Z ]) = Bθ (Y, −(adθ X)Z),

and (d) is proved. Conclusion (e) follows from the facts thatθ is an
involution andBθ is positive definite, and conclusion (f) is trivial.

Proposition 7.20. If G is a reductive Lie group in the Harish-Chandra
class, then

(a) Gss is a closed subgroup,
(b) any semisimple analytic subgroup ofGss has finite center.

REMARK. Because of (b), in checking whether a particular subgroup of
G is reductive in the Harish-Chandra class, property (vi) is automatic for
the subgroup if it holds forG.

PROOF.
(a) Write the global Cartan decomposition of Theorem 6.31c forGss as

Gss = Kss exp(p0∩ [g0, g0]). This is compatible with the decomposition in
(iv). By (vi) and Theorem 6.31f,Kss is compact. HenceKss ×(p0∩[g0, g0])
is closed inK × p0, and (iv) implies thatGss is closed inG.

(b) Let S be a semisimple analytic subgroup ofGss with Lie algebras0.
The group Adg(S) is a semisimple analytic subgroup of the linear group
GL(g) and has finite center by Proposition 7.9. Under Adg, ZS maps into
the center of Adg(S). Hence the image ofZS is finite. The kernel of
Adg on S consists of certain membersx of Gss for which Adg(x) = 1.
Thesex ’s are inZGss , and the kernel is then finite by property (vi) forG.
ConsequentlyZS is finite.

Proposition 7.21. If G is a reductive Lie group, then the function
� : G → G defined by

�(k expX) = k exp(−X) for k ∈ K andX ∈ p0

is an automorphism ofG and its differential isθ .

REMARK. As in the semisimple case,� is called theglobal Cartan
involution .
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PROOF. The function� is a well defined diffeomorphism by (iv). First
consider its restriction to the analytic subgroupGss with Lie algebra [g0, g0].
By Proposition 7.19e the Lie algebra [g0, g0] has a Cartan decomposition

[g0, g0] = ([g0, g0] ∩ k0) ⊕ ([g0, g0] ∩ p0).

If Kss denotes the analytic subgroup ofGss whose Lie algebra is the first
summand on the right side, then Theorem 6.31 shows thatGss consists ex-
actly of the elements inKss exp([g0, g0]∩p0) and that� is an automorphism
on Gss with differentialθ .

Next consider the restriction of� to the analytic subgroup(ZG0)0. By
Proposition 7.19e the Lie algebra of this abelian group decomposes as

Zg0 = (Zg0 ∩ k0) ⊕ (Zg0 ∩ p0).

Since all the subalgebras in question are abelian, the exponential mappings
in question are onto, and(ZG0)0 is a commuting product

(ZG0)0 = exp(Zg0 ∩ k0) exp(Zg0 ∩ p0)

contained inK expp0. Thus� on(ZG0)0 is the lift to the group ofθ on the
Lie algebra and hence is an automorphism of the subgroup(ZG0)0.

The subgroupsGss and (ZG0)0 commute, and hence� is an auto-
morphism of their commuting product, which isG0 by the remarks with
Corollary 7.10.

Now consider� on all ofG, where it is given consistently by�(kg0) =
k�(g0) for k ∈ K andg0 ∈ G0. By Proposition 7.19c we haveθAd(k) =
Ad(k)θ ong0, from which we obtain�(k expX k−1) = k�(expX)k−1 for
k ∈ K andX ∈ g0. Therefore

�(kg0k−1) = k�(g0)k
−1 for k ∈ K andg ∈ G0.

On the product of two general elementskg0 andk ′g′
0 of G, we therefore

have

�(kg0k ′g′
0) = �(kk ′k ′−1g0k ′g′

0) = kk ′�(k ′−1g0k ′g′
0)

= kk ′�(k ′−1g0k ′)�(g′
0)=k�(g0)k

′�(g′
0)=�(kg0)�(k ′g′

0),

as required.
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Lemma 7.22. Let G be a reductive Lie group, and letg = k expX
be the global Cartan decomposition of an elementg of G. If s0 is a θ

stable subspace ofg0 such that Ad(g) normalizess0, then Ad(k) and adX
each normalizes0. If Ad(g) centralizess0, then Ad(k) and adX each
centralizes0.

PROOF. For x ∈ G, we have(�g)x(�g)−1 = �(g(�x)g−1). Differen-
tiating atx = 1, we obtain

(7.23) Ad(�g) = θAd(g)θ.

Therefore Ad(�g) normalizess0. Since�g = k exp(−X), it follows that
Ad of (�g)−1g = exp 2X normalizess0. Because of Proposition 7.19d,
Ad(exp 2X) is positive definite relative toBθ , hence diagonable. Then
there exists a vector subspaces′

0 of g0 invariant under Ad(exp 2X) such
thatg0 = s0 ⊕ s′

0. The transformation Ad(exp 2X) has a unique logarithm
with real eigenvalues, and ad 2X is a candidate for it. Another candidate
is the logarithm on each subspace, which normalizess0 ands′

0. These two
candidates must be equal, and therefore ad 2X normalizess0 ands′

0. Hence
the same thing is true of adX . Then Ad(expX) and Ad(g) both normalize
s0 ands′

0, and the same thing must be true of Ad(k).
If Ad(g) centralizess0, we can go over the above argument to see that

Ad(k) and adX each centralizes0. In fact, Ad(exp 2X) must centralizes0,
the unique real logarithm must be 0 ons0, and adX must be 0 ons0. The
lemma follows.

Lemma 7.24. Let G be a reductive Lie group, and letu0 = k0 ⊕ ip0.
Then Adg(K ) is contained in Intg(u0).

PROOF. The group Intg is complex semisimple with Lie algebra adg(g).
If bar denotes the conjugation ofg with respect tog0, then the extension
Bθ (Z1, Z2) = −B(Z1, θ Z2) is a Hermitian inner product ong, and the
compact real form adg(u0) of adg(g) consists of skew Hermitian transfor-
mations. Hence Intg(u0) consists of unitary transformations and adg(iu0)

consists of Hermitian transformations. Therefore the global Cartan de-
composition of Intg given in Theorem 6.31c is compatible with the polar
decomposition relative toBθ , and every unitary member of Intg is in the
compact real form Intg(u0).

Let k be in K . The transformation Adg(k) is in Intg by property (v)
for G, and Adg(k) is unitary sinceB is Ad(k) invariant and since Ad(k)

commutes with bar andθ (Proposition 7.19c). From the result of the
previous paragraph, we conclude that Adg(k) is in Intg(u0).
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Proposition 7.25. If G is a reductive Lie group andh0 is a θ stable
abelian subalgebra of its Lie algebra, thenZG(h0) is a reductive Lie group.
Here the maximal compact subgroup ofZG(h0) is given by intersection,
and the Cartan involution and invariant form are given by restriction.

REMARK. The hypothesis “abelian” will be used only in the proof of
property (v) forZG(h0), and we shall make use of this fact in Corollary
7.26 below.

PROOF. The groupZG(h0) is closed, hence Lie. Its Lie algebra is
Zg0(h0), which isθ stable. Then it follows, just as in the proof of Corollary
6.29, thatZg0(h0) is reductive. This proves property (i) of a reductive Lie
group. SinceZg0(h0) is θ stable, we have

Zg0(h0) = (Zg0(h0) ∩ k0) ⊕ (Zg0(h0) ∩ p0),

and the first summand on the right side is the Lie algebra ofZG(h0) ∩ K .
This proves property (ii), and property (iii) is trivial.

In view of property (iv) forG, what needs proof in (iv) forZG(h0) is
that Z K (h0) × (Zg0(h0) ∩ p0) maps ontoZG(h0). That is, we need to see
that if g = k expX is the global Cartan decomposition of a memberg of
ZG(h0), thenk is in ZG(h0) andX is in Zg0(h0). But this is immediate from
Lemma 7.22, and (iv) follows.

For property (v) we are to show that AdZg(h) carriesZG(h0) into Int Zg(h).
If x ∈ ZG(h0) is given, then property (iv) allows us to writex = k expX
with k ∈ Z K (h0)andX ∈ Zg0(h0)∩p0. Then AdZg(h)(expX) is in Int Zg(h),
and it is enough to treatk. By Lemma 7.24, Adg(k) is in the subgroup
Intg(u0), which is compact by Proposition 7.9.

The element Adg(k) centralizesh0 and hence centralizes the variant
(h0 ∩ k0)⊕ i(h0 ∩ p0). Since(h0 ∩ k0)⊕ i(h0 ∩ p0) is an abelian subalgebra
of g, the centralizer ofh0 in Intg(u0) is the centralizer of a torus, which is
connected by Corollary 4.51. Therefore Adg(k) is in the analytic subgroup
of Int gwith Lie algebraZu0((h0∩k0)⊕i(h0∩p0)). By Corollary 4.48 we can
write Adg(k) = exp adg Y with Y in this Lie algebra. Then AdZg(h)(k) =
exp adZg(h) Y , andY is in Zg(h). Then AdZg(h)(k) is in Int Zg(h), and (v)
is proved.

Corollary 7.26. If G is a reductive Lie group, then
(a) (ZG0)0 ⊆ ZG ,
(b) ZG is a reductive Lie group (with maximal compact subgroup given

by intersection and with Cartan involution and invariant form given
by restriction).
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PROOF. Property (v) forG gives Adg(G) ⊆ Int g, and Intg acts trivially
on Zg. Hence Ad(G) acts trivially onZg0, andG centralizes(ZG0)0. This
proves (a).

From (a) it follows thatZG has Lie algebraZg0, which is also the
Lie algebra ofZG(g0). Therefore property (v) is trivial for bothZG and
ZG(g0). Proposition 7.25 and its remark show thatZG(g0) is reductive, and
consequently only property (iv) needs proof forZG . We need to see that if
z ∈ ZG decomposes inG under (iv) asz = k expX , thenk is in ZG ∩ K
and X is in Zg0. By Lemma 7.22 we know thatk is in ZG(g0) and X is
in Zg0. Then expX is in (ZG0)0, and (a) shows that expX is in ZG . Since
z and expX are in ZG , so isk. This completes the proof of (iv), and (b)
follows.

Let G be reductive. Since adg g carries [g, g] to itself, Intg carries [g, g]
to itself. By (v), Ad(G) normalizes [g0, g0]. Consequently0G = K Gss is
a subgroup ofG.

The vector subspacep0 ∩ Zg0 is an abelian subspace ofg0, and therefore
Zvec = exp(p0 ∩ Zg0) is an analytic subgroup ofG.

Proposition 7.27.If G is a reductive Lie group, then

(a) 0G = K exp(p0 ∩ [g0, g0]), and0G is a closed subgroup,
(b) the Lie algebra0g0 of 0G is k0 ⊕ (p0 ∩ [g0, g0]),
(c) 0G is reductive (with maximal compact subgroupK and with Cartan

involution and invariant form given by restriction),
(d) the center of0G is a compact subgroup ofK ,
(e) Zvec is closed, is isomorphic to the additive group of a Euclidean

space, and is contained in the center ofG,
(f) the multiplication map exhibits0G × Zvec as isomorphic toG.

REMARK. The closed subgroupZvec is called thesplit component
of G.

PROOF.
(a) If we write the global Cartan decomposition ofGss as Gss =

Kss exp(p0 ∩ [g0, g0]), then0G = K exp(p0 ∩ [g0, g0]), and we see from
property (iv) that0G is closed.

(b) Because of (a),0G is a Lie subgroup. Since0G containsK and
Gss , its Lie algebra must containk0 ⊕ (p0 ∩ [g0, g0]). From property
(iv) for G, the formula0G = K exp(p0 ∩ [g0, g0]) shows that dim0g0 =
dimk0 + dim(p0 ∩ [g0, g0]). So0g0 = k0 ⊕ (p0 ∩ [g0, g0]).
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(c) From (b) we see that0g0 is θ stable. From this fact all the properties
of a reductive group are clear except properties (iv) and (v). Property (iv)
follows from (a). For property (v) we know that any Adg(g) for g ∈ 0G is in
Int g. Therefore we can write Adg(g) as a product of elements exp adg(X j)

with X j in [g, g] or Zg. WhenX j is in Zg, exp adg(X j) is trivial. Therefore
Adg(g) agrees with a product of elements exp adg(X j) with X j in [g, g].
Restricting the action to [g, g], we see that Ad[g,g](g) is in Int [g, g].

(d) Conclusion (c) and Corollary 7.26 show that the center of0G is
reductive. The intersection of the Lie algebra of the center withp0 is 0,
and hence property (iv) shows that the center is contained inK .

(e) Sincep0∩Zg0 is a closed subspace ofp0, property (iv) implies thatZvec

is closed and thatZvec is isomorphic to the additive group of a Euclidean
space. Since Intg acts trivially onZg, property (v) implies that Ad(g) = 1
onp0 ∩ Zg0 for everyg ∈ G. HenceZvec is contained in the center ofG.

(f) Multiplication is a diffeomorphism, as we see by combining (a),
property (iv), and the formula exp(X + Y ) = expX expY for X in
p0 ∩ [g0, g0] andY in p0 ∩ Zg0. Multiplication is a homomorphism since,
by (e),Zvec is contained in the center ofG.

Reductive Lie groups are supposed to have all the essential structure-
theoretic properties of semisimple groups and to be closed under various
operations that allow us to prove theorems by induction on the dimension
of the group. The remainder of this section will be occupied with reviewing
the structure theory developed in Chapter VI to describe how the results
should be interpreted for reductive Lie groups.

The first remarks concern the Cartan decomposition. The decomposi-
tion on the Lie algebra level is built into the definition of reductive Lie
group, and the properties of the global Cartan decomposition (generalizing
Theorem 6.31) are given partly in property (iv) of the definition and partly
in Proposition 7.21.

It might look as if property (iv) would be a hard thing to check for
a particular candidate for a reductive group. It is possible to substitute
various axioms concerning the component structure ofG that are easier to
state, but it is often true that ones gets at the component structure by first
proving (iv). Proposition 1.143 and Lemma 7.22 provide examples of this
order of events; the global Cartan decomposition in those cases implies
that the number of components of the group under study is finite. Thus
property (iv) is the natural property to include in the definition even though
its statement is complicated.

The other two general structure-theoretic topics in Chapter VI are the
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Iwasawa decomposition and Cartan subalgebras. Let us first extend the
notion of an Iwasawa decomposition to the context of reductive Lie groups.
Let a reductive Lie groupG be given, and write its Lie algebra asg0 =
Zg0 ⊕ [g0, g0]. Let a0 be a maximal abelian subspace ofp0. Certainlya0

containsp0 ∩ Zg0, and thereforea0 is of the form

(7.28) a0 = (p0 ∩ Zg0) ⊕ (a0 ∩ [g0, g0]),

wherea0∩ [g0, g0] is a maximal abelian subspace ofp0∩ [g0, g0]. Theorem
6.51 shows that any two maximal abelian subspaces ofp0 ∩ [g0, g0] are
conjugate via Ad(K ), and it follows from (7.28) that this result extends to
our reductiveg0.

Proposition 7.29. Let G be a reductive Lie group. Ifa0 anda′
0 are

two maximal abelian subspaces ofp0, then there is a memberk of K with
Ad(k)a′

0 = a0. The memberk of K can be taken to be inK ∩ Gss . Hence
p0 = ⋃

k∈Kss
Ad(k)a0.

Relative toa0, we can form restricted roots just as in §VI.4. Arestricted
root of g0, also called aroot of (g0, a0), is a nonzeroλ ∈ a∗

0 such that the
space

(g0)λ = {X ∈ g0 | (adH)X = λ(H)X for all H ∈ a0}
is nonzero. It is apparent that such a restricted root is obtained by taking
a restricted root for [g0, g0] and extending it froma0 ∩ [g0, g0] to a0 by
making it be 0 onp0 ∩ Zg0. The restricted-root space decomposition for
[g0, g0] gives us a restricted-root space decomposition forg0. We define
m0 = Zk0(a0), so that the centralizer ofa0 in g0 is m0 ⊕ a0.

The set of restricted roots is denoted�. Choose a notion of positivity for
a∗

0 in the manner of §II.5, as for example by using a lexicographic ordering.
Let �+ be the set of positive restricted roots, and definen0 = ⊕

λ∈�+(g0)λ.
Then n0 is a nilpotent Lie subalgebra ofg0, and we have an Iwasawa
decomposition

(7.30) g0 = k0 ⊕ a0 ⊕ n0

with all the properties in Proposition 6.43.

Proposition 7.31. Let G be a reductive Lie group, let (7.30) be an
Iwasawa decomposition of the Lie algebrag0 of G, and let A and N
be the analytic subgroups ofG with Lie algebrasa0 andn0. Then the
multiplication mapK × A × N → G given by (k, a, n) �→ kan is a
diffeomorphism onto. The groupsA andN are simply connected.
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PROOF. Multiplication is certainly smooth, and it is regular by Lemma
6.44. To see that it is one-one, it is enough, as in the proof of Theorem 6.46,
to see that we cannot havekan = 1 nontrivially. The identitykan = 1
would force the orthogonal transformation Ad(k) to be upper triangular
with positive diagonal entries in the matrix realization of Lemma 6.45, and
consequently we may assume that Ad(k) = Ad(a) = Ad(n) = 1. Thusk,
a, andn are inZG(g0). By Lemma 7.22,a is the exponential of something
in Zg0(g0) = Zg0. Hencea is in Zvec. By constructionn is in Gss , and
hencek andn are in0G. By Proposition 7.27f,a = 1 andkn = 1. But
then the identitykn = 1 is valid in Gss , and Theorem 6.46 implies that
k = n = 1.

To see that multiplication is ontoG, we observe from Theorem 6.46 that
exp(p0∩ [g0, g0]) is in the image. By Proposition 7.27a, the image contains
0G. Also Zvec is in the image (of 1× A × 1), andZvec commutes with0G.
Hence the image contains0G Zvec. This is all ofG by Proposition 7.27f.

We definen−
0 = ⊕

λ∈�+(g0)−λ. Thenn
−
0 is a nilpotent Lie subalgebra

of g0, and we letN − be the corresponding analytic subgroup. Since−�+

is the set of positive restricted roots for another notion of positivity ona∗
0,

g0 = k0⊕a0⊕n
−
0 is another Iwasawa decomposition ofg0 andG = K AN −

is another Iwasawa decomposition ofG. The identityθ(g0)λ = (g0)−λ

given in Proposition 6.40c implies thatθn0 = n
−
0 . By Proposition 7.21,

�N = N −.
We write M for the groupZ K (a0). This is a compact subgroup since it

is closed inK , and its Lie algebra isZk0(a0). This subgroup normalizes
each(g0)λ since

ad(H)(Ad(m)Xλ) = Ad(m)ad(Ad(m)−1H)Xλ

= Ad(m)ad(H)Xλ = λ(H)Ad(m)Xλ

for m ∈ M , H ∈ a0, and Xλ ∈ (g0)λ. ConsequentlyM normalizesn0.
ThusM centralizesA and normalizesN . SinceM is compact andAN is
closed,M AN is a closed subgroup.

Reflections in the restricted roots generate a groupW (�), which we call
theWeyl group of �. The elements ofW (�) are nothing more than the
elements of the Weyl group for the restricted roots of [g0, g0], with each
element extended toa∗

0 by being defined to be the identity onp0 ∩ Zg0.
We defineW (G, A) = NK (a0)/Z K (a0). By the same proof as for

Lemma 6.56, the Lie algebra ofNK (a0) is m0. ThereforeW (G, A) is
a finite group.
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Proposition 7.32.If G is a reductive Lie group, then the groupW (G, A)

coincides withW (�).

PROOF. Just as with the corresponding result in the semisimple case
(Theorem 6.57), we know thatW (�) ⊆ W (G, A). Fix a simple system�+

for�. As in the proof of Theorem 6.57, it suffices to show that ifk ∈ NK (a0)

has Ad(k)�+ = �+, thenk is in Z K (a0). By Lemma 7.24, Adg(k) is in
the compact semisimple Lie group Intg(u0), whereu0 = k0 ⊕ ip0. The
connectedness of Intg(u0) is the key, and the remainder of the proof of
Theorem 6.57 is applicable to this situation.

Proposition 7.33. If G is a reductive Lie group, thenM meets every
component ofK , hence every component ofG.

PROOF. Let k ∈ K be given. Since Ad(k)−1(a0) is maximal abelian in
p0, Proposition 7.28 gives usk0 ∈ K0 with Ad(k−1

0 k−1)(a0) = a0. Thus
k−1

0 k−1 normalizesa0. Comparison of Proposition 7.32 and Theorem 6.57
producesk−1

1 ∈ K0 so thatk−1
1 k−1

0 k−1 centralizesa0. Thenkk0k1 is in M ,
andk is in M K0.

Next let us extend the notion of Cartan subalgebras to the context of
reductive Lie groups. We recall from §IV.5 that a Lie subalgebrah0 of g0

is a Cartan subalgebra if its complexificationh is a Cartan subalgebra
of g = (g0)

C. Sinceh must equal its own normalizer (Proposition 2.7), it
follows thatZg ⊆ h. Thereforeh0 must be of the form

(7.34) h0 = Zg0 ⊕ (h0 ∩ [g0, g0]),

whereh0 ∩ [g0, g0] is a Cartan subalgebra of the semisimple Lie algebra
[g0, g0]. By Proposition 2.13 a sufficient condition forh0 to be a Cartan
subalgebra ofg0 is thath0 is maximal abelian ing0 and adg h0 is simulta-
neously diagonable.

As in the special case (4.31), we can form a set of roots�(g, h), which
amount to the roots of [g, g] with respect toh ∩ [g, g], extended toh by
being defined to be 0 onZg. We can form also a Weyl groupW (g, h)

generated by the reflections in the members of�; W (g, h) consists of the
members ofW ([g, g], h ∩ [g, g]) extended tog by being defined to be the
identity onZg.

Because of the form (7.34) of Cartan subalgebras ofg0, Proposition 6.59
implies that any Cartan subalgebra is conjugate via Intg0 to aθ stable Cartan
subalgebra. There are only finitely many conjugacy classes (Proposition
6.64), and these can be related by Cayley transforms.
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The maximally noncompactθ stable Cartan subalgebras are obtained
by adjoining to an Iwasawaa0 a maximal abelian subspace ofm0. As in
Proposition 6.61, all such Cartan subalgebras are conjugate viaK . The
restricted roots relative toa0 are the nonzero restrictions toa0 of the roots
relative to this Cartan subalgebra.

Any maximally compactθ stable Cartan subalgebra is obtained as the
centralizer of a maximal abelian subspace ofk0. As in Proposition 6.61,
all such Cartan subalgebras are conjugate viaK .

Proposition 7.35.Let G be a reductive Lie group. If twoθ stable Cartan
subalgebras ofg0 are conjugate viaG, then they are conjugate viaGss and
in fact by K ∩ Gss .

PROOF. Let h0 andh′
0 beθ stable Cartan subalgebras, and suppose that

Ad(g)(h0) = h′
0. By (7.23), Ad(�g)(h0) = h′

0. If g = k expX with k ∈ K
andX ∈ p0, then it follows that Ad of(�g)−1g = exp 2X normalizesh0.
Applying Lemma 7.22 to exp 2X , we see that [X, h0] ⊆ h0. Therefore
expX normalizesh0, and Ad(k) carriesh0 to h′

0.
Since Ad(k) commutes withθ , Ad(k) carriesh0∩p0 toh′

0∩p0. Leta0 be
a maximal abelian subspace ofp0 containingh0 ∩ p0, and choosek0 ∈ K0

by Proposition 7.29 so that Ad(k0k)(a0) = a0. Comparing Proposition
7.32 and Theorem 6.57, we can findk1 ∈ K0 so thatk1k0k centralizesa0.
Then Ad(k)|a0 = Ad(k−1

0 k−1
1 )|a0, and the elementk ′ = k−1

0 k−1
1 of K0 has the

property that Ad(k ′)(h0∩p0) = h′
0∩p0. Theθ stable Cartan subalgebrash0

and Ad(k ′)−1(h′
0) therefore have the samep0 part, and Lemma 6.62 shows

that they are conjugate viaK ∩ Gss .

3. K AK Decomposition

Throughout this section we letG be a reductive Lie group, and we let
other notation be as in §2.

From the global Cartan decompositionG = K expp0 and from the
equality p0 = ⋃

k∈K Ad(k)a0 of Proposition 7.29, it is immediate that
G = K AK in the sense that every element ofG can be decomposed as
a product of an element ofK , an element ofA, and a second element of
K . In this section we shall examine the degree of nonuniqueness of this
decomposition.

Lemma 7.36.If X is in p0, thenZG(expX) = ZG(RX).
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PROOF. CertainlyZG(RX) ⊆ ZG(expX). In the reverse direction ifg is
in ZG(expX), then Ad(g)Ad(expX) = Ad(expX)Ad(g). By Proposition
7.19d, Ad(expX) is positive definite ong0, thus diagonable. Consequently
Ad(g) carries each eigenspace of Ad(expX) to itself, and it follows that
Ad(g)ad(X) = ad(X)Ad(g). By Lemma 1.118,

(7.37) ad(Ad(g)X) = ad(X).

Write X = Y + Z with Y ∈ Zg0 and Z ∈ [g0, g0]. By property (v) of a
reductive group, Ad(g)Y = Y . Comparing this equality with (7.37), we
see that ad(Ad(g)Z) = ad(Z), hence that Ad(g)Z − Z is in the center of
g0. Since it is in [g0, g0] also, it is 0. Therefore Ad(g)X = X , andg is in
the centralizer ofRX .

Lemma 7.38.If k is in K and ifa anda′ are inA with kak−1 = a′, then
there existsk0 in NK (a0) with k0ak−1

0 = a′.

PROOF. The subgroupZG(a′) is reductive by Lemma 7.36 and Propo-
sition 7.25, and its Lie algebra isZg0(a

′) = {X ∈ g0 | Ad(a′)X = X}.
Now a0 and Ad(k)a0 are two maximal abelian subspaces ofZg0(a

′) ∩ p0

sincekak−1 = a′. By Proposition 7.29 there existsk1 in K ∩ ZG(a′) with
Ad(k1)Ad(k)a0 = a0. Thenk0 = k1k is in NK (a0), and

k0ak−1
0 = k1(kak−1)k−1

1 = k1a′k−1
1 = a′.

Theorem 7.39(K AK decomposition). Every element inG has a de-
composition ask1ak2 with k1, k2 ∈ K anda ∈ A. In this decomposition,
a is uniquely determined up to conjugation by a member ofW (G, A). If
a is fixed as expH with H ∈ a0 and ifλ(H) �= 0 for all λ ∈ �, thenk1 is
unique up to right multiplication by a member ofM .

PROOF. Existence of the decomposition was noted at the beginning of
the section. For uniqueness supposek ′

1a′k ′
2 = k ′′

1ak ′′
2. If k ′ = k1

′′−1k ′
1

andk = k ′
2k ′′

2
−1, thenk ′a′k = a and hence(k ′k)(k−1a′k) = a. By the

uniqueness of the global Cartan decomposition,k ′k = 1 andk−1a′k = a.
Lemma 7.38 then shows thata′ anda are conjugate viaNK (a0).

Now let a = a′ = expH with H ∈ a0 andλ(H) �= 0 for all λ ∈ �.
We have seen thatk−1ak = a. By Lemma 7.36, Ad(k)−1H = H . Since
λ(H) �= 0 for all λ ∈ �, Lemma 6.50 shows thatZg0(H) = a0 ⊕ m0.
Hence the centralizer ofH in p0 is a0, and the centralizer of Ad(k)−1H in
p0 is Ad(k)−1a0. But Ad(k)−1H = H implies that these centralizers are
the same: Ad(k)−1a0 = a0. Thusk is in NK (a0).

By Proposition 7.32, Ad(k) is given by an elementw of the Weyl group
W (�). Sinceλ(H) �= 0 for all λ ∈ �, we can define a lexicographic
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ordering so that the positive restricted roots are positive onH . Then
Ad(k)H = H says thatw permutes the positive restricted roots. By
Theorem 2.63,w = 1. Therefore Ad(k) centralizesa0, andk is in M .

Fromk ′k = 1, we see thatk ′ is in M . Thenk ′ = k1
′′−1k ′

1 shows thatk ′
1

andk ′′
1 differ by an element ofM on the right.

4. Bruhat Decomposition

We continue to assume thatG is a reductive Lie group and that other
notation is as in §2.

We know that the subgroupM = Z K (a0) of K is compact, and we saw
in §2 thatM AN is a closed subgroup ofG. It follows from the Iwasawa
decomposition that the multiplication mapM × A × N → M AN is a
diffeomorphism onto.

The Bruhat decomposition describes the double-coset decomposition
M AN\G/M AN of G with respect toM AN . Here is an example.

EXAMPLE. LetG = SL(2, R). HereM AN =
{(

a b
0 a−1

)}
. The nor-

malizerNK (a0) consists of the four matrices±
(

1 0
0 1

)
and±

(
0 1

−1 0

)
,

while the centralizerZ K (a0) consists of the two matrices±
(

1 0
0 1

)
. Thus

|W (G, A)| = 2, andw̃ =
(

0 −1
1 0

)
is a representative of the nontrivial

element ofW (G, A). Let g =
(

a b
c d

)
be given inG. If c = 0, theng is

in M AN . If c �= 0, then(
0 1

−1 0

) (
a b
c d

)
=

(
c d

−a −b

)
=

(
1 0

−ac−1 1

) (
c d
0 c−1

)
=

(
0 1

−1 0

) (
1 ac−1

0 1

) (
0 −1
1 0

) (
c d
0 c−1

)
.

Hence (
a b
c d

)
=

(
1 ac−1

0 1

) (
0 −1
1 0

) (
c d
0 c−1

)
exhibits

(
a b
c d

)
as in M AN w̃M AN . Thus the double-coset space

M AN\G/M AN consists of two elements, with 1 and̃w as representatives.
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Theorem 7.40(Bruhat decomposition). The set of double cosets of
M AN\G/M AN is parametrized in a one-one fashion byW (G, A), the
double coset corresponding tow ∈ W (G, A) beingM AN w̃M AN , where
w̃ is any representative ofw in NK (a0).

PROOF OF UNIQUENESS. Suppose thatw1 andw2 are inW (G, A), with
w̃1 andw̃2 as representatives, and thatx1 andx2 in M AN have

(7.41) x1w̃1 = w̃2x2.

Now Ad(N ) = exp(ad(n0)) by Theorem 1.127, and hence Ad(N ) carries
a0 to a0 ⊕ n0 while leaving thea0 component unchanged. Meanwhile
under Ad, NK (a0) permutes the restricted-root spaces and thus carries
m0 ⊕ ⊕

λ∈� (g0)λ to itself. Apply Ad of both sides of (7.41) to an element
H ∈ a0 and project toa0 along m0 ⊕ ⊕

λ∈� (g0)λ. The resulting left
side is ina0 ⊕ n0 with a0 component Ad(w̃1)H , while the right side is in
Ad(w̃2)H + Ad(w̃2)(m0 ⊕ n0). Hence Ad(w̃1)H = Ad(w̃2)H . SinceH
is arbitrary,w̃−1

2 w̃1 centralizesa0. Thereforew1 = w2.

The proof of existence in Theorem 7.40 will be preceded by three
lemmas.

Lemma 7.42. Let H ∈ a0 be such thatλ(H) �= 0 for all λ ∈ �. Then
the mappingϕ : N → g0 given byn �→ Ad(n)H − H carriesN onton0.

PROOF. Write n0 = ⊕
(g0)λ as a sum of restricted-root spaces, and

regard the restricted roots as ordered lexicographically. For any restricted
rootα, the subspacenα = ⊕

λ≥α (g0)λ is an ideal, and we prove by induction
downward onα thatϕ carriesNα = expnα ontonα. This conclusion forα
equal to the smallest positive restricted root gives the lemma.

If α is given, we can writenα = (g0)α ⊕ nβ with β > α. Let X be
given innα, and writeX asX1 + X2 with X1 ∈ (g0)α andX2 ∈ nβ . Since
α(H) �= 0, we can chooseY1 ∈ (g0)α with [H, Y1] = X1. Then

Ad(expY1)H − H = (H + [Y1, H ] + 1
2(adY1)

2H + · · · ) − H

= −X1 + (nβ terms),

and hence Ad(expY1)(H + X) − H is in nβ . By inductive hypothesis we
can findn ∈ Nβ with

Ad(n)H − H = Ad(expY1)(H + X) − H.

Then Ad((expY1)
−1n)H − H = X , and the element(expY1)

−1n of Nα is
the required element to complete the induction.
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Lemma 7.43.Let s0 = m0 ⊕ a0 ⊕ n0. Then

(a) n0 ⊕ Zg0 = {Z ∈ s0 | adg(Z) is nilpotent} and
(b) a0 ⊕n0 ⊕ (m0 ∩ Zg0) = {Z ∈ s0 | adg(Z) has all eigenvalues real}.

PROOF. Certainly the left sides in (a) and (b) are contained in the right
sides. For the reverse containments writeZ ∈ s0 as Z = X0 + H + X
with X0 ∈ m0, H ∈ a0, and X ∈ n0. ExtendRX0 to a maximal abelian
subspacet0 of m0, so thata0 ⊕ t0 is a Cartan subalgebra ofg0. Extending
the ordering ofa0 to one ofa0 ⊕ it0 so thata0 is taken beforeit0, we
obtain a positive system�+ for �(g, (a⊕ t)) such that�+ arises as the set
of nonzero restrictions of members of�+. Arrange the members of�+

in decreasing order and form the matrix of adZ in a corresponding basis
of root vectors (with vectors froma ⊕ t used at the appropriate place in
the middle). The matrix is upper triangular. The diagonal entries in the
positions corresponding to the root vectors areα(X0+H) = α(X0)+α(H)

for α ∈ �, and the diagonal entries are 0 in the positions corresponding to
basis vectors ina⊕ t. Hereα(X0) is imaginary , andα(H) is real. To have
adZ nilpotent, we must get 0 for allα. Thus the component ofX0 + H in
[g0, g0] is 0. This proves (a). To have adZ have real eigenvalues, we must
haveα(X0) = 0 for all X ∈ �. Thus the component ofX0 in [g0, g0] is 0.
This proves (b).

Lemma 7.44.For eachg ∈ G, putsg
0 = s0 ∩ Ad(g)s0. Then

s0 = s
g
0 + n0.

PROOF. Certainlys0 ⊇ s
g
0 + n0, and therefore it is enough to show that

dim(s
g
0 + n0) = dims0. SinceG = K AN , there is no loss of generality

in assuming thatg is in K . Write k = g. Let ( · )⊥ denote orthogonal
complement withing0 relative to Bθ . From θ(g0)λ = (g0)−λ, we have
s⊥

0 = θn0. Since Ad(k) acts in an orthogonal fashion,

(7.45)
(s0 + Ad(k)s0)

⊥ = s
⊥
0 ∩ (Ad(k)s0)

⊥ = θn0 ∩ Ad(k)s⊥
0

= θn0 ∩ Ad(k)θn0 = θ(n0 ∩ Ad(k)n0).

Let X be ins0 ∩Ad(k)s0 and inn0. Then adg(X) is nilpotent by Lemma
7.43a. Since adg(Ad(k)−1X) and adg(X) have the same eigenvalues,
adg(Ad(k)−1X) is nilpotent. By Lemma 7.43a, Ad(k)−1X is in n0 ⊕ Zg0.
Since Ad(k) fixes Zg0 (by property (v)), Ad(k)−1X is in n0. ThereforeX
is in Ad(k)n0, and we obtain

(7.46) n0 ∩ Ad(k)n0 = n0 ∩ (s0 ∩ Ad(k)s0) = n0 ∩ s
k
0.
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Consequently

2 dims0 − dims
k
0 = dim(s0 + Ad(k)s0)

= dimg0 − dim(n0 ∩ Ad(k)n0) by (7.45)

= dimg0 − dim(n0 ∩ s
k
0) by (7.46)

= dimg0 + dim(n0 + s
k
0) − dimn0 − dims

k
0,

and we conclude that

dimg0 + dim(n0 + s
k
0) − dimn0 = 2 dims0.

Since dimn0 + dims0 = dimg0, we obtain dim(n0 + sk
0) = dims0, as

required.

PROOF OF EXISTENCE INTHEOREM 7.40. Fix H ∈ a0 with λ(H) �= 0
for all λ ∈ �. Let x ∈ G be given. Sincea0 ⊆ s0, Lemma 7.44 allows us
to write H = X + Y with X ∈ n0 andY ∈ sx

0. By Lemma 7.42 we can
choosen1 ∈ N with Ad(n1)H − H = −X . Then

Ad(n1)H = H − X = Y ∈ s
x
0 ⊆ Ad(x)s0.

So Z = Ad(x−1n1)H is in s0. Since adg Z and adg H have the same
eigenvalues, Lemma 7.43b shows thatZ is in a0 ⊕ n0 ⊕ (m0 ∩ Zg0). Since
Ad(x−1n1)

−1 fixesZg0 (by property (v)),Z is ina0⊕m0. Write Z = H ′+X ′

correspondingly. Here adH and adH ′ have the same eigenvalues, so that
λ(H ′) �= 0 for all λ ∈ �. By Lemma 7.42 there existsn2 ∈ N with
Ad(n2)

−1H ′ − H ′ = X ′. Then Ad(n2)
−1H ′ = H ′ + X ′ = Z , and

H ′ = Ad(n2)Z = Ad(n2x−1n1)H.

The centralizers ofH ′ andH are botha0 ⊕ m0 by Lemma 6.50. Thus

(7.47) Ad(n2x−1n1)(a0 ⊕ m0) = a0 ⊕ m0.

If X is in a0, then adg(X) has real eigenvalues by Lemma 7.43b. Since
adg(Ad(n2x−1n1)X) and adg(X) have the same eigenvalues, Lemma 7.43b
shows that Ad(n2x−1n1)X is ina0⊕(m0∩ Zg0). Since Ad(n2x−1n1)

−1 fixes
Zg0 (by property (v)), Ad(n2x−1n1)X is in a0. We conclude thatn2x−1n1

is in NG(a0).
Letn2x−1n1 = u expX0 be the global Cartan decomposition ofn2x−1n1.

By Lemma 7.22,u is in NK (a0) andX0 is in Ng0(a0). By the same argument
as in Lemma 6.56,Ng0(a0) = a0 ⊕ m0. SinceX0 is in p0, X0 is in a0.
Thereforeu is in NK (a0) and expX0 is in A. In other words,n2x−1n1 is in
u A, andx is in the sameM AN double coset as the memberu−1 of NK (a0).
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5. Structure of M

We continue to assume thatG is a reductive Lie group and that other
notation is as in §2. The fundamental source of disconnectedness in the
structure theory of semisimple groups is the behavior of the subgroup
M = Z K (a0). We shall examineM in this section, paying particular
attention to its component structure. For the first time we shall make
serious use of results from Chapter V.

Proposition 7.48. M is a reductive Lie group.

PROOF. Proposition 7.25 shows thatZG(a0) is a reductive Lie group,
necessarily of the formZ K (a0) exp(Zg0(a0) ∩ p0) = M A. By Proposition
7.27,0(M A) = M is a reductive Lie group.

Proposition 7.33 already tells us thatM meets every component ofG.
But M can be disconnected even whenG is connected. (Recall from the
examples in §VI.5 thatM is disconnected whenG = SL(n, R).) Choose
and fix a maximal abelian subspacet0 of m0. Thena0 ⊕ t0 is a Cartan
subalgebra ofg0.

Proposition 7.49.Every component ofM contains a member ofM that
centralizest0, so thatM = Z M(t0)M0.

REMARK. The proposition says that we may focus our attention on
Z M(t0). After this proof we shall studyZ M(t0) by considering it as a
subgroup ofZ K (t0).

PROOF. If m ∈ M is given, then Ad(m)t0 is a maximal abelian subspace
of m0. By Theorem 4.34 (applied toM0), there existsm0 ∈ M0 such that
Ad(m0)Ad(m)t0 = t0. Thenm0m is in NM(m0). Introduce a positive sys-
tem�+ for the root system� = �(m, t). Then Ad(m0m)�+ is a positive
system for�, and Theorems 4.54 and 2.63 together say that we can find
m1 ∈ M0 such that Ad(m1m0m) maps�+ to itself. By Proposition 7.48,M
satisfies property (v) of reductive Lie groups. Therefore Adm(m1m0m) is in
Int m. Then Adm(m1m0m) must be induced by an element in Intm [m, m],
and Theorem 7.8 says that this element fixes each member of�+. Therefore
m1m0m centralizest0, and the result follows.

Suppose that the rootα in �(g, a ⊕ t) is real, i.e.,α vanishes ont. As
in the discussion following (6.66), the root spacegα in g is invariant under
the conjugation ofg with respect tog0. Since dimC gα = 1, gα contains a
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nonzero root vectorEα that is ing0. Also as in the discussion following
(6.66), we may normalizeEα by a real constant so thatB(Eα, θ Eα) =
−2/|α|2. Put H ′

α = 2|α|−2Hα. Then {H ′
α, Eα, θ Eα} spans a copy of

sl(2, R) with

(7.50) H ′
α ↔ h, Eα ↔ e, θ Eα ↔ − f.

Let us write(g0)α for REα and(g0)−α for Rθ Eα.

Proposition 7.51.The subgroupZG(t0) of G

(a) is reductive with global Cartan decomposition

ZG(t0) = Z K (t0) exp(p0 ∩ Zg0(t0)),

(b) has Lie algebra

Zg0(t0) = t0 ⊕ a0 ⊕
⊕

α∈�(g,a⊕t),
α real

(g0)α,

which is the direct sum of its center with a real semisimple Lie
algebra that is a split real form of its complexification,

(c) is such that the component groups ofG, K , ZG(t0), andZ K (t0) are
all isomorphic.

PROOF. Conclusion (a) is immediate from Proposition 7.25. For (b) it
is clear that

Zg(t0) = t ⊕ a ⊕
⊕

α∈�(g,a⊕t),
α real

gα.

The conjugation ofg with respect tog0 carries every term of the right side
into itself, and therefore we obtain the formula of (b). Herea0 is maximal
abelian inp0 ∩ Zg0(t0), and therefore this decomposition is the restricted-
root space decomposition ofg0. Applying Corollary 6.49 to [g0, g0], we
obtain (b). In (c),G and K have isomorphic component groups as a
consequence of the global Cartan decomposition, andZG(t0) and Z K (t0)

have the same component groups as a consequence of (a). Consider the
natural homomorphism

Z K (t0)/Z K (t0)0 → K/K0

induced by inclusion. Propositions 7.49 and 7.33 show that this map is
onto, and Corollary 4.51 shows that it is one-one. This proves (c).
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We cannot expect to say much about the disconnectedness ofM that
results from the disconnectedness ofG. Thus we shall assume for the
remainder of this section thatG is connected. Proposition 7.51c notes
that ZG(t0) is connected. To studyZG(t0), we shall work with the analytic
subgroup ofZG(t0) whose Lie algebra is [Zg0(t0), Zg0(t0)]. This is the sub-
group that could be calledZG(t0)ss in the notation of §2. It is semisimple,
and its Lie algebra is a split real form. We call the subgroup theassociated
split semisimple subgroup, and we introduce the notationGsplit for it in
order to emphasize that its Lie algebra is split.

Let T be the maximal torus ofM0 with Lie algebrat0. Under the
assumption thatG is connected, it follows from Proposition 7.51b that
ZG(t0) is a commuting product

ZG(t0) = T AGsplit.

By Proposition 7.27,
0ZG(t0) = T Gsplit

is a reductive Lie group.
The groupGsplit need not have finite center, but the structure theory of

Chapter VI is available to describe it. LetKsplit and Asplit be the analytic
subgroups with Lie algebras given as the intersections ofk0 anda0 with
[Zg0(t0), Zg0(t0)]. Let F = Msplit be the centralizer ofAsplit in Ksplit. The
subgroupF will play a key role in the analysis ofM . It centralizes bothT
andA.

Corollary 7.52. The subgroupF normalizesM0, andM = F M0.

PROOF. SinceF centralizesA and is a subgroup ofK , it is a subgroup
of M . ThereforeF normalizesM0, andF M0 is a group. We know from
Proposition 7.49 thatM = Z M(t0)M0. SinceT ⊆ M0, it is enough to prove
that Z M(t0) = T F . The subgroupZ M(t0) is contained inZ K (t0), which in
turn is contained in0ZG(t0) = T Gsplit. SinceZ M(t0) is contained inK , it
is therefore contained inT Ksplit. Decompose a memberm of Z M(t0) in a
corresponding fashion asm = tk. Sincem andt centralizeA, so doesk.
Thereforek is in F = Msplit, and the result follows.

Without additional hypotheses we cannot obtain further nontrivial results
aboutF , and accordingly we recall the following definition from §1.

A semisimple groupG has acomplexification GC if GC is a connected
complex Lie group with Lie algebrag such thatG is the analytic subgroup
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corresponding to the real formg0 of g. By Corollary 7.6,GC is isomorphic
to a matrix group, and hence the same thing is true ofG andGsplit. By
Proposition 7.9, each ofG andGsplit has finite center. Therefore we may
considerG andGsplit in the context of reductive Lie groups.

Fix K , θ , andB for G. If the Cartan decomposition ofg0 isg0 = k0⊕p0,
then

g = (k0 ⊕ ip0) ⊕ (p0 ⊕ ik0)

is a Cartan decomposition ofg, and the corresponding Cartan involution
of g is bar◦ θ , where bar is the conjugation ofg with respect tog0.
The Lie algebrau0 = k0 ⊕ ip0 is compact semisimple, and it follows
from Proposition 7.9 that the corresponding analytic subgroupU of GC is
compact. Then the tuple(GC, U, bar◦θ, B) makesGC into a reductive Lie
group. Whenever a semisimple Lie groupG has a complexificationGC

and we considerG as a reductive Lie group(G, K , θ, B), we may consider
GC as the reductive Lie group(GC, U, bar◦ θ, B).

Under the assumption that the semisimple groupG has a complexifica-
tion GC, expia0 is well defined as an analytic subgroup ofU .

Theorem 7.53.Suppose that the reductive Lie groupG is semisimple
and has a complexificationGC. Then

(a) F = Ksplit ∩ expia0,
(b) F is contained in the center ofM ,
(c) M is the commuting productM = F M0,
(d) F is finite abelian, and every elementf �= 1 in F has order 2.

PROOF.
(a) Every member ofKsplit∩expia0 centralizesa0 and lies inKsplit, hence

lies in F . For the reverse inclusion we haveF ⊆ Ksplit by definition. To
see thatF ⊆ expia0, let Usplit be the analytic subgroup ofGC with Lie
algebra the intersection ofu0 with the Lie algebra [Zg(t0), Zg(t0)]. Then
Usplit is compact, andia0 ∩ [Zg(t0), Zg(t0)] is a maximal abelian subspace
of its Lie algebra. By Corollary 4.52 the corresponding torus is its own
centralizer. Hence the centralizer ofa0 in Usplit is contained in expia0.
SinceKsplit ⊆ Usplit, it follows thatF ⊆ expia0.

(b, c) Corollary 7.52 says thatM = F M0. By (a), every element ofF
commutes with any element that centralizesa0. HenceF is central inM ,
and (b) and (c) follow.

(d) SinceGsplit has finite center,F is compact. Its Lie algebra is 0, and
thus it is finite. By (b),F is abelian. We still have to prove that every
elementf �= 1 in F has order 2.
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SinceG has a complexification, so doesGsplit. Call this groupGC
split,

let G̃C
split be a simply connected covering group, and letϕ be the covering

map. LetG̃split be the analytic subgroup with the same Lie algebra as for
Gsplit, and form the subgroups̃Ksplit and F̃ of G̃split. The subgroup̃F is
the complete inverse image ofF underϕ. Let Ũsplit play the same role for
G̃C

split thatU plays forGC. The automorphismθ of the Lie algebra ofGsplit

complexifies and lifts to an automorphism̃θ of G̃C
split that carries̃Usplit into

itself. The automorphism̃θ acts asx �→ x−1 on expia0 and as the identity
on K̃split. The elements of̃F are the elements of the intersection, by (a),
and hencẽf −1 = f̃ for every element̃f of F̃ . That is f̃ 2 = 1. Applyingϕ

and using the fact thatϕ mapsF̃ onto F , we conclude that every element
f �= 1 in F has order 2.

EXAMPLE. When G does not have a complexification, the subgroup
F need not be abelian. For an example we observe that the groupK
for SL(3, R) is SO(3), which hasSU (2) as a 2-sheeted simply connected
covering group. ThusSL(3, R) has a 2-sheeted simply connected covering
group, and we take this covering group asG. We already noted in §VI.5 that
the groupM for SL(3, R) consists of the diagonal matrices with diagonal
entries±1 and determinant 1. ThusM is the direct sum of two 2-element
groups. The subgroupF of G is the complete inverse image ofM under
the covering map and thus has order 8. Moreover it is a subgroup ofSU (2),
which has only one element of order 2. ThusF is a group of order 8 with
only one element of order 2 and no element of order 8. Of the five abstract
groups of order 8, only the 8-element subgroup{±1, ±i, ± j, ±k} of the
quaternions has this property. This group is nonabelian, and henceF is
nonabelian.

Let α be a real root of�(g, a ⊕ t). From (7.50) we obtain a one-one
homomorphismsl(2, R) → g0 whose only ambiguity is a sign in the defi-
nition of Eα. This homomorphism carriesso(2) to k0 and complexifies to a
homomorphismsl(2, C) → g. Under the assumption thatG is semisimple
and has a complexificationGC, we can form the analytic subgroup ofGC

with Lie algebrasl(2, C). This will be a homomorphic image ofSL(2, C)

sinceSL(2, C) is simply connected. We letγα be the image of
(

−1 0

0 −1

)
.

This element is evidently in the image ofSO(2) ⊆ SL(2, R) and hence
lies in Ksplit. Clearly it does not depend upon the choice of the ambiguous
sign in the definition ofEα. A formula forγα is

(7.54) γα = exp 2π i |α|−2Hα.
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Theorem 7.55.Suppose that the reductive Lie groupG is semisimple
and has a complexificationGC. ThenF is generated by all elementsγα for
all real rootsα.

PROOF. Our construction ofγα shows thatγα is in both Ksplit and
expia0. By Theorem 7.53a,γα is in F . In the reverse direction we use the
construction in the proof of Theorem 7.53d, forming a simply connected
coverG̃C

split of the complexificationGC
split of Gsplit. We form also the groups

K̃split, F̃ , andŨsplit. The elementsγα are well defined iñF via (7.54), and
we show that they generatẽF . Then the theorem will follow by applying
the covering map̃GC

split → GC
split, sinceF̃ maps ontoF .

Let H̃ be the maximal torus of̃Usplit with Lie algebraia0. We know from
Theorem 7.53 that̃F is a finite subgroup of̃H . Arguing by contradiction,
suppose that the elementsγα generate a proper subgroup̃F0 of F̃ . Let f̃ be
an element of̃F not in F̃0. Applying the Peter–Weyl Theorem (Theorem
4.20) toH̃/F̃0, we can obtain a multiplicative characterχν of H̃ that is 1
on F̃0 and is �= 1 on f̃ . Hereν is the imaginary-valued linear functional
on ia0 such thatχν(expih) = eν(ih) for h ∈ a0. The roots for̃Usplit are the
real roots forg0, and our assumption is that each such real rootα has

1 = χν(γα) = χ(exp 2π i |α|−2Hα) = eν(2π i |α|−2Hα) = eπ i(2〈ν,α〉/|α|2).

That is 2〈ν, α〉/|α|2 is an even integer for allα. Hence1
2ν is algebraically

integral.
SinceŨsplit is simply connected, Theorem 5.107 shows that1

2ν is an-
alytically integral. Thus the multiplicative characterχ 1

2ν of H̃ given by

χ 1
2ν(expih) = e

1
2ν(ih) is well defined. Theorem 7.53d says thatf̃ 2 = 1,

and thereforeχ 1
2ν( f̃ ) = ±1. Sinceχν = (χ 1

2ν)
2, we obtainχν( f̃ ) = 1,

contradiction. We conclude that̃F0 equalsF̃ , and the proof is complete.

It is sometimes handy to enlarge the collection of elementsγα. Letβ be
any restricted root, and letXβ be any restricted-root vector corresponding
to β. Thenθ Xβ is a restricted-root vector for the restricted root−β by
Proposition 6.40c. Proposition 6.52 shows that we can normalizeXβ so
that [Xβ, θ Xβ ] = −2|β|−2Hβ , and then the correspondence

(7.56) h ↔ 2|β|−2Hβ, e ↔ Xβ, f ↔ −θ Xβ

is an isomorphism ofsl(2, R) with the real span ofHβ, Xβ, θ Xβ in g0.
Once again this homomorphism carriesso(2) = R(e − f ) to k0 and
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complexifies to a homomorphismsl(2, C) → g. Under the assumption that
G is semisimple and has a complexificationGC, we can form the analytic
subgroup ofGC with Lie algebrasl(2, C). This will be a homomorphic
image ofSL(2, C) sinceSL(2, C) is simply connected. We letγβ be the

image of
(

−1 0

0 −1

)
, namely

(7.57) γβ = exp 2π i |β|−2Hβ.

This element is evidently in the image ofSO(2) ⊆ SL(2, R) and hence
lies in K . Formula (7.57) makes it clear thatγβ does not depend on the
choice ofXβ , except for the normalization, and also (7.57) shows thatγβ

commutes witha0. Hence

(7.58) γβ is in M for each restricted rootβ.

Since
(

−1 0

0 −1

)
has square the identity, it follows that

(7.59) γ 2
β = 1 for each restricted rootβ.

In the special case thatβ extends to a real rootα of �(g, a ⊕ t) when
set equal to 0 ont, γβ equals the elementγα defined in (7.54). The more
general elements (7.57) are not needed for the description ofF in Theorem
7.55, but they will play a role in Chapter VIII.

6. Real-rank-one Subgroups

We continue to assume thatG is a reductive Lie group, and we use the
other notation of §2. In addition, we use the notationF of §5.

The real rank of G is the dimension of a maximal abelian subspace
of p0. Proposition 7.29 shows that real rank is well defined. Since any
maximal abelian subspace ofp0 containsp0 ∩ Zg0, it follows that

(7.60) real rank(G) = real rank( 0G) + dim Zvec.

Our objective in this section is to identify some subgroups ofG of real
rank one and illustrate how information about these subgroups can give
information aboutG.

“Real rank” is meaningful for a real semisimple Lie algebra outside the
context of reductive Lie groups(G, K , θ, B), since Cartan decompositions
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exist and all are conjugate. But it is not meaningful for a reductive Lie
algebra by itself, since the splitting ofZg0 into its k0 part and itsp0 part
depends upon the choice ofθ .

The Lie subalgebra [g0, g0] of g0, being semisimple, is uniquely the sum
of simple ideals. These ideals are orthogonal with respect toB, since ifgi

andgj are distinct ideals, then

(7.61) B(gi , gj) = B([gi , gi ], gj) = B(gi , [gi , gj ]) = B(gi , 0) = 0.

Since [g0, g0] is invariant underθ , θ permutes these simple ideals, nec-
essarily in orbits of one or two ideals. But actually there are no 2-ideal
orbits since ifX andθ X are nonzero elements of distinct ideals, then (7.61)
gives

0 < Bθ (X, X) = −B(X, θ X) = 0,

contradiction. Hence each simple ideal is invariant underθ , and it follows
that p0 is the direct sum of its components in each simple ideal and its
component inZg0.

We would like to conclude that the real rank ofG is the sum of the real
ranks from the components and from the center. But to do so, we need
either to define real rank for triples(g0, θ, B) or to lift the setting from Lie
algebras to Lie groups. Following the latter procedure, assume thatG is in
the Harish-Chandra class; this condition is satisfied automatically ifG is
semisimple. IfGi is the analytic subgroup ofG whose Lie algebra is one
of the various simple ideals ofG, then Proposition 7.20b shows thatGi has
finite center. ConsequentlyGi is a reductive group. Also in this case the
subgroupKi of Gi fixed by� is compact, and it follows from property (iv)
thatGi is closed inG. We summarize as follows.

Proposition 7.62. Let the reductive Lie groupG be in the Harish-
Chandra class, and letG1, . . . , Gn be the analytic subgroups ofG whose
Lie algebra are the simple ideals ofg0. ThenG1, . . . , Gn are reductive Lie
groups, they are closed inG, and the sum of the real ranks of theGi ’s,
together with the dimension ofZvec, equals the real rank ofg0.

With the maximal abelian subspacea0 of p0 fixed, letλ be a restricted
root. Denote byH⊥

λ the orthogonal complement ofRHλ in a0 relative
to Bθ . Propositions 7.25 and 7.27 show thatZG(H⊥

λ ) and0ZG(H⊥
λ ) are

reductive Lie groups. All ofa0 is in ZG(H⊥
λ ), and thereforeZG(H⊥

λ ) has
the same real rank asG. The split component ofZG(H⊥

λ ) is H⊥
λ , and it

follows from (7.60) that0ZG(H⊥
λ ) is a reductive Lie group of real rank one.
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The subgroup0ZG(H⊥
λ ) is what is meant by the real-rank-one reductive

subgroup ofG corresponding to the restricted rootλ. A maximal abelian
subspace of thep0 for 0ZG(H⊥

λ ) is RHλ, and the restricted roots for this
group are those nonzero multiples ofλ that provide restricted roots forg0.
In other words the restricted-root space decomposition of the Lie algebra
of 0ZG(H⊥

λ ) is

(7.63) RHλ ⊕ m0 ⊕
⊕
c �=0

(g0)cλ.

Sometimes it is desirable to associate toλ a real-rank-one subgroup
whose Lie algebra is simple. To do so, let us assume thatG is in the Harish-
Chandra class. Then so is0ZG(H⊥

λ ). Since this group has compact center,
Proposition 7.62 shows that the sum of the real ranks of the subgroupsGi of
0ZG(H⊥

λ ) corresponding to the simple ideals of the Lie algebra is 1. Hence
exactly oneGi has real rank one, and that is the real-rank-one reductive
subgroup that we can use. The part of (7.63) that is being dropped to get a
simple Lie algebra is contained inm0.

In the case that the reductive groupG is semisimple and has a complex-
ification, the extent of the disconnectedness ofM can be investigated with
the help of the real-rank-one subgroups0ZG(H⊥

λ ). The result that we use
about the real-rank-one case is given in Theorem 7.66 below.

Lemma 7.64. N − ∩ M AN = {1}.
PROOF. Letx �= 1 be inN − = �N . By Theorem 1.127 writex = expX

with X in n
−
0 = θn0. Recall from Proposition 6.40c thatθ(g0)λ = (g0)−λ,

let X = ∑
µ∈� Xµ be the decomposition ofX into restricted-root vectors,

and chooseµ = µ0 as large as possible so thatXµ �= 0. If we take any
H ∈ a0 such thatλ(H) �= 0 for all λ ∈ �, then

Ad(x)H − H = eadX H − H

= [ X, H ] + 1
2[ X, [ X, H ]] + · · ·

= [ Xµ0, H ] + terms for lower restricted roots.

In particular, Ad(x)H − H is in n
−
0 and is not 0. On the other hand, ifx is

in M AN , then Ad(x)H − H is in n0. Sincen
−
0 ∩ n0 = 0, we must have

N − ∩ M AN = {1}.

Lemma 7.65. The mapK/M → G/M AN induced by inclusion is a
diffeomorphism.
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PROOF. The given map is certainly smooth. Ifκ(g) denotes theK
component ofg in the Iwasawa decompositionG = K AN of Proposition
7.31, theng �→ κ(g) is smooth, and the mapgM AN �→ κ(g)M is a
two-sided inverse to the given map.

Theorem 7.66.Suppose that the reductive Lie groupG is semisimple,
is of real rank one, and has a complexificationGC. ThenM is connected
unless dimn0 = 1.

REMARKS. SinceG is semisimple, it is in the Harish-Chandra class.
The above remarks about simple components are therefore applicable. The
condition dimn0 = 1 is the same as the condition that the simple component
of g0 containinga0 is isomorphic tosl(2, R). In fact, if dimn0 = 1, then
n0 is of the formRX for someX . ThenX , θ X , and [X, θ X ] span a copy
of sl(2, R), and we obtaing0

∼= sl(2, R) ⊕ m0. The Lie subalgebram0

must centralizeX , θ X , and [X, θ X ] and hence must be an ideal ing0. The
complementary ideal issl(2, R), as asserted.

PROOF. The multiplication mapN − × M0 AN → G is smooth and
everywhere regular by Lemma 6.44. Hence the mapN − → G/M0 AN
induced by inclusion is smooth and regular, and so is the map

(7.67) N − → G/M AN ,

which is the composition ofN − → G/M0 AN and a covering map. Also
the map (7.67) is one-one by Lemma 7.64. Therefore (7.67) is a diffeo-
morphism onto an open set.

SinceG is semisimple and has real rank 1, the Weyl groupW (�) has
two elements. By Proposition 7.32,W (G, A) has two elements. Let
w̃ ∈ NK (a0) represent the nontrivial element ofW (G, A). By the Bruhat
decomposition (Theorem 7.40),

(7.68) G = M AN ∪ M AN w̃M AN = M AN ∪ N w̃M AN .

Since Ad(w̃)−1 acts as−1 on a0, it sends the positive restricted roots to
the negative restricted roots, and it follows from Proposition 6.40c that
Ad(w̃)−1n0 = n

−
0 . Thereforew̃−1N w̃ = N −. Multiplying (7.68) on the

left by w̃−1, we obtain

G = w̃M AN ∪ N −M AN .

HenceG/M AN is the disjoint union of the single point̃wM AN and the
image of the map (7.67).
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We have seen that (7.67) is a diffeomorphism onto an open subset of
G/M AN . Lemma 7.65 shows thatG/M AN is diffeomorphic toK/M .
Since Theorem 1.127 shows thatN − is diffeomorphic to Euclidean space,
K/M is a one-point compactification of a Euclidean space, hence a sphere.
Since K is connected,M must be connected wheneverK/M is simply
connected, i.e., whenever dimK/M > 1. Since dimK/M = dimn0, M
is connected unless dimn0 = 1.

Corollary 7.69. Suppose that the reductive Lie groupG is semisimple
and has a complexificationGC. Let α ∈ �(g, a ⊕ t) be a real root. If the
positive multiples of the restricted rootα|a0 have combined restricted-root
multiplicity greater than one, thenγα is in M0.

PROOF. The elementγα is in the homomorphic image ofSL(2, R)

associated to the rootα, hence is in the subgroupG ′ = 0ZG(H⊥
α )0. Con-

sequently it is in theM subgroup ofG ′. The subgroupG ′ satisfies the
hypotheses of Theorem 7.66, and itsn0 has dimension>1 by hypothesis.
By Theorem 7.66 itsM subgroup is connected. Henceγα is in the identity
component of theM subgroup forG.

7. Parabolic Subgroups

In this sectionG will denote a reductive Lie group, and we shall use
the other notation of §2 concerning the Cartan decomposition. But we
shall abandon the use ofa0 as a maximal abelian subspace ofp0, as well as
the other notation connected with the Iwasawa decomposition. Instead of
using the symbolsa0, n0, m0, a, n, m, A, N , andM for these objects, we
shall use the symbolsap,0, np,0, mp,0, ap, np, mp, Ap, Np, andMp.

Our objective is to define and characterize “parabolic subgroups” ofG,
first working with “parabolic subalgebras” ofg0. Each parabolic subgroup
Q will have a canonical decomposition in the formQ = M AN , known
as the “Langlands decomposition” ofQ. As we suggested at the start of
§2, a number of arguments with reductive Lie groups are carried out by
induction on the dimension of the group. One way of implementing this
idea is to reduce proofs fromG to theM of some parabolic subgroup. For
such a procedure to succeed, we build into the definition ofM the fact that
M is a reductive Lie group.

In developing our theory, one approach would be to define a parabolic
subalgebra ofg0 to be a subalgebra whose complexification is a parabolic
subalgebra ofg. Then we could deduce properties of parabolic subalgebras
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of g0 from the theory in §V.7. But it will be more convenient to work with
parabolic subalgebras ofg0 directly, proving results by imitating the theory
of §V.7, rather than by applying it.

A minimal parabolic subalgebra of g0 is any subalgebra ofg0 that is
conjugate toqp,0 = mp,0 ⊕ ap,0 ⊕ np,0 via Ad(G). Because of the Iwasawa
decompositionG = K ApNp, we may as well assume that the conjugacy
is via Ad(K ). The subalgebraqp,0 contains the maximally noncompact
θ stable Cartan subalgebraap,0 ⊕ tp,0, wheretp,0 is any maximal abelian
subspace ofmp,0, and Ad(k) sends any such Cartan subalgebra into another
such Cartan subalgebra ifk is in K . Hence every minimal parabolic subal-
gebra ofg0 contains a maximally noncompactθ stable Cartan subalgebra
of g0. A parabolic subalgebraq0 of g0 is a Lie subalgebra containing
some minimal parabolic subalgebra. A parabolic subalgebra must contain
a maximally noncompactθ stable Cartan subalgebra ofg0.

Therefore there is no loss of generality in assuming thatq0 contains a
minimal parabolic subalgebra of the formmp,0 ⊕ ap,0 ⊕ np,0, whereap,0 is
maximal abelian inp0, andmp,0 andnp,0 are constructed are usual. Let�

denote the set of restricted roots ofg0 relative toap,0. The restricted roots
contributing tonp,0 are taken to be the positive ones.

We can obtain examples of parabolic subalgebras as follows. Let� be
the set of simple restricted roots, fix a subset�′ of �, and let

(7.70) � = �+ ∪ {β ∈ � | β ∈ span(�′)}.
Then

(7.71) q0 = ap,0 ⊕ mp,0 ⊕
⊕
β∈�

(g0)β

is a parabolic subalgebra ofg0 containingmp,0⊕ap,0⊕np,0. This construc-
tion is an analog of the corresponding construction of parabolic subalgebras
of g given in (5.88) and (5.89), and Proposition 7.76 will show that every
parabolic subalgebra ofg0 is of the form given in (7.70) and (7.71). But the
proof requires more preparation than in the situation with (5.88) and (5.89).

EXAMPLES.

1) Let G = SL(n, K), whereK is R, C, or H. Wheng0 is realized
as matrices, the Lie subalgebra of upper-triangular matrices is a minimal
parabolic subalgebraqp,0. The other examples of parabolic subalgebras
q0 containingqp,0 and written as in (7.70) and (7.71) are the full Lie
subalgebras of block upper-triangular matrices, one subalgebra for each
arrangement of blocks.
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2) Let G have compact center and be of real rank one. The examples as
in (7.70) and (7.71) are the minimal parabolic subalgebras andg0 itself.

We shall work with a vectorX in the restricted-root space(g0)γ . Propo-
sition 6.40c shows thatθ X is in (g0)−γ , and Proposition 6.52 shows that
B(X, θ X)Hγ is a negative multiple ofHγ . Normalizing, we may assume
that B(X, θ X) = −2/|γ |2. Put H ′

γ = 2|γ |−2Hγ . Then the linear spanslX

of {X, θ X, H ′
γ } is isomorphic tosl(2, R) under the isomorphism

(7.72) H ′
γ ↔ h, X ↔ e, θ X ↔ − f.

We shall make use of the copyslX of sl(2, R) in the same way as in the
proof of Corollary 6.53. This subalgebra ofg0 acts by ad ong0 and hence
acts ong. We know from Theorem 1.67 that the resulting representation of
slX is completely reducible, and we know the structure of each irreducible
subspace from Theorem 1.66.

Lemma 7.73. Let γ be a restricted root, and letX �= 0 be in (g0)γ .
Then

(a) adX carries(g0)γ onto(g0)2γ ,
(b) (adθ X)2 carries(g0)γ onto(g0)−γ ,
(c) (adθ X)4 carries(g0)2γ onto(g0)−2γ .

PROOF. Without loss of generality, we may assume thatX is normalized
as in (7.72). The complexification of

⊕
c∈Z (g0)cγ is an invariant subspace

ofgunder the representation ad ofslX . Using Theorem 1.67, we decompose
it as the direct sum of irreducible representations. Each member of(g0)cγ

is an eigenvector for adH ′
γ with eigenvalue 2c, andH ′

γ corresponds to the
memberh of sl(2, R). From Theorem 1.66 we see that the only possibilities
for irreducible subspaces are 5-dimensional subspaces consisting of one
dimension each from

(g0)2γ , (g0)γ , m0, (g0)−γ , (g0)−2γ ;

3-dimensional subspaces consisting of one dimension each from

(g0)γ , m0, (g0)−γ ;

and 1-dimensional subspaces consisting of one dimension each fromm0.
In any 5-dimensional such subspace, adX carries a nonzero vector of
eigenvalue 2 to a nonzero vector of eigenvalue 4. This proves (a). Also
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in any 5-dimensional such subspace,(adθ X)4 carries a nonzero vector
of eigenvalue 4 to a nonzero vector of eigenvalue−4. This proves (c).
Finally in any 5-dimensional such subspace or 3-dimensional such sub-
space,(adθ X)2 carries a nonzero vector of eigenvalue 2 to a nonzero
vector of eigenvalue−2. This proves (b).

Lemma 7.74.Every parabolic subalgebraq0 of g0 containing the mini-
mal parabolic subalgebramp,0 ⊕ ap,0 ⊕ np,0 is of the form

q0 = ap,0 ⊕ mp,0 ⊕
⊕
β∈�

(g0)β

for some subset� of � that contains�+.

PROOF. Sinceq0 containsap,0 ⊕ mp,0 and is invariant under ad(ap,0), it
is of the form

q0 = ap,0 ⊕ mp,0 ⊕
⊕
β∈�

((g0)β ∩ q0).

Thus we are to show that ifq0 contains one nonzero vectorY of (g0)β ,
then it contains all of(g0)β . Sinceq0 containsnp,0, we may assume that
β is negative. We apply Lemma 7.73b withX = θY andγ = −β. The
lemma says that(adY )2 carries(g0)−β onto(g0)β . SinceY and(g0)−β are
contained inq0, so is(g0)β .

Lemma 7.75.If β, γ , andβ + γ are restricted roots andX is a nonzero
member of(g0)γ , then [X, (g0)β ] is a nonzero subspace of(g0)β+γ .

PROOF. Without loss of generality, we may assume thatX is normalized
as in (7.72). The complexification of

⊕
c∈Z (g0)β+cγ is an invariant subspace

ofgunder the representation ad ofslX . Using Theorem 1.67, we decompose
it as the direct sum of irreducible representations. Each member of(g0)β+cγ

is an eigenvector for adH ′
γ with eigenvalue2〈β,γ 〉

|γ |2 +2c, andH ′
γ corresponds

to the memberh of sl(2, R). We apply Theorem 1.66 and divide matters
into cases according to the sign of2〈β,γ 〉

|γ |2 . If the sign is< 0, then adX is
one-one on(g0)β , and the lemma follows. If the sign is≥ 0, then adθ X
and adX adθ X are one-one on(g0)β , and hence adX is nonzero on the
member [θ X, Y ] if Y is nonzero in(g0)β+γ .

Proposition 7.76.The parabolic subalgebrasq0 containing the minimal
parabolic subalgebramp,0⊕ap,0⊕np,0 are parametrized by the set of subsets
of simple restricted roots; the one corresponding to a subset�′ is of the
form (7.71) with� as in (7.70).
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PROOF. Lemma 7.74 establishes that anyq0 is of the form (7.71) for
some subset�. We can now go over the proof of Proposition 5.90 to see
that it applies. What is needed is a substitute for Corollary 2.35, which
says that [gβ, gγ ] = gβ+γ if β, γ , andβ + γ are all roots. Lemma 7.75
provides the appropriate substitute, and the proposition follows.

In the notation of the proposition,� ∩ −� consists of all restricted
roots in the span of�′, and the other members of� are all positive and
have expansions in terms of simple restricted roots that involve a simple
restricted root not in�′. Define

(7.77a)

a0 =
⋂

β∈�∩−�

kerβ ⊆ ap,0

aM,0 = a
⊥
0 ⊆ ap,0

m0 = aM,0 ⊕ mp,0 ⊕
⊕

β∈�∩−�

(g0)β

n0 =
⊕
β∈�,
β /∈−�

(g0)β

nM,0 = np,0 ∩ m0,

so that

(7.77b) q0 = m0 ⊕ a0 ⊕ n0.

The decomposition (7.77b) is called theLanglands decompositionof q0.

EXAMPLE. Let G = SU (2, 2). The Lie algebrag0 consists of all 4-by-4
complex matrices of the block form(

X11 X12

X ∗
12 X22

)
with X11 and X22 skew Hermitian and the total trace equal to 0. We take
the Cartan involution to be negative conjugate transpose, so that

k0 =
{(

X11 0
0 X22

)}
and p0 =

{(
0 X12

X ∗
12 0

)}
.

Let us take

ap,0 =




0 0 s 0
0 0 0 t
s 0 0 0
0 t 0 0

 ∣∣∣∣ s andt in R

 .
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Define linear functionalsf1 and f2 on ap,0 by saying thatf1 of the above
matrix iss and f2 of the matrix ist . Then

� = {± f1 ± f2, ±2 f1, ±2 f2},

which is a root system of typeC2. Here± f1 ± f2 have multiplicity 2, and
the others have multiplicity one. In the obvious ordering,�+ consists of
f1 ± f2 and 2f1 and 2f2, and the simple restricted roots aref1 − f2 and
2 f2. Then

mp,0 = {diag(ir, −ir, ir, −ir)}
np,0 =

⊕
β∈�+

(g0)β with dimnp,0 = 6.

Our minimal parabolic subalgebra isqp,0 = mp,0 ⊕ ap,0 ⊕ np,0, and this
is reproduced asq0 by (7.70) and (7.71) with�′ = ∅. When �′ =
{ f1 − f2, 2 f2}, thenq0 = g0. The two intermediate cases are as follows.
If �′ = { f1 − f2}, then

a0 = {H ∈ ap,0 | ( f1 − f2)(H) = 0} (s = t in ap,0)

m0 =




ir w x z
−w̄ −ir z̄ −x

x z ir w

z̄ −x −w̄ −ir

 ∣∣∣∣ x, r ∈ R andw, z ∈ C


n0 = (g0)2 f1 ⊕ (g0) f1+ f2 ⊕ (g0)2 f2.

If �′ = {2 f2}, then

a0 = {H ∈ ap,0 | 2 f2(H) = 0} (t = 0 in ap,0)

m0 = mp,0 ⊕




0 0 0 0
0 is 0 z
0 0 0 0
0 z̄ 0 −is

 ∣∣∣∣ s ∈ R andz ∈ C


n0 = (g0)2 f1 ⊕ (g0) f1+ f2 ⊕ (g0) f1− f2.

Proposition 7.76 says that there are no other parabolic subalgebrasq0

containingqp,0.
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Proposition 7.78. A parabolic subalgebraq0 containing the minimal
parabolic subalgebramp,0 ⊕ ap,0 ⊕ np,0 has the properties that

(a) m0, a0, andn0 are Lie subalgebras, andn0 is an ideal inq0,
(b) a0 is abelian, andn0 is nilpotent,
(c) a0 ⊕ m0 is the centralizer ofa0 in g0,
(d) q0 ∩ θq0 = a0 ⊕ m0, anda0 ⊕ m0 is reductive,
(e) ap,0 = a0 ⊕ aM,0,
(f) np,0 = n0 ⊕ nM,0 as vector spaces,
(g) g0 = a0 ⊕ m0 ⊕ n0 ⊕ θn0 orthogonally with respect toθ ,
(h) m0 = mp,0 ⊕ aM,0 ⊕ nM,0 ⊕ θnM,0.

PROOF.
(a, b, e, f) All parts of these are clear.
(c) The centralizer ofa0 is spanned byap,0, mp,0, and all the restricted

root spaces for restricted roots vanishing ona0. The sum of these isa0⊕m0.
(d) Sinceθ(g0)β = (g0)−β by Proposition 6.40c,q0 ∩ θq0 = a0 ⊕ m0.

Thena0 ⊕ m0 is reductive by Corollary 6.29.
(g, h) These follow from Proposition 6.40.

Proposition 7.79.Among the parabolic subalgebras containingqp,0, let
q0 be the one corresponding to the subset�′ of simple restricted roots. For
η �= 0 in a∗

0, let

(g0)(η) =
⊕

β∈a∗
p,0,

β|a0=η

(g0)β.

Then(g0)(η) ⊆ n0 or (g0)(η) ⊆ θn0.

PROOF. We have

aM,0 = a
⊥
0 = ( ⋂

β∈�∩−�

kerβ
)⊥ = ( ⋂

β∈�∩−�

H⊥
β

)⊥ =
∑

β∈�∩−�

RHβ =
∑
β∈�′

RHβ.

Let β andβ ′ be restricted roots with a common nonzero restrictionη to
members ofa0. Thenβ − β ′ is 0 ona0, andHβ − Hβ ′ is in aM,0. From the
formula foraM,0, the expansion ofβ −β ′ in terms of simple restricted roots
involves only the members of�′. Sinceη �= 0, the individual expansions of
β andβ ′ involve nonzero coefficients for at least one simple restricted root
other than the ones in�′. The coefficients for this other simple restricted
root must be equal and in particular of the same sign. By Proposition 2.49,
β andβ ′ are both positive or both negative, and the result follows.
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Motivated by Proposition 7.79, we define, forη ∈ a∗
0,

(7.80) (g0)(η) = {X ∈ g0 | [H, X ] = η(H)X for all H ∈ a0}.

We say thatη is ana0 root, or root of(g0, a0), if η �= 0 and(g0)(η) �= 0. In
this case we call(g0)(η) the correspondinga0 root space. The proposition
says thatn0 is the sum ofa0 root spaces, and so isθn0. We call ana0 root
positive if it contributes ton0, otherwisenegative. The set ofa0 roots does
not necessarily form an abstract root system, but the notion of ana0 root is
still helpful.

Corollary 7.81. The normalizer ofa0 in g0 is a0 ⊕ m0.

PROOF. The normalizer containsa0 ⊕ m0 by Proposition 7.78c. In the
reverse direction letX be in the normalizer, and write

X = H0 + X0 +
∑
η �=0,
η∈a∗

0

Xη with H0 ∈ a0, X0 ∈ m0, Xη ∈ (g0)(η).

If H is in a0, then [X, H ] = − ∑
η η(H)Xη, and this can be ina0 for all

suchH only if Xη = 0 for all η. ThereforeX = H0 + X0 is in a0 ⊕ m0.

Now let A andN be the analytic subgroups ofG with Lie algebrasa0

andn0, and defineM = 0ZG(a0). We shall see in Proposition 7.83 below
that Q = M AN is the normalizer ofm0 ⊕ a0 ⊕ n0 in G, and we define
it to be theparabolic subgroup associated to the parabolic subalgebra
q0 = m0 ⊕ a0 ⊕ n0. The decomposition of elements ofQ according to
M AN will be seen to be unique, andQ = M AN is called theLanglands
decompositionof Q. Whenq0 is a minimal parabolic subalgebra, the
correspondingQ is called aminimal parabolic subgroup. We write
N − = �N .

Let AM andNM be the analytic subgroups ofg0 with Lie algebrasaM,0

andnM,0, and letMM = Z K∩M(aM,0). DefineKM = K ∩ M . Recall the
subgroupF of G that is the subject of Corollary 7.52.

Proposition 7.82.The subgroupsM , A, N , KM , MM , AM , andNM have
the properties that

(a) M A = ZG(a0) is reductive,M = 0(M A) is reductive, andA is
Zvec for M A,

(b) M has Lie algebram0,
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(c) MM = Mp, Mp,0 AM NM is a minimal parabolic subgroup ofM , and
M = KM AM NM ,

(d) M = F M0 if G is connected,
(e) Ap = AAM as a direct product,
(f) Np = N NM as a semidirect product withN normal.

PROOF.
(a, b) The subgroupsZG(a0) and0ZG(a0) are reductive by Propositions

7.25 and 7.27. By Proposition 7.78,Zg0(a0) = a0 ⊕ m0. Thus the space
Zvec for the groupZG(a0) is the analytic subgroup corresponding to the
intersection ofp0 with the center ofa0 ⊕m0. From the definition ofm0, the
center ofZg0(a0) has to be contained inap,0 ⊕ mp,0, and thep0 part of this
is ap,0. The part ofap,0 that commutes withm0 is a0 by definition ofm0.
ThereforeZvec = expa0 = A, andZG(a0) = ( 0ZG(a0))A by Proposition
7.27. Then (a) and (b) follow.

(c) By (a), M is reductive. It is clear thataM,0 is a maximal abelian
subspace ofp0 ∩ m0, sincem0 ∩ a0 = 0. The restricted roots ofm0 relative
to aM,0 are then the members of� ∩−�, and the sum of the restricted-root
spaces for the positive such restricted roots isnM,0. Therefore the minimal
parabolic subgroup in question forM is MM AM NM . The computation

MM = Z K∩M(aM,0) = M A ∩ Z K (aM,0)

= ZG(a0) ∩ Z K (aM,0) = Z K (ap,0) = Mp

identifiesMM , andM = KM AM NM by the Iwasawa decomposition forM
(Proposition 7.31).

(d) By (a), M is reductive. HenceM = MM M0 by Proposition 7.33.
But (c) shows thatMM = Mp, and Corollary 7.52 shows thatMp =
F(Mp)0. HenceM = F M0.

(e) This follows from Proposition 7.78e and the simple connectivity
of Ap.

(f) This follows from Proposition 7.78f, Theorem 1.125, and the simple
connectivity ofNp.

Proposition 7.83.The subgroupsM , A, andN have the properties that
(a) M A normalizesN , so thatQ = M AN is a group,
(b) Q = NG(m0 ⊕ a0 ⊕ n0), and henceQ is a closed subgroup,
(c) Q has Lie algebraq0 = m0 ⊕ a0 ⊕ n0,
(d) multiplicationM × A × N → Q is a diffeomorphism,
(e) N − ∩ Q = {1},
(f) G = K Q.
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PROOF.
(a) Letz be in M A = ZG(a0), and fix(g0)(η) ⊆ n0 as in (7.80). IfX is

in (g0)(η) andH is in a0, then

[H, Ad(z)X ] = [Ad(z)H, Ad(z)X ] = Ad(z)[H, X ] = η(H)Ad(z)X.

Hence Ad(z)X is in (g0)(η), and Ad(z) maps(g0)(η) into itself. Sincen0 is
the sum of such spaces, Ad(z)n0 ⊆ n0. ThereforeM A normalizesN .

(b) The subgroupM A normalizes its Lie algebram0 ⊕ a0, and it nor-
malizesn0 by (a). The subgroupN normalizesq0 because it is connected
with a Lie algebra that normalizesq0 by Proposition 7.78a. HenceM AN
normalizesq0. In the reverse direction letx be in NG(q0). We are to prove
thatx is in M AN . Let us writex in terms of the Iwasawa decomposition
G = K ApNp. HereAp = AAM by Proposition 7.82e, andA and AM are
both contained inM A. Also Np = N NM by Proposition 7.82f, andN and
NM are both contained inM N . Thus we may assume thatx is in NK (q0).
By (7.23), Ad(�x) = θAd(x)θ , and thus Ad(�x) normalizesθq0. But
�x = x sincex is in K , and therefore Ad(x) normalizes bothq0 andθq0.
By Proposition 7.78d, Ad(x) normalizesa0 ⊕ m0. Sincea0 is thep0 part
of the center ofa0 ⊕ m0, Ad(x) normalizesa0 andm0 individually. Letη
be ana0 root contributing ton0. If X is in (g0)η andH is in a0, then

[H, Ad(x)X ] = Ad(x)[Ad(x)−1H, X ]

= η(Ad(x)−1H)Ad(x)X = (Ad(x)η)(H)Ad(x)X.

In other words, Ad(x) carries(g0)(η) to (g0)(Ad(x)η). So wheneverη is
the restriction toa0 of a positive restricted root, so is Ad(x)η. Mean-
while, Ad(x) carriesaM,0 to a maximal abelian subspace ofp0 ∩ m0, and
Proposition 7.29 allows us to adjust it by some Ad(k) ∈ Ad(K ∩ M) so
that Ad(kx)aM,0 = aM,0. Taking Proposition 7.32 and Theorem 2.63 into
account, we can choosek ′ ∈ K ∩ M so that Ad(k ′kx) is the identity on
aM,0. Then Ad(k ′kx) sends�+ to itself. By Proposition 7.32 and Theorem
2.63, Ad(k ′kx) is the identity onap,0 and in particular ona0. Hencek ′kx
is in M , and so isx . We conclude thatM AN = NG(q0), and consequently
M AN is closed.

(c) By (b), Q is closed, hence Lie. The Lie algebra ofQ is Ng0(q0),
which certainly containsq0. In the reverse direction letX ∈ g0 normalize
q0. Sinceap,0 andnp,0 are contained inq0, the Iwasawa decomposition on
the Lie algebra level allows us to assume thatX is ink0. SinceX normalizes
q0, θ X normalizesθq0. But X = θ X , and henceX normalizesq0 ∩ θq0,
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which isa0 ⊕m0 by Proposition 7.78d. Sincea0 is thep0 part of the center
of a0 ⊕ m0, X normalizesa0 andm0 individually. By Corollary 7.81,X is
in a0 ⊕ m0.

(d) Use of Lemma 6.44 twice shows that multiplication fromM × A× N
into Q is regular onM0×A×N , and translation toM shows that it is regular
everywhere. We are left with showing that it is one-one. SinceA ⊆ Ap and
N ⊆ Np, the uniqueness for the Iwasawa decomposition ofG (Proposition
7.31) shows that it is enough to prove thatM ∩ AN = {1}. Givenm ∈ M ,
let the Iwasawa decomposition ofm according toM = KM AM NM be
m = kMaMnM . If this element is to be inAN , thenkM = 1,aM is in AM ∩ A,
andnM is in NM ∩ N , by uniqueness of the Iwasawa decomposition inG.
But AM ∩ A = {1} andNM ∩ N = {1} by (e) and (f) of Proposition 7.82.
Thereforem = 1, and we conclude thatM ∩ AN = {1}.

(e) This is proved in the same way as Lemma 7.64, which is stated for
a minimal parabolic subgroup.

(f) Since Q ⊇ ApNp, G = K Q by the Iwasawa decomposition forG
(Proposition 7.31).

Although the set ofa0 roots does not necessarily form an abstract root
system, it is still meaningful to define

(7.84a) W (G, A) = NK (a0)/Z K (a0),

just as we did in the case thata0 is maximal abelian inp0. Corollary 7.81
and Proposition 7.78c show thatNK (a0) andZ K (a0) both havek0 ∩ m0 as
Lie algebra. HenceW (G, A) is a compact 0-dimensional group, and we
conclude thatW (G, A) is finite. An alternative formula forW (G, A) is

(7.84b) W (G, A) = NG(a0)/ZG(a0).

The equality of the right sides of (7.84a) and (7.84b) is an immediate
consequence of Lemma 7.22 and Corollary 7.81. To computeNK (a0), it
is sometimes handy to use the following proposition.

Proposition 7.85. Every element ofNK (a0) decomposes as a product
zn, wheren is in NK (ap,0) andz is in Z K (a0).

PROOF. Let k be in NK (a0) and form Ad(k)aM,0. SinceaM,0 commutes
with a0, Ad(k)aM,0 commutes with Ad(k)a0 = a0. By Proposition 7.78c,
Ad(k)aM,0 is contained ina0 ⊕m0. SinceaM,0 is orthogonal toa0 underBθ ,
Ad(k)aM,0 is orthogonal to Ad(k)a0 = a0. Hence Ad(k)aM,0 is contained
in m0 and therefore inp0 ∩ m0. By Proposition 7.29 there existsz in
K ∩ M with Ad(z)−1Ad(k)aM,0 = aM,0. Thenn = z−1k is in NK (a0) and
in NK (aM,0), hence inNK (ap,0).
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EXAMPLE. Let G = SL(3, R). Takeap,0 to be the diagonal subalgebra,
and let�+ = { f1 − f2, f2 − f3, f1 − f3} in the notation of Example 1
of §VI.4. Define a parabolic subalgebraq0 by using�′ = { f1 − f2}.
The corresponding parabolic subgroup is the block upper-triangular group
with blocks of sizes 2 and 1, respectively. The subalgebraa0 equals
{diag(r, r, −2r)}. Suppose thatw is in W (G, A). Proposition 7.85 says
thatw extends to a member ofW (G, Ap) leavinga0 andaM,0 individually
stable. HereW (G, Ap) = W (�), and the only member ofW (�) sending
a0 to itself is the identity. SoW (G, A) = {1}.

The members ofW (G, A) act on set of thea0 roots, and we have the
following substitute for Theorem 2.63.

Proposition 7.86.The only member ofW (G, A) that leaves stable the
set of positivea0 roots is the identity.

PROOF. Let k be in NK (a0). By assumption Ad(k)n0 = n0. The
centralizer ofa0 in g0 is a0 ⊕ m0 by Proposition 7.78c. IfX is in this
centralizer and ifH is arbitrary ina0, then

[H, Ad(k)X ] = Ad(k)[Ad(k)−1H, X ] = 0

shows that Ad(k)X is in the centralizer. Hence Ad(k)(a0 ⊕ m0) =
a0 ⊕ m0. By Proposition 7.83b,k is in M AN . By Proposition 7.82c and
the uniqueness of the Iwasawa decomposition forG, k is in M . Therefore
k is in Z K (a0).

A parabolic subalgebraq0 of g0 and the corresponding parabolic sub-
groupQ = M AN of G are said to becuspidal if m0 has aθ stable compact
Cartan subalgebra, sayt0. In this case,h0 = t0 ⊕ a0 is aθ stable Cartan
subalgebra ofg0. The restriction of a root in�(g, h) to a0 is ana0 root if
it is not 0, and we can identify�(m, t) with the set of roots in�(g, h) that
vanish ona. Let us choose a positive system�+(m, t) for m and extend
it to a positive system�+(g, h) by saying that a rootα ∈ �(g, h) with
nonzero restriction toa0 is positive if α|a0 is a positivea0 root. Let us
decompose membersα of h∗ according to their projections ona∗ andt∗ as
α = αa + αt. Now θα = −αa + αt, andθ carries roots to roots. Hence if
αa + αt is a root, so isαa − αt.

The positive system�+(g, h) just defined is given by a lexicographic
ordering that takesa0 beforeit0. In fact, write the half sum of positive
roots asδ = δa + δt. The claim is that positivity is determined by inner



486 VII. Advanced Structure Theory

products with the ordered set{δa, δt} and thatδt is equal to the half sum of
the members of�+(m, t). To see this, letα = αa + αt be in�+(g, h). If
αa �= 0, thenαa − αt is in �+(g, h), and

〈α, δa〉 = 〈αa, δa〉 = 〈αa, δ〉 = 1
2〈αa + αt, δ〉 + 1

2〈αa − αt, δ〉 > 0.

Since the positive roots with nonzero restriction toa cancel in pairs when
added, we see thatδt equals half the sum of the members of�+(m, t).
Finally if αa = 0, then〈α, δa〉 = 0 and〈α, δt〉 > 0. Hence�+(g, h) is
indeed given by a lexicographic ordering of the type described.

The next proposition gives a converse that tells a useful way to construct
cuspidal parabolic subalgebras ofg0 directly.

Proposition 7.87.Let h0 = t0 ⊕ a0 be the decomposition of aθ stable
Cartan subalgebra according toθ , and suppose that a lexicographic ordering
takinga0 beforeit0 is used to define a positive system�+(g, h). Define

m0 = g0 ∩ (
t ⊕

⊕
α∈�(g,h),

α|a=0

gα

)
n0 = g0 ∩ ( ⊕

α∈�+(g,h),
α|a �=0

gα

)
.and

Thenq0 = m0 ⊕ a0 ⊕ n0 is the Langlands decomposition of a cuspidal
parabolic subalgebra ofg0.

PROOF. In view of the definitions, we have to relateq0 to a minimal
parabolic subalgebra. Let bar denote conjugation ofg with respect tog0.
If α = αa + αt is a root, letᾱ = −θα = αa − αt. Thengα = gᾱ, and it
follows that

(7.88) m = t ⊕
⊕

α∈�(g,h),
α|a=0

gα and n =
⊕

α∈�+(g,h),
α|a �=0

gα.

In particular,m0 is θ stable, hence reductive. LethM,0 = tM,0 ⊕ aM,0 be
the decomposition of a maximally noncompactθ stable Cartan subalgebra
of m0 according toθ . Since Theorem 2.15 shows thathM is conjugate to
t via Intm, h′ = a ⊕ hM is conjugate toh = a ⊕ t via a member of Intg
that fixesa0. In particular,h′

0 = a0 ⊕ hM,0 is a Cartan subalgebra ofg0.
Applying our constructed member of Intg to (7.88), we obtain

(7.89) m = hM ⊕
⊕

α∈�(g,h′),
α|a=0

gα and n =
⊕

α∈�+(g,h′),
α|a �=0

gα
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for the positive system�+(g, h′) obtained by transferring positivity from
�+(g, h).

Let us observe thatap,0 = a0⊕aM,0 is a maximal abelian subspace ofp0.
In fact, the centralizer ofa0 in g0 is a0 ⊕m0, andaM,0 is maximal abelian in
m0∩p0; hence the assertion follows. We introduce a lexicographic ordering
for h′

0 that is as before ona0, takesa0 beforeaM,0, and takesaM,0 before
itM,0. Then we obtain a positive system�+′(g, h′) with the property that a
rootα with α|a0 �= 0 is positive if and only ifα|a0 is the restriction toa0 of
a member of�+(g, h). Consequently we can replace�+(g, h′) in (7.89)
by �+′(g, h′). Then it is apparent thatm ⊕ a ⊕ n containsmp ⊕ ap ⊕ np

defined relative to the positive restricted roots obtained from�+′(g, h′),
and henceq0 is a parabolic subalgebra. Referring to (7.77), we see that
q0 = m0 ⊕ a0 ⊕ n0 is the Langlands decomposition. Finallyt0 is a Cartan
subalgebra ofm0 by Proposition 2.13, and henceq0 is cuspidal.

8. Cartan Subgroups

We continue to assume thatG is a reductive Lie group and to use the
notation of §2 concerning the Cartan decomposition. ACartan subgroup
of G is the centralizer inG of a Cartan subalgebra. We know from §§VI.6
and VII.2 that any Cartan subalgebra is conjugate via Intg0 to a θ stable
Cartan subalgebra and that there are only finitely many conjugacy classes of
Cartan subalgebras. Consequently any Cartan subgroup ofG is conjugate
via G to a � stable Cartan subgroup, and there are only finitely many
conjugacy classes of Cartan subgroups. A� stable Cartan subgroup is a
reductive Lie group by Proposition 7.25.

WhenG is compact connected andT is a maximal torus, every element
of G is conjugate to a member ofT , according to Theorem 4.36. In
particular every member ofG lies in a Cartan subgroup. This statement
does not extend to noncompact groups, as the following example shows.

EXAMPLE. Let G = SL(2, R). We saw in §VI.6 that every Cartan
subalgebra is conjugate to one of{(

r 0
0 −r

)}
and

{(
0 r

−r 0

)}
,

and the corresponding Cartan subgroups are{
±

(
er 0
0 e−r

)}
and

{(
cosr sinr

− sinr cosr

)}
.
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Some features of these subgroups are worth noting. The first Cartan
subgroup is disconnected; disconnectedness is common among Cartan
subgroups for generalG. Also every member of either Cartan subgroup is

diagonable overC. Hence
(

1 1

0 1

)
lies in no Cartan subgroup.

Although the union of the Cartan subgroups ofG need not exhaust
G, it turns out that the union exhausts almost all ofG. This fact is the
most important conclusion about Cartan subgroups to be derived in this
section and appears below as Theorem 7.108. When we treat integration
in Chapter VIII, this fact will permit integration of functions onG by inte-
grating over the conjugates of a finite set of Cartan subgroups; the resulting
formula, known as the “Weyl Integration Formula,” is an important tool for
harmonic analysis onG.

Before coming to this main result, we give a proposition about the
component structure of Cartan subgroups and we introduce a finite group
W (G, H) for each Cartan subgroup analogous to the groupsW (G, A)

considered in §7.

Proposition 7.90.Let H be a Cartan subgroup ofG.

(a) If H is maximally noncompact, thenH meets every component
of G.

(b) If H is maximally compact and ifG is connected, thenH is
connected.

REMARKS. The modifiers “maximally noncompact” and “maximally
compact” are to be interpreted in terms of the Lie algebras. Ifh0 is a
Cartan subalgebra,h0 is conjugate to aθ stable Cartan subalgebrah′

0, and
we defined “maximally noncompact” and “maximally compact” forh′

0 in
§§VI.6 and VII.2. Proposition 7.35 says that any two candidates forh′

0 are
conjugate viaK , and hence it is meaningful to say thath0 is maximally
noncompact or maximally compact ifh′

0 is.

PROOF. Let h0 be the Lie algebra ofH . We may assume thath0 is
θ stable. Leth0 = t0 ⊕ a0 be the decomposition ofh0 into +1 and−1
eigenspaces underθ .

(a) If h0 is maximally noncompact, thena0 is a maximal abelian subspace
of p0. The groupH contains the subgroupF introduced before Corollary
7.52, and Corollary 7.52 and Proposition 7.33 show thatF meets every
component ofG.

(b) If h0 is maximally compact, thent0 is a maximal abelian subspace of
k0. SinceK is connected, the subgroupZ K (t0) is connected by Corollary
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4.51, andZ K (t0) expa0 is therefore a connected closed subgroup ofG with
Lie algebrah0. On the other hand, Proposition 7.25 implies that

H = Z K (h0) expa0 ⊆ Z K (t0) expa0.

SinceH andZ K (t0) expa0 are closed subgroups with the same Lie algebra
and sinceZ K (t0) expa0 is connected, it follows thatH = Z K (t0) expa0.

Corollary 7.91. If a maximally noncompact Cartan subgroupH of G
is abelian, thenZG0 ⊆ ZG .

PROOF. By Proposition 7.90a,G = G0H . If z is in ZG0, then Ad(z) = 1
on h0, and hencez is in ZG(h0) = H . Let g ∈ G be given, and write
g = g0h with g ∈ G0 andh ∈ H . Thenzg0 = g0z sincez commutes with
members ofG0, andzh = hz sincez is in H and H is abelian. Hence
zg = gz, andz is in ZG .

If H is a Cartan subgroup ofG with Lie algebrah0, we define

(7.92a) W (G, H) = NG(h0)/ZG(h0).

Here ZG(h0) is nothing more thanH itself, by definition. Whenh0 is θ

stable, an alternative formula forW (G, H) is

(7.92b) W (G, H) = NK (h0)/Z K (h0).

The equality of the right sides of (7.92a) and (7.92b) is an immediate con-
sequence of Lemma 7.22 and Proposition 2.7. Proposition 2.7 shows that
NK (h0) andZ K (h0) both havek0∩h0 = t0 as Lie algebra. HenceW (G, H)

is a compact 0-dimensional group, and we conclude thatW (G, H) is finite.
Each member ofNG(h0) sends roots of� = �(g, h) to roots, and the

action of NG(h0) on � descends toW (G, H). It is clear that only the
identity in W (G, H) acts as the identity on�. Since Adg(G) ⊆ Int g, it
follows from Theorem 7.8 that

(7.93) W (G, H) ⊆ W (�(g, h)).

EXAMPLE. Let G = SL(2, R). For anyh, W (g, h) has order 2. When

h0 =
{(

r 0

0 −r

)}
, W (G, H) has order 2, a representative of the nontrivial

coset being
(

0 1

−1 0

)
. Whenh0 =

{(
0 r

−r 0

)}
, W (G, H) has order 1.
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Now we begin to work toward the main result of this section, that the
union of all Cartan subgroups ofG exhausts almost all ofG. We shall
use the notion of a “regular element” ofG. Recall that in Chapter II
we introduced regular elements in the complexified Lie algebrag. Let
dimg = n. For X ∈ g, we formed the characteristic polynomial

(7.94) det(λ1 − adX) = λn +
n−1∑
j=0

dj(X)λ j .

Here eachdj is a holomorphic polynomial function ong. The rank of g

is the minimum indexl such thatdl(X) ≡/ 0, and theregular elements
of g are those elementsX such thatdl(X) �= 0. For such anX , Theorem
2.9′ shows that the generalized eigenspace of adX for eigenvalue 0 is a
Cartan subalgebra ofg. Becauseg is reductive, the Cartan subalgebra acts
completely reducibly ong, and hence the generalized eigenspace of adX
for eigenvalue 0 is nothing more than the centralizer ofX in g.

Within g, leth be a Cartan subalgebra, and let� = �(g, h). For X ∈ h,
dl(X) = ∏

α∈� α(X), so thatX ∈ h is regular if and only if no root vanishes
on X . If h0 is a Cartan subalgebra of our real formg0, then we can find
X ∈ h0 so thatα(X) �= 0 for all α ∈ �.

On the level of Lie algebras, we have concentrated on eigenvalue 0 for
adX . On the level of reductive Lie groups, the analogous procedure is to
concentrate on eigenvalue 1 for Ad(x). Thus forx ∈ G, we define

D(x, λ) = det((λ + 1)1 − Ad(x)) = λn +
n−1∑
j=0

Dj(x)λ j .

Here eachDj(x) is real analytic onG and descends to a real analytic
function on Ad(G). But Ad(G) ⊆ Int g by property (v) for reductive Lie
groups, and the formula forDj(x) extends to be valid on Intg and to define
a holomorphic function on Intg. Let l ′ be the minimum index such that
Dl ′(x) ≡/ 0 (on G or equivalently on Intg). We shall observe shortly
that l ′ = l. With this understanding theregular elementsof G are those
elementsx such thatDl(x) �= 0. Elements that are not regular aresingular.
The set of regular elements is denotedG ′. The functionD satisfies

(7.95) D(yxy−1, λ) = D(x, λ),

and it follows thatG ′ is stable under group conjugation. It is almost but
not quite true that the centralizer of a regular element ofG is a Cartan
subgroup. Here is an example of how close things get in a complex group.
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EXAMPLE. Let G = SL(2, C)/{±1}. We work with elements ofG as
2-by-2 matrices identified when they differ only by a sign. The element(

z 0

0 z−1

)
, with z �= 0, is regular ifz �= ±1. For most values ofz other

than±1, the centralizer of
(

z 0

0 z−1

)
is the diagonal subgroup, which is a

Cartan subgroup. But forz = ±i , the centralizer is generated by the

diagonal subgroup and
(

0 1

−1 0

)
; thus the Cartan subgroup has index 2 in the

centralizer.

Now, as promised, we prove thatl = l ′, i.e., the minimum indexl such
thatdl(X) ≡/ 0 equals the minimum indexl ′ such thatDl ′(x) ≡/ 0. Let adX
have generalized eigenvalue 0 exactlyl times. For sufficiently smallr , adX
has all eigenvalues< 2π in absolute value, and it follows for suchX that
Ad(expX) has generalized eigenvalue 1 exactlyl times. Thusl ′ ≤ l. In the
reverse direction supposeDl ′(x) ≡/ 0. SinceDl ′ extends holomorphically
to the connected complex group Intg, Dl ′ cannot be identically 0 in any
neighborhood of the identity in Intg. HenceDl ′(x) cannot be identically 0
in any neighborhood ofx = 1 in G. Choose a neighborhoodU of X ’s in g0

about 0 such that all adX have all eigenvalues< 2π in absolute value and
such that exp is a diffeomorphism onto a neighborhood of 1 inG. Under
these conditions the multiplicity of 0 as a generalized eigenvalue for adX
equals the multiplicity of 1 as a generalized eigenvalue for Ad(expX).
Thus if Dl ′(x) is somewhere nonzero on expU , thendl(X) is somewhere
nonzero onU . Thusl ≤ l ′, and we conclude thatl = l ′.

To understand the relationship between regular elements and Cartan
subgroups, we shall first study the case of a complex group (which in
practice will usually be Intg). The result in this case is Theorem 7.101
below. We establish notation for this theorem after proving three lemmas.

Lemma 7.96. Let Z be a connected complex manifold, and let
f : Z → Cn be a holomorphic function not identically 0. Then the
subset ofZ where f is not 0 is connected.

PROOF. Lemma 2.14 proves this result for the case thatZ = Cm and
f is a polynomial. But the same proof works ifZ is a bounded polydisc
�m

j=1 {|zj | < rj} and f is a holomorphic function on a neighborhood of the
closure of the polydisc. We shall piece together local results of this kind
to handle generalZ .

Thus let the manifold structure ofZ be specified by compatible charts
(Vα, ϕα) with ϕα : Vα → Cm holomorphic onto a bounded polydisc. There
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is no loss of generality in assuming that there are open subsetsUα covering
Z such thatϕα(Uα) is an open polydisc whose closure is contained in
ϕα(Vα). For any subsetS of Z , let S′ denote the subset ofS where f is
not 0. The result of the previous paragraph implies thatU ′

α is connected
for eachα, and we are to prove thatZ ′ is connected. AlsoU ′

α is dense in
Uα since the subset of a connected open set where a nonzero holomorphic
function takes on nonzero values is dense.

Fix U = U0. To each pointz ∈ Z , we can find a chain ofUα ’s of
the formU = U0, U1, . . . , Uk such thatz is in Uk andUi−1 ∩ Ui �= ∅ for
1 ≤ i ≤ k. In fact, the set ofz’s for which this assertion is true is nonempty
open closed and hence is all ofZ .

Now let z ∈ Z ′ be given, and form the chainU = U0, U1, . . . , Uk . Here
z is in U ′

k . We readily see by induction onm ≤ k that U ′
0 ∪ · · · ∪ U ′

m

is connected, hence thatU ′
0 ∪ · · · ∪ U ′

k is connected. Thus eachz ∈ Z ′

lies in a connected open set containingU ′
0, and it follows that the union of

these connected open sets is connected. The union isZ ′, and henceZ ′ is
connected.

Lemma 7.97. Let N be a simply connected nilpotent Lie group with
Lie algebran0, and letn′

0 be an ideal inn0. If X is in n0 andY is in n′
0, then

exp(X + Y ) = expX expY ′ for someY ′ in n′
0.

PROOF. If N ′ is the analytic subgroup corresponding ton′
0, thenN ′ is

certainly normal, andN ′ is closed as a consequence of Theorem 1.127.
Let ϕ : N → N/N ′ be the quotient homomorphism, and letdϕ be its
differential. Sincedϕ(Y ) = 0, we have

ϕ((exp(X + Y ))(expX)−1) = ϕ(exp(X + Y ))ϕ(expX)−1

= exp(dϕ(X) + dϕ(Y ))(expdϕ(X))−1

= exp(dϕ(X))(expdϕ(X))−1 = 1.

Therefore(exp(X + Y ))(expX)−1 is in N ′, and Theorem 1.127 shows that
it is of the form expY ′ for someY ′ ∈ n′

0.

Lemma 7.98. Let G = K AN be an Iwasawa decomposition of the
reductive groupG, let M = Z K (A), and letn0 be the Lie algebra ofN . If
h ∈ M A has the property that Ad(h) acts as a scalar on each restricted-root
space and Ad(h)−1 − 1 is nonsingular onn0, then the mapϕ : N → N
given byϕ(n) = h−1nhn−1 is ontoN .
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REMARK. This lemma may be regarded as a Lie group version of the
Lie algebra result given as Lemma 7.42.

PROOF. Write n0 = ⊕
(g0)λ as a sum of restricted-root spaces, and

regard the restricted roots as ordered lexicographically. For any restricted
rootα, the subspacenα = ⊕

λ≥α (g0)λ is an ideal, and we prove by induction
downward onα thatϕ carries expnα onto itself. This conclusion whenα
is equal to the smallest positive restricted root gives the lemma since exp
carriesn0 onto N (Theorem 1.127).

If α is given, we can writenα = (g0)α ⊕ nβ with β > α. Let X be
given in nα, and write X as X1 + X2 with X1 ∈ (g0)α and X2 ∈ nβ .
Since Ad(h)−1 − 1 is nonsingular on(g0)α, we can chooseY1 ∈ (g0)α with
X1 = (Ad(h)−1 − 1)Y1. Putn1 = expY1. Since Ad(h)−1Y1 is a multiple
of Y1, Ad(h)−1Y1 commutes withY1. Therefore

(7.99) h−1n1hn−1
1 = (exp Ad(h)−1Y1)(expY1)

−1

= exp((Ad(h)−1 − 1)Y1) = expX1.

Thus

expX = exp(X1 + X2)

= expX1 expX ′
2 by Lemma 7.97

= h−1n1hn−1
1 expX ′

2 by (7.99)

= h−1n1h expX ′′
2 n−1

1 with X ′′
2 ∈ nβ.

By induction expX ′′
2 = h−1n2hn−1

2 . Hence expX = h−1(n1n2)h(n1n2)
−1,

and the induction is complete.

Now we are ready for the main result about Cartan subgroups in the
complex case. LetGc be a complex semisimple Lie group (which will
usually be Intg when we return to our reductive Lie groupG). Proposition
7.5 shows thatGc is a reductive Lie group. LetGc = U AN be an Iwasawa
decomposition ofGc, and letM = ZU (A). We denote byg, u0, a0, n0, and
m0 the respective Lie algebras. Herem0 = ia0, m0 is maximal abelian in
u0, andh = a0 ⊕m0 is a Cartan subalgebra ofg. The corresponding Cartan
subgroup ofGc is of the formHc = M A since Proposition 7.25 shows that
Hc is a reductive Lie group. Since

M = ZU (a0) = ZU (ia0) = ZU (m0),

Corollary 4.52 shows thatM is connected. Therefore

(7.100) Hc is connected.

Let G ′
c denote the regular set inGc.
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Theorem 7.101.For the complex semisimple Lie groupGc, the regular
setG ′

c is connected and satisfiesG ′
c ⊆ ⋃

x∈Gc
x Hcx−1. If X0 is any regular

element inh, thenZGc(X0) = Hc.

PROOF. We may regardDl(x) as a holomorphic function onGc. The
regular setG ′

c is the set whereDl(x) �= 0, and Lemma 7.96 shows thatG ′
c

is connected.
Let H ′

c = Hc ∩ G ′
c, and defineV ′ = ⋃

x∈Gc
x H ′

cx−1. ThenV ′ ⊆ G ′
c

by (7.95). If X0 ∈ h is chosen so that no root in�(g, h) vanishes onX0,
then we have seen that expr X0 is in H ′

c for all sufficiently smallr > 0.
HenceV ′ is nonempty. We shall prove thatV ′ is open and closed inG ′

c,
and then it follows thatG ′

c = V ′, hence thatG ′
c ⊆ ⋃

x∈Gc
x Hcx−1.

To prove thatV ′ is closed inG ′
c, we observe thatHc N is closed in

Gc, being the minimal parabolic subgroupM AN . SinceU is compact, it
follows that

V =
⋃
u∈U

u Hc Nu−1

is closed inGc. By (7.95),

V ∩ G ′
c =

⋃
u∈U

u(Hc N )′u−1,

where(Hc N )′ = Hc N ∩ G ′
c. If h is in Hc andn is in N , then Ad(hn) has

the same generalized eigenvalues as Ad(h). Hence(Hc N )′ = H ′
c N . If h

is in H ′
c, then Ad(h) is scalar on each restricted root space contributing to

n0, and Ad(h) − 1 is nonsingular onn0. By Lemma 7.98 such anh has the
property thatn �→ h−1nhn−1 carriesN onto N . Let n0 ∈ N be given, and
write n0 = h−1nhn−1. Thenhn0 = nhn−1, and we see that every element
of hN is anN conjugate ofh. Since everyN conjugate ofh is certainly in
hN , we obtain

H ′
c N =

⋃
n∈N

nH ′
cn

−1.

Therefore
V ∩ G ′

c =
⋃
u∈U

⋃
n∈N

(un)H ′
c(un)−1.

SinceaH ′
ca

−1 = H ′
c for a ∈ A and sinceGc = U AN = U N A, we obtain

V ∩G ′
c = V ′. ThusV ′ is exhibited as the intersection ofG ′

c with the closed
setV, andV ′ is therefore closed inG ′

c.
To prove thatV ′ is open inG ′

c, it is enough to prove that the map
ψ : Gc × Hc → Gc given byψ(y, x) = yxy−1 has differential mapping
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onto at every point ofGc × H ′
c. The argument imitates part of the proof

of Theorem 4.36. Let us abbreviateyxy−1 asx y. Fix y ∈ Gc andx ∈ H ′
c.

We identify the tangent spaces aty, x , and x y with g, h, andg by left
translation. First letY be in g. To compute(dψ)(y,x)(Y, 0), we observe
from (1.88) that

(7.102) x y exprY = x y exp(rAd(yx−1)Y ) exp(−rAd(y)Y ).

We know from Lemma 1.90a that

expr X ′ exprY ′ = exp{r(X ′ + Y ′) + O(r2)} asr → 0.

Hence the right side of (7.102) is

= x y exp(rAd(y)(Ad(x−1) − 1)Y + O(r2)),

and

(7.103) dψ(Y, 0) = Ad(y)(Ad(x−1) − 1)Y.

Next if X is in h, then (1.88) gives

(x expr X)y = x y exp(rAd(y)X),

and hence

(7.104) dψ(0, X) = Ad(y)X.

Combining (7.103) and (7.104), we obtain

(7.105) dψ(Y, X) = Ad(y)((Ad(x−1) − 1)Y + X).

Sincex is in H ′
c, Ad(x−1)− 1 is invertible on the sum of the restricted-root

spaces, and thus the set of all(Ad(x−1) − 1)Y contains this sum. SinceX
is arbitrary inh, the set of all(Ad(x−1) − 1)Y + X is all of g. But Ad(y)

is invertible, and thus (7.105) shows thatdψ is ontog. This completes the
proof thatV ′ is open inG ′

c.
We are left with proving that any regular elementX0 of h hasZGc(X0) =

Hc. Letx ∈ Gc satisfy Ad(x)X0 = X0. Since the centralizer ofX0 in g ish,
Ad(x)h = h. If x = u expX is the global Cartan decomposition ofx , then
Lemma 7.22 shows that Ad(u)h = h and(adX)h = h. By Proposition
2.7, X is in h. Thus Ad(u)X0 = X0, and it is enough to prove thatu is in
M . Write X0 = X1 + i X2 with X1 and X2 in m0. Since Ad(u)u0 = u0,
we must have Ad(u)X1 = X1. The centralizer of the torusexpRX1 in U
is connected, by Corollary 4.51, and must lie in the analytic subgroup of
U with Lie algebraZu0(X1). SinceX1 is regular, Lemma 4.33 shows that
Zu0(X1) = m0. Thereforeu is in M , and the proof is complete.



496 VII. Advanced Structure Theory

Corollary 7.106. For the complex semisimple Lie groupGc, let Hx

denote the centralizer inGc of a regular elementx of Gc. Then the identity
component ofHx is a Cartan subgroup(Hx)0 of Gc, and Hx lies in the
normalizer NGc((Hx)0). ConsequentlyHx has only a finite number of
connected components.

REMARK. Compare this conclusion with the example ofSL(2, C)/{±1}
given after (7.95).

PROOF. Theorem 7.101 shows that we can choosey in Gc with h =
y−1xy in Hc. Sincex is regular, so ish. Therefore Ad(h) has 1 as a
generalized eigenvalue with multiplicityl = dimC h. Since Ad(h) acts
as the identity onh, it follows thath is the centralizer ofh in g. Hence
Ad(y)h is the centralizer ofx = yhy−1 in g, and Ad(y)h is therefore the
Lie algebra ofHx . Then(Hx)0 = y Hc y−1 is a Cartan subgroup ofGc

by (7.100).
Next any element of a Lie group normalizes its identity component, and

henceHx lies in the normalizerNGc((Hx)0). By (7.93), Hx has a finite
number of components.

Corollary 7.107. For the complex semisimple Lie groupGc, the cen-
tralizer ing of a regular element ofGc is a Cartan subalgebra ofg.

PROOF. This follows from the first conclusion of Corollary 7.106.

We return to the general reductive Lie groupG. The relationship be-
tween the regular set inG and the Cartan subgroups ofG follows quickly
from Corollary 7.107.

Theorem 7.108.For the reductive Lie groupG, let (h1)0, . . . , (hr)0 be
a maximal set of nonconjugateθ stable Cartan subalgebras ofg0, and let
H1, . . . , Hr be the corresponding Cartan subgroups ofG. Then

(a) G ′ ⊆ ⋃r
i=1

⋃
x∈G x Hi x−1,

(b) each member ofG ′ lies in just one Cartan subgroup ofG,
(c) eachHi is abelian ifG is semisimple and has a complexification.

PROOF.
(a) We apply Corollary 7.107 withGc = Int g. Property (v) of reductive

Lie groups says that Ad(G) ⊆ Gc, and the regular elements ofG are
exactly the elementsx of G for which Ad(x) is regular inGc. If x is in G ′,
then Corollary 7.107 shows thatZg(x) is a Cartan subalgebra ofg. Since
x is in G, Zg(x) is the complexification ofZg0(x), and henceZg0(x) is a
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Cartan subalgebra ofg0. ThereforeZg0(x) = Ad(y)(hi)0 for somey ∈ G
and somei with 1 ≤ i ≤ r . Write h̃0 for Zg0(x), and letH̃ = ZG (̃h0)

be the corresponding Cartan subgroup. By definition,x is in H̃ . Since
h̃0 = Ad(y)(hi)0, it follows that H̃ = y Hi y−1. Thereforex is in y Hi y−1,
and (a) is proved.

(b) We again apply Corollary 7.107 withGc = Int g. If x ∈ G ′ lies in
two distinct Cartan subgroups, then it centralizes two distinct Cartan subal-
gebras ofg0 and also their complexifications ing. Hence the centralizer of
x in g contains the sum of the two Cartan subalgebras ing, in contradiction
with Corollary 7.107.

(c) This time we regardGc as the complexification ofG. Let h0 be a
Cartan subalgebra ofg0, and letH be the corresponding Cartan subgroup
of G. The centralizerHc of h in Gc is connected by (7.100), andH is a
subgroup of this group. SinceHc has abelian Lie algebra, it is abelian.
HenceH is abelian.

Now we return to the component structure of Cartan subgroups, but
we shall restrict attention to the case that the reductive Lie groupG is
semisimple and has a complexificationGC. Let h0 = t0 ⊕ a0 be the
decomposition into+1 and−1 eigenspaces underθ of a θ stable Cartan
subalgebrah0. Let H be the Cartan subgroupZG(h0), let T = expt0, and
let A = expa0. HereT is closed inK since otherwise the Lie algebra of its
closure would form witha0 an abelian subspace larger thanh0. HenceT is
a torus. Ifα is a real root in�(g, h), then the same argument as for (7.54)
shows that

(7.109) γα = exp 2π i |α|−2Hα

is an element ofK with γ 2
α = 1. Asα varies, the elementsγα commute.

DefineF(T ) to be the subgroup ofK generated by all the elementsγα for α

real. Theorem 7.55 identifiesF(T ) in the special case thath0 is maximally
noncompact; the theorem says thatF(T ) = F in this case.

Proposition 7.110. Let G be semisimple with a complexificationGC,
and leth0 be aθ stable Cartan subalgebra. Then the corresponding Cartan
subgroup isH = AT F(T ).

PROOF. By Proposition 7.25,ZG(t0) is a reductive Lie group, and then
it satisfiesZG(t0) = Z K (t0) exp(p0 ∩ Zg0(t0)). By Corollary 4.51,Z K (t0)

is connected. ThereforeZG(t0) is connected.
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ConsequentlyZG(t0) is the analytic subgroup corresponding to

Zg0(t0) = g0 ∩ (
h +

∑
α real

gα

) = h0 + ( ∑
α real

RHα +
∑
α real

(gα ∩ g0)
)
.

The grouped term on the right is a split semisimple Lie algebras0. Let S be
the corresponding analytic subgroup, so thatZG(t0) = (exph0)S = AT S.
Since the subspacea′

0 = ∑
α realRHα of s is a maximal abelian subspace of

s0 ∩ p0, Theorem 7.55 shows that the correspondingF group is justF(T ).
By Theorem 7.53c,ZS(a

′
0) = (expa′

0)F(T ). Then

ZG(h0) = Z AT S(a0) = AT ZS(a0) = AT ZS(a
′
0) = AT F(T ).

Corollary 7.111. Let G be semisimple with a complexificationGC, and
let Q = M AN be the Langlands decomposition of a cuspidal parabolic
subgroup. Lett0 be aθ stable compact Cartan subalgebra ofm0, and let
h0 = t0 ⊕a0 be the correspondingθ stable Cartan subalgebra ofg0. Define
T andF(T ) from t0. Then

(a) Z M(t0) = T F(T ),
(b) Z M0 = Z M ∩ T ,
(c) Z M = (Z M ∩ T )F(T ) = Z M0 F(T ),
(d) M0Z M = M0F(T ).

REMARK. WhenQ is a minimal parabolic subgroup, the subgroupM0Z M

is all of M . But for generalQ, M0Z M need not exhaustM . For some
purposes in representation theory,M0Z M plays an intermediate role in
passing from representations ofM0 to representations ofM .

PROOF.
(a) Proposition 7.110 givesZ M(t0) = 0ZG(t0 ⊕ a0) = 0(AT F(T )) =

T F(T ).
(b) CertainlyZ M ∩T ⊆ Z M0. In the reverse direction,Z M0 is contained in

K ∩M0, hence is contained in the center ofK ∩M0. The center of a compact
connected Lie group is contained in every maximal torus (Corollary 4.47),
and thusZ M0 ⊆ T . To complete the proof of (b), we show thatZ M0 ⊆ Z M .
The sum ofa0 and a maximally noncompact Cartan subalgebra ofm0 is
a Cartan subalgebra ofg0, and the corresponding Cartan subgroup ofG
is abelian by Proposition 7.110. The intersection of this Cartan subgroup
with M is a maximal noncompact Cartan subgroup ofM and is abelian.
By Corollary 7.91,Z M0 ⊆ Z M .

(c) The subgroupF(T ) is contained inZ M since it is inK ∩ expia0.
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ThereforeZ M = Z M ∩ Z M(t0) = Z M ∩ (T F(T )) = (Z M ∩T )F(T ), which
proves the first equality of (c). The second equality follows from (b).

(d) By (c), M0Z M = M0Z M0 F(T ) = M0F(T ).

9. Harish-Chandra Decomposition

For G = SU (1, 1) =
{(

α β

β̄ ᾱ

) ∣∣∣ |α|2 − |β|2 = 1

}
, the subgroupK

can be taken to beK =
{(

eiθ 0
0 e−iθ

)}
, andG/K may be identified with

the disc{|z| < 1} by gK ↔ β/ᾱ. If g′ =
(

α′ β ′

β̄ ′ ᾱ′

)
is given, then the

equalityg′g =
(

α′α + β ′β̄ α′β + β ′ᾱ
β̄ ′α + ᾱ′β̄ β̄ ′β + ᾱ′ᾱ

)
implies that

g′(gK ) ↔ α′β + β ′ᾱ

β̄ ′β + ᾱ′ᾱ
= α′(β/ᾱ) + β ′

β̄ ′(β/ᾱ) + ᾱ′ .

In other words, under this identification,g′ acts by the associated linear

fractional transformationz �→ α′z + β ′

β̄ ′z + ᾱ′ . The transformations by which

G acts onG/K are thus holomorphic once we have imposed a suitable
complex-manifold structure onG/K .

If G is a semisimple Lie group, then we say thatG/K is Hermitian if
G/K admits a complex-manifold structure such thatG acts by holomorphic
transformations. In this section we shall classify the semisimple groups
G for which G/K is Hermitian. Since the center ofG is contained in
K (Theorem 6.31e), we could assume, if we wanted, thatG is an adjoint
group. At any rate there is no loss of generality in assuming thatG is linear
and hence has a complexification. We begin with a more complicated
example.

EXAMPLE. Let n ≥ m, let Mnm(C) be the complex vector space of
all n-by-m complex matrices, and let 1m be them-by-m identity matrix.
Define

� = {Z ∈ Mnm(C) | 1m − Z ∗ Z is positive definite}.
We shall identify� with a quotientG/K , takingG = SU (n, m) and

K = S(U (n) × U (m))

=
{(

A 0
0 D

) ∣∣∣ A ∈ U (n), D ∈ U (m), detA detD = 1

}
.



500 VII. Advanced Structure Theory

The group action ofG on� will be by

(7.112) g(Z) = (AZ + B)(C Z + D)−1 if g =
(

A B
C D

)
.

To see that (7.112) defines an action ofG on �, we shall verify that
(C Z + D)−1 is defined in (7.112) and thatg(Z) is in � if Z is in �.
To do so, we write

(AZ + B)∗(AZ + B) − (C Z + D)∗(C Z + D)

= ( Z ∗ 1m ) g∗
(

1n 0
0 −1m

)
g

(
Z
1m

)
= ( Z ∗ 1m )

(
1n 0
0 −1m

) (
Z
1m

)
sinceg is in SU (n, m)

= Z ∗ Z − 1m .

(7.113)

With Z in �, suppose(C Z + D)v = 0. Unlessv = 0, we see from (7.113)
that

0 ≤ v∗(AZ + B)∗(AZ + B)v = v∗(Z ∗ Z − 1m)v < 0,

a contradiction. Hence(C Z + D)−1 exists, and then (7.113) gives

g(Z)∗g(Z) − 1m = (C Z + D)∗−1(Z ∗ Z − 1m)(C Z + D)∗.

The right side is negative definite, and henceg(Z) is in �.
The isotropy subgroup atZ = 0 is the subgroup withB = 0, and this

subgroup reduces toK . Let us see thatG acts transitively on�. Let
Z ∈ Mnm(C) be given. The claim is thatZ decomposes as

(7.114) Z = udv with u ∈ U (n), v ∈ U (m),

andd of the formd =
(

d0

0

)
, whered0 = diag(λ1, . . . , λm) with all λj ≥ 0

and where 0 is of size(n − m)-by-m. To prove (7.114), we extendZ to a
square matrix( Z 0) of sizen-by-n and let the polar decomposition of
( Z 0) be ( Z 0) = u1 p with u1 ∈ U (n) and p positive semidefinite.
Since( Z 0) is 0 in the lastn − m columns,u1 gives 0 when applied to
the lastn −m columns ofp. The matrixu1 is nonsingular, and thus the last

n − m columns ofp are 0. Sincep is Hermitian,p =
(

p′ 0
0 0

)
with p′
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positive semidefinite of sizem-by-m. By the finite-dimensional Spectral
Theorem, writep′ = u2d0u−1

2 with u2 ∈ U (m) andd0 = diag(λ1, . . . , λm).

Then (7.114) holds withu = u1

(
u2 0
0 1n−m

)
, d =

(
d0

0

)
, andv = u−1

2 .

With Z as in (7.114), the matrixZ ∗ Z = v∗d∗dv has the same eigenvalues
asd∗d, which has eigenvaluesλ2

1, . . . , λ
2
m. ThusZ is in � if and only if

0 ≤ λj < 1 for 1 ≤ j ≤ m. In the formula (7.114) there is no loss

of generality in assuming that(detu)(detv)−1 = 1, so that

(
u 0
0 v−1

)
is

in K . Let a be the member ofSU (n, m) that is

(
coshtj sinhtj

sinhtj coshtj

)
in

the j th and(n + j)th rows and columns for 1≤ j ≤ m and is otherwise

the identity. Thena(0) = d, and

(
u 0
0 v−1

)
(d) = udv = Z . Hence

g =
(

u 0
0 v−1

)
a maps 0 toZ , and the action ofG on� is transitive.

Throughout this section we letG be a semisimple Lie group with a
complexificationGC. We continue with the usual notation forG as a
reductive Lie group. Letc0 be the center ofk0. We shall see that a necessary
and sufficient condition forG/K to be Hermitian is thatZg0(c0) = k0. In
this case we shall exhibitG/K as holomorphically equivalent to a bounded
domain in Cn for a suitablen. The explicit realization ofG/K as a
bounded domain is achieved through the “Harish-Chandra decomposition”
of a certain open dense subset ofGC.

First we shall prove that ifG/K is Hermitian, thenZg0(c0) = k0. Before
stating a precise theorem of this kind, we recall the “multiplication-by-i”
mapping introduced in connection with holomorphic mappings in §I.12.
If M is a complex manifold of dimensionn, we can associate toM an
almost-complex structure consisting of a multiplication-by-i mapping
Jp ∈ End(Tp(M)) for each p. For eachp, we haveJ 2

p = −1. If
� : M → N is a smooth mapping between complex manifolds, then
� is holomorphic if and only if the Cauchy–Riemann equations hold. If
{Jp} and{J ′

q} are the respective almost-complex structures forM and N ,
these equations may be written as

(7.115) J ′
�(p) ◦ d�p = d�p ◦ Jp

for all p.
Now let us consider the case thatM = N = G/K and p is the identity

coset. IfG/K is Hermitian, then each left translationLk byk ∈ K (defined
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by Lk(k ′) = kk ′) is holomorphic and fixes the identity coset. IfJ denotes
the multiplication-by-i mapping at the identity coset, then (7.115) gives

J ◦ d Lk = d Lk ◦ J.

We may identify the tangent space at the identity coset withp0, and then
d Lk = Ad(k)|p0. Differentiating, we obtain

(7.116) J ◦ (adX)|p0 = (adX)|p0 ◦ J for all X ∈ k0.

Theorem 7.117. If G/K is Hermitian, then the multiplication-by-i
mappingJ : p0 → p0 at the identity coset is of the formJ = (adX0)|p0 for
someX0 ∈ k0. This elementX0 is in c0 and satisfiesZg0(X0) = k0. Hence
Zg0(c0) = k0.

PROOF. SinceJ 2 = −1 onp0, the complexificationp is the direct sum
of its +i and−i eigenspacesp+ andp−. The main step is to prove that

(7.118) [X, Y ] = 0 if X ∈ p
+ andY ∈ p

+.

Let B be the bilinear form ong0 andg that is part of the data of a reductive
group, and define a bilinear formC onp by

C(X, Y ) = B(X, Y ) + B(J X, JY ).

SinceB is positive definite onp0, so isC . HenceC is nondegenerate onp.
Let us prove that

(7.119) C([[ X, Y ], Z ], T ) = C([[ Z , T ], X ], Y )

for X, Y, Z , T in p. WhenX, Y, Z are inp, the bracket [Y, Z ] is in k, and
therefore (7.116) implies that

(7.120) J [ X, [Y, Z ]] = [ J X, [Y, Z ]] .

Using the Jacobi identity and (7.120) repeatedly, together with the invari-
ance ofB, we compute

B(J [[ X, Y ], Z ], J T ) = B(J [ X, [Y, Z ]] , J T ) − B(J [Y, [ X, Z ]] , J T )

= B([ J X, [Y, Z ]] , J T ) − B([ JY, [ X, Z ]] , J T )

= −B([ J T, [Y, Z ]] , J X) + B([ J T, [ X, Z ]] , JY )

= −B(J [T, [Y, Z ]] , J X) + B(J [T, [ X, Z ]] , JY ).(7.121)
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Using the result (7.121) withZ andT interchanged, we obtain

B(J [[ X, Y ], Z ], J T ) = B([[ X, Y ], J Z ], J T )

= −B([[ X, Y ], J T ], J Z)

= −B(J [[ X, Y ], T ], J Z)

= B(J [Z , [Y, T ]] , J X) − B(J [Z , [ X, T ]] , JY ).(7.122)

The sum of (7.121) and (7.122) is

2B(J [[ X, Y ], Z ], J T ) = − B(J [T, [Y, Z ]] , J X) + B(J [T, [ X, Z ]] , JY )

+ B(J [Z , [Y, T ]] , J X) − B(J [Z , [ X, T ]] , JY )

= B(J [Y, [Z , T ]] , J X) − B(J [ X, [Z , T ]] , JY )

= B([ JY, [Z , T ]] , J X) − B([ J X, [Z , T ]] , JY )

= 2B([Z , T ], [ J X, JY ])

= 2B([[ Z , T ], J X ], JY )

= 2B(J [[ Z , T ], X ], JY ).(7.123)

The calculation that leads to (7.123) remains valid ifJ is dropped through-
out. If we add the results withJ present and withJ absent, we ob-
tain (7.119). To prove (7.118), suppose thatX andY are inp+, so that
J X = i X andJY = iY . Then

C([[ Z , T ], X ], Y ) = C(J [[ Z , T ], X ], JY )

= C([[ Z , T ], J X ], JY )

= −C([[ Z , T ], X ], Y )

saysC([[ Z , T ], X ], Y ) = 0. By (7.119),C([[ X, Y ], Z ], T ) = 0. SinceT
is arbitrary andC is nondegenerate,

(7.124) [[X, Y ], Z ] = 0 for all Z ∈ p.

If bar denotes conjugation ofg with respect tog0, thenB(W, W ) < 0 for
all W �= 0 in k. For W = [ X, Y ], we have

B([ X, Y ], [ X, Y ]) = B([ X, Y ], [ X , Y ]) = B([[ X, Y ], X ], Y ),

and the right side is 0 by (7.124). Therefore [X, Y ] = 0, and (7.118) is
proved.
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Let us extendJ to a linear map̃J defined ong, putting J̃ = 0 onk. We
shall deduce from (7.118) that̃J is a derivation ofg0, i.e., that

(7.125) J̃ [ X, Y ] = [ J̃ X, Y ] + [ X, J̃ Y ] for X, Y ∈ g0.

If X andY are ink0, all terms are 0, and (7.125) is automatic. IfX is in
k0 andY is in p0, then [̃J X, Y ] = 0 since J̃ X = 0, and (7.125) reduces
to (7.116). Thus supposeX andY are inp0. The elementX − i J X is in
p+ since

J (X − i J X) = J X − i J 2X = J X + i X = i(X − i J X),

and similarlyY − i JY is in p+. By (7.118),

0 = [ X − i J X, Y − i JY ] = ([ X, Y ] − [ J X, JY ])− i([ J X, Y ] + [ X, JY ]).

The real and imaginary parts must each be 0. Since the imaginary part is
0, the right side of (7.125) is 0. The left side of (7.125) is 0 sinceJ̃ is 0 on
k0. HenceJ̃ is a derivation ofg0.

By Proposition 1.121,̃J = adX0 for someX0 ∈ g0. Let Y ∈ p0 be
given. SinceJ 2 = −1 onp0, the elementY ′ = −JY of p0 hasJY ′ = Y .
Then

B(X0, Y ) = B(X0, JY ′) = B(X0, [ X0, Y ′]) = B([ X0, X0], Y ′) = 0.

HenceX0 is orthogonal top0, andX0 must be ink0. SinceJ̃ = adX0 is 0
on k0, X0 is in c0.

If Y is in Zg0(X0), then thek0 component ofY already commutes with
X0 since X0 is in c0. Thus we may assume thatY is in p0. But then
[ X0, Y ] = JY . SinceJ is nonsingular onp0, 0 = [ X0, Y ] implies Y = 0.
We conclude thatZg0(X0) = k0. Finally we have

k0 ⊆ Zg0(c0) ⊆ Zg0(X0) = k0,

and equality must hold throughout. ThereforeZg0(c0) = k0.

For the converse we assume thatZg0(c0) = k0, and we shall exhibit a
complex structure onG/K such thatG operates by holomorphic transfor-
mations. Fix a maximal abelian subspacet0 of k0. Thenc0 ⊆ t0, so that
Zg0(t0) ⊆ Zg0(c0) = k0. Consequentlyt0 is a compact Cartan subalgebra
of g0. The corresponding Cartan subgroupT is connected by Proposition
7.90b, hence is a torus.
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Every root in� = �(g, t) is imaginary, hence compact or noncompact
in the sense of §VI.7. If�K and �n denote the sets of compact and
noncompact roots, then we have

(7.126) k = t ⊕
⊕
α∈�K

gα and p =
⊕
α∈�n

gα,

just as in (6.103).

Lemma 7.127. A root α is compact if and only ifα vanishes on the
centerc of k.

PROOF. If α is in �, thenα(c) = 0 if and only if [c, gα] = 0, if and only
if gα ⊆ Zg(c), if and only if gα ⊆ k, if and only if α is compact.

By a good ordering for it0, we mean a system of positivity in which
every noncompact positive root is larger than every compact root. A good
ordering always exists; we can, for instance, use a lexicographic ordering
that takes ic0 before its orthogonal complement init0. Fixing a good
ordering, let�+, �+

K , and�+
n be the sets of positive roots in�, �K , and

�n. Define

p
+ =

⊕
α∈�+

n

gα and p
− =

⊕
α∈�+

n

g−α,

so thatp = p+ ⊕ p−.
In the example ofSU (n, m) earlier in this section, we have

ic0 = R diag( 1
n
, . . . , 1

n
, − 1

m
, . . . , − 1

m
)

with n entries1
n

andm entries− 1
m

, and we may taket0 to be the diagonal
subalgebra. If rootsei − ej that are positive on

diag( 1
n
, . . . , 1

n
, − 1

m
, . . . , − 1

m
)

are declared to be positive, thenp+ has the block form

(
0 ∗
0 0

)
andp−

has the block form

(
0 0
∗ 0

)
.
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Lemma 7.128. The subspacesp+ andp− are abelian subspaces ofp,
and [k, p+] ⊆ p+ and [k, p−] ⊆ p−.

PROOF. Letα, β, andα +β be in� with α compact andβ noncompact.
Then [gα, gβ ] ⊆ gα+β , andβ andα + β are both positive or both negative
because the ordering is good. Summing onα andβ, we see that [k, p+] ⊆ p+

and [k, p−] ⊆ p−.
If α andβ are in�+

n , thenα + β cannot be a root since it would have to
be a compact root larger than the noncompact positive rootα. Summing
onα andβ, we obtain [p+, p+] = 0. Similarly [p−, p−] = 0.

Let b be the Lie subalgebra

b = t ⊕
⊕
α∈�+

g−α

of g, and letP+, K C, P−, and B be the analytic subgroups ofGC with
Lie algebrasp+, k, p−, andb. SinceGC is complex andp+, k, p−, b are
closed under multiplication byi , all the groupsP+, K C, P−, B are complex
subgroups.

Theorem 7.129(Harish-Chandra decomposition). LetG be semisimple
with a complexificationGC, and suppose that the centerc0 of k0 has
Zg0(c0) = k0. Then multiplication fromP+ × K C × P− into GC is one-one,
holomorphic, and regular (with image open inGC), G B is open inGC, and
there exists a bounded open subset� ⊆ P+ such that

G B = G K C P− = �K C P−.

Moreover, G/K is Hermitian. In fact, the map ofG into � given by
g �→ (P+ component ofg) exhibitsG/K and� as diffeomorphic, andG
acts holomorphically on� by g(ω) = (P+ component ofgω).

REMARKS.
1)We shall see in the proof that the complexgroupP+ is holomorphically

isomorphic with someCn, and the theorem asserts that� is a bounded open
subset when regarded as inCn in this fashion.

2) WhenG = SU (n, m), GC may be taken asSL(n + m, C). The
decomposition of an open subset ofGC asP+ × K C × P− is

(
A B
C D

)
=

(
1 B D−1

0 1

) (
A − B D−1C 0

0 D

) (
1 0

D−1C 1

)
,

(7.130)
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valid wheneverD is nonsingular. Whatever� is in the theorem, ifω =(
1 Z
0 1

)
is in� andg =

(
A B
C D

)
is inG, thengω =

(
A AZ + B
C C Z + D

)
;

hence (7.130) shows that theP+ component ofgω is(
1 (AZ + B)(C Z + D)−1

0 1

)
.

So the action is

(7.131)

(
A B
C D

) ((
1 Z
0 1

))
=

(
1 (AZ + B)(C Z + D)−1

0 1

)
.

We know from the example earlier in this section that the image ofZ = 0

underZ �→ (AZ + B)(C Z + D)−1 for all

(
A B
C D

)
in SU (n, m) is all

Z with 1m − Z ∗ Z positive definite. Therefore� consists of all

(
1 Z
0 1

)
such that 1m − Z ∗ Z is positive definite, and the action (7.131) corresponds
to the action by linear fractional transformations in the example.

3) The proof will reduce matters to two lemmas, which we shall consider
separately.

PROOF. Define

n =
⊕
α∈�+

gα, n
− =

⊕
α∈�+

g−α, bK = t ⊕
⊕
α∈�+

K

g−α,

N , N −, BK = corresponding analytic subgroups ofGC.

Let HR and H be the analytic subgroups ofGC with Lie algebrasit0 and
t, so thatH = T HR as a direct product. By (7.100) a Cartan subgroup
of a complex semisimple Lie group is connected, and thereforeH is a
Cartan subgroup. The involutionθ ◦ bar, where bar is the conjugation ofg

with respect tog0, is a Cartan involution ofg, andit0 is a maximal abelian
subspace of the−1 eigenspace. The+1 eigenspace isk0 ⊕ ip0, and the
corresponding analytic subgroup ofGC we callU . Then

ZU (it0) = ZU (t) = U ∩ ZGC(t) = U ∩ H = T .

So theMp group is justT . By Proposition 7.82 theM of every parabolic
subgroup ofGC is connected.
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The restricted roots ofgR relative toit0 are evidently the restrictions from
t to it0 of the roots. Thereforeb = t⊕n− is a minimal parabolic subalgebra
of gR. Since parabolic subgroups ofGC are closed (by Proposition 7.83b)
and connected,B is closed.

The subspacek⊕ p− is a Lie subalgebra ofgR containingb and hence is
a parabolic subalgebra. Then Proposition 7.83 shows thatK C andP− are
closed,K C P− is closed, and multiplicationK C × P− is a diffeomorphism
onto. SimilarlyP+ is closed.

Moreover the Lie algebrak ⊕ p− of K C P− is complex, and hence
K C P− is a complex manifold. Then multiplicationK C × P− is evidently
holomorphic and has been observed to be one-one and regular. Since
p+ ⊕ (k ⊕ p−) = g, Lemma 6.44 shows that the holomorphic multiplica-
tion mapP+ × (K C P−) → GC is everywhere regular. It is one-one by
Proposition 7.83e. HenceP+ × K C × P− → G is one-one, holomorphic,
and regular.

Next we shall show thatG B is open inGC. First let us observe that

(7.132) g0 ∩ (it0 ⊕ n
−) = 0.

In fact, since roots are imaginary ont0, we havegα = g−α. Thus ifh is in
it0 andX−α is in n−, then

h +
∑
α∈�+

X−α = −h +
∑
α∈�+

X−α ∈ −h + n,

and (7.132) follows since members ofg0 equal their own conjugates. The
real dimension ofit0 ⊕ n− is half the real dimension oft ⊕ n ⊕ n− = g,
and hence

(7.133) dimR(g0 ⊕ (it0 ⊕ n
−)) = dimR g.

Combining (7.132) and (7.133), we see that

(7.134) g = g0 ⊕ (it0 ⊕ n
−).

The subgroupHR N − of GC is closed by Proposition 7.83, and henceHR N −

is an analytic subgroup, necessarily with Lie algebrait0 ⊕ n−. By Lemma
6.44 it follows from (7.134) that multiplicationG × HR N − → GC is
everywhere regular. The dimension relation (7.133) therefore implies that
G HR N − is open inGC. SinceB = T HR N − and T ⊆ G, G B equals
G HR N − and is open inGC.
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The subgroupsP+ and P− are theN groups of parabolic subalgebras,
and their Lie algebras are abelian by Lemma 7.128. HenceP+ and P−

are Euclidean groups. Then exp :p+ → P+ is biholomorphic, andP+

is biholomorphic withCn for somen. Similarly P− is biholomorphic
with Cn.

The subgroupK C is a reductive group, being connected and having bar
as a Cartan involution for its Lie algebra. It is the product of the identity
component of its center by a complex semisimple Lie group, and our above
considerations show that its parabolic subgroups are connected. ThenBK

is a parabolic subgroup, and

(7.135) K C = K BK

by Proposition 7.83f.
Let A denote a specificAp component for the Iwasawa decomposition

of G, to be specified in Lemma 7.143 below. We shall show in Lemma
7.145 that thisA satisfies

(7.136a) A ⊆ P+K C P−

and

(7.136b) P+ components of members ofA are bounded.

Theorem 7.39 shows thatG = K AK . Sinceb ⊆ k ⊕ p−, we have
B ⊆ K C P−. Since Lemma 7.128 shows thatK C normalizesP+ and
P−, (7.136a) gives

(7.137)
G B ⊆ G K C P− ⊆ K AK K C P−

⊆ K P+K C P−K C P− = P+K C P−.

By (7.135) we have

(7.138) G K C P− = G K BK P− ⊆ G BK P− ⊆ G B.

Inclusions (7.137) and (7.138) together imply that

G B = G K C P− ⊆ P+K C P−.

SinceG B is open,

(7.139) G B = G K C P− = �K C P−
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for some open set� in P+.
Let us write p+( · ) for the P+ component. Forgb ∈ G B, we have

p+(gb) = p+(g), and thusp+ restricts to a smooth map carryingG onto
�. From (7.139) it follows that the mapG × � → � given by

(7.140) (g, ω) �→ p+(gω)

is well defined. For fixedg, this is holomorphic since left translation by
g is holomorphic onGC and sincep+ is holomorphic fromP+K C P−

to P+. To see that (7.140) is a group action, we use thatK C P− is a
subgroup. Letg1 and g2 be given, and writeg2ω = p+(g2ω)k2 p−

2 and
g1g2ω = p+(g1g2ω)kC p−. Then

g1 p+(g2ω) = g1g2ω(k2 p−
2 )−1 = p+(g1g2ω)(kC p−)(k2 p−

2 )−1.

Since(kC p−)(k2 p−
2 )−1 is in K C P−, p+(g1 p+(g2ω)) = p+(g1g2ω). There-

fore (7.140) is a group action. The action is evidently smooth, and we have
seen that it is transitive.

If g is in G andk is in K , we can regard 1 as in� and write

p+(gk) = p+(gk1) = p+(gp+(k1)) = p+(g1)

sincek1 is in K ⊆ K C and hasP+ component 1. Thereforep+ : G → �

descends to a smooth map ofG/K onto�. Let us see that it is one-one.
If p+(g1) = p+(g2), theng1 = g2kC p− sinceK C P− is a group, and hence
g−1

2 g1 = kC p−. Thus the mapG/K → � will be one-one if we show that

(7.141) G ∩ K C P− = K .

To prove (7.141), we note that⊇ is clear. Then we argue in the same way
as for (7.132) that

(7.142) g0 ∩ (k ⊕ p
−) = k0.

SinceG and K C P− are closed inGC, their intersection is a closed sub-
group of G with Lie algebrak0. Let g = k expX be the global Cartan
decomposition of an elementg of G ∩ K C P−. Then Ad(g)k0 = k0, and
Lemma 7.22 implies that(adX)k0 ⊆ k0. Since adX is skew symmetric
relative toB, (adX)p0 ⊆ p0. But X ∈ p0 implies that(adX)k0 ⊆ p0 and
(adX)p0 ⊆ k0. Hence adX = 0 andX = 0. This proves (7.141).

To see thatG/K → � is everywhere regular, it is enough, since (7.140)
is a smooth group action, to show that the differential ofp+ : G → � at
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the identity is one-one onp0. But dp+ complexifies to the projection of
g = p+ ⊕ k⊕p− onp+, and (7.142) shows that the kernel of this projection
meetsp0 only in 0. Therefore the mapG/K → � is a diffeomorphism.

To see that� is bounded, we need to see thatp+(g) remains bounded as
g varies inG. If g ∈ G is given, writeg = k1ak2 according toG = K AK .
Then p+(g) = p+(k1a) = k1 p+(a)k−1

1 by (7.139) and Lemma 7.128.
Therefore it is enough to prove that‖ log p+(a)‖ remains bounded, and
this is just (7.136b). Thus the theorem reduces to proving (7.136), which
we do in Lemmas 7.143 and 7.145 below.

Lemma 7.143.Inductively defineγ1, . . . , γs in �+
n as follows:γ1 is the

largest member of�+
n , andγj is the largest member of�+

n orthogonal to
γ1, . . . , γj−1. For 1≤ j ≤ s, let Eγj be a nonzero root vector forγj . Then
the rootsγ1, . . . , γs are strongly orthogonal, and

a0 =
s⊕

j=1

R(Eγj + Eγj )

is a maximal abelian subspace ofp0.

PROOF. We make repeated use of the fact that ifEβ is in gβ , thenEβ is
in g−β . Since [p+, p+] = 0 by Lemma 7.128,γj + γi is never a root, and
theγj ’s are strongly orthogonal. Then it follows thata0 is abelian.

To see thata0 is maximal abelian inp0, let X be a member ofp0 com-
muting witha0. By (7.126) we can writeX = ∑

β∈�n
Xβ with Xβ ∈ gβ .

Without loss of generality, we may assume thatX is orthogonal toa0, and
then we are to prove thatX = 0. Assuming thatX �= 0, letβ0 be the largest
member of�n such thatXβ0 �= 0. SinceX = X , X−β0 �= 0 also; thusβ0 is
positive. Choosej as small as possible so thatβ0 is not orthogonal toγj .

First suppose thatβ0 �= γj . Since [p+, p+] = 0, β0 + γj is not a root.
Thereforeβ0 − γj is a root. The rootβ0 is orthogonal toγ1, . . . , γj−1, and
γj is the largest noncompact root orthogonal toγ1, . . . , γj−1. Thusβ0 < γj ,
andβ0 − γj is negative. We have

(7.144) 0= [ X, Eγj + Eγj ] =
∑
β∈�n

([ Xβ, Eγj ] + [ Xβ, Eγj ]),

and [Xβ0, Eγj ] is not 0, by Corollary 2.35. Thus there is a compensating
term [Xβ, Eγj ], i.e., there existsβ ∈ �n with β + γj = β0 − γj and with
Xβ �= 0. SinceX = X , X−β �= 0. By maximality ofβ0, β0 > −β. Since
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γj − β0 is positive,γj > β0 > −β. Thereforeβ + γj is positive. But
β + γj = β0 − γj , and the right side is negative, contradiction.

Next suppose thatβ0 = γj . Then [Xγj , Eγj ] �= 0, and (7.144) gives

[ X−γj , Eγj ] + [ Xγj , Eγj ] = 0.

Define scalarsc+ andc− by Xγj = c+Eγj andX−γj = c−Eγj . Substituting,
we obtain

−c−[Eγj , Eγj ] + c+[Eγj , Eγj ] = 0,

and thereforec+ = c−. ConsequentlyXγj + X−γj = c+(Eγj + Eγj ) makes a
contribution toX that is nonorthogonal toEγj + Eγj . Since the other terms
of X are orthogonal toEγj + Eγj , we have a contradiction. We conclude
that X = 0 and hence thata0 is maximal abelian inp0.

Lemma 7.145. With notation as in Lemma 7.143 and with theEγj ’s
normalized so that [Eγj , Eγj ] = 2|γj |−2Hγj , let Z = ∑s

j=1 tj(Eγj + Eγj ) be
in a0. Then

(7.146) expZ = expX0 expH0 expY0

with

X0 =
∑

(tanhtj)Eγj ∈ p
+, Y0 =

∑
(tanhtj)Eγj ∈ p

−,

H0 = −
∑

(log coshtj)[Eγj , Eγj ] ∈ it0 ⊆ k.

Moreover theP+ components expX0 of expZ remain bounded asZ varies
througha0.

REMARK. The given normalization is the one used with Cayley trans-
forms in §VI.7 and in particular is permissible.

PROOF. For the special case thatG = SU (1, 1) ⊆ SL(2, C), (7.146) is
just the identity(

cosht sinht
sinht cosht

)
=

(
1 tanht
0 1

) (
(cosht)−1 0

0 cosht

) (
1 0

tanht 1

)
.

Here we are usingEγ =
(

0 1

0 0

)
andEγ =

(
0 0

1 0

)
.
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We can embed the special case in the general case for eachγj , 1 ≤ j ≤ s,
since the inclusion

sl(2, C) = CHγj + CEγj + CEγj ⊆ g

induces a homomorphismSL(2, C) → GC, SL(2, C) being simply con-
nected. This embedding handles each of thes terms ofZ separately. Since
theγj ’s are strongly orthogonal, the contributions toX0, Y0, andH0 for γi

commute with those forγj wheni �= j , and (7.146) follows for generalZ .
Finally in the expression forX0, the coefficients of eachEγj lie between

−1 and+1 for all Z . Hence expX0 remains bounded inP+.

This completes the proof of Theorem 7.129. Let us see what it means
in examples. First suppose thatg0 is simple. Forc0 to be nonzero,g0

must certainly be noncompact. Consider the Vogan diagram ofg0 in a
good ordering. Lemma 7.128 rules out having the sum of two positive
noncompact roots be a root. Since the sum of any connected set of simple
roots in a Dynkin diagram is a root, it follows that there cannot be two
or more noncompact simple roots in the Vogan diagram. Hence there is
just one noncompact simple root, and the Vogan diagram is one of those
considered in §VI.10. Since there is just one noncompact simple root and
that root cannot occur twice in any positive root, every positive noncompact
root has the same restriction toc0. In particular, dimc0 = 1.

To see the possibilities, we can refer to the classification in §VI.10 and
see thatc0 �= 0 for the following cases and only these up to isomorphism:

(7.147)

g0 k0

su(p, q) su(p) ⊕ su(q) ⊕ R
so(2, n) so(n) ⊕ R
sp(n, R) su(n) ⊕ R
so∗(2n) su(n) ⊕ R

E III so(10) ⊕ R
E VII e6 ⊕ R

Conversely each of these cases corresponds to a groupG satisfying the
conditionZg0(c0) = k0, and henceG/K is Hermitian in each case.

If g0 is merely semisimple, then the conditionZg0(c0) = k0 forces the
center of the component ofk0 in each noncompact simple component of
g0 to be nonzero. The correspondingG/K is then the product of spaces
obtained in the preceding paragraph.



514 VII. Advanced Structure Theory

10. Problems

1. Prove that the orthogonal groupO(2n) does not satisfy property (v) of a
reductive Lie group.

2. Let S̃L(2, R) be the universal covering group ofSL(2, R), and letϕ be the
covering homomorphism. Let̃K be the subgroup of̃SL(2, R) fixed by the
global Cartan involution�. ParametrizẽK ∼= R so that kerϕ = Z. Define
G̃ = S̃L(2, R) × R, and extend� to G̃ so as to be 1 in the second factor.
Within the subgroupR × R where� is 1, let D be the discrete subgroup
generated by(0, 1) and(1,

√
2), so thatD is central inG̃. DefineG = G̃/D.

(a) Prove thatG is a connected reductive Lie group with0G = G.
(b) Prove thatGss has infinite center and is not closed inG.

3. In G = SL(n, R), takeMp ApNp to be the upper-triangular subgroup.
(a) Follow the prescription of Proposition 7.76 to see that the proposition

leads to all possible full block upper-triangular subgroups ofSL(n, R).
(b) Give a direct proof forSL(n, R) that the only closed subgroups containing

Mp ApNp are the full block upper-triangular subgroups.
(c) Give a direct proof forSL(n, R) that no two distinct full block upper-

triangular subgroups are conjugate withinSL(n, R).

4. In the notation forG = SL(4, R) as in §VI.4, form the parabolic subgroup
M AN containing the upper-triangular group and corresponding to the subset
{ f3 − f4} of simple restricted roots.
(a) Prove that thea0 roots are±( f1 − f2), ±( f1 − 1

2( f3 + f4)), and
±( f2 − 1

2( f3 + f4)).
(b) Prove that thea0 roots do not all have the same length and do not form a

root system.

5. Show that a maximal proper parabolic subgroupM AN of SL(3, R) is cuspidal
and thatM �= M0Z M .

6. ForG equal to splitG2, show that there is a cuspidal maximal proper parabolic
subgroupM AN such that the set ofa0 roots is of the form{±η, ±2η, ±3η}.

7. The groupG = Sp(2, R) has at most four nonconjugate Cartan subalgebras,
according to §VI.7, and a representative of each conjugacy class is given in
that section.
(a) For each of the four, construct theM A of an associated cuspidal parabolic

subgroup as in Proposition 7.87.
(b) Use the result of (a) to show that the two Cartan subalgebras of noncom-

pact dimension one are not conjugate.

8. LetG be SO(n, 2)0.
(a) Show thatGC ∼= SO(n + 2, C).
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(b) Show thatZg0(c0) = k0.
(c) The isomorphism in (a) identifies the root system ofSO(n, 2) as of type

B(n+1)/2 if n is odd and of typeD(n+2)/2 if n is even. Identify which roots
are compact and which are noncompact.

(d) Decide on some particular good ordering in the sense of §9, and identify
the positive roots.

Problems 9–12 concern a reductive Lie groupG. Notation is as in §2.

9. Let a0 be maximal abelian inp0. The natural inclusionNK (a0) ⊆ NG(a0)

induces a homomorphismNK (a0)/Z K (a0) → NG(a0)/ZG(a0). Prove that
this homomorphism is an isomorphism.

10. Let t0 ⊕ a0 be a maximally noncompactθ stable Cartan subalgebra ofg0.
Prove that every element ofNK (a0) decomposes as a productzn, wheren is
in NK (t0 ⊕ a0) andz is in Z K (a0).

11. LetH be a Cartan subgroup ofG, and letsα be a root reflection inW (g, h).
(a) Prove thatsα is in W (G, H) if α is real orα is compact imaginary.
(b) Prove that ifH is compact andG is connected, thensα is not inW (G, H)

whenα is noncompact imaginary.
(c) Give an example of a reductive Lie groupG with a compact Cartan

subgroupH such thatsα is in W (G, H) for some noncompact imaginary
rootα.

12. Let H = T A be the global Cartan decomposition of a� stable Cartan
subgroup ofG. Let W (G, A) = NG(a0)/ZG(a0), and letM = 0ZG(a0).
Let W1(G, H) be the subgroup ofW (G, H) of elements normalizingit0 and
a0 separately.
(a) Show that restriction toa0 defines a homomorphism ofW1(G, H) into

W (G, A).
(b) Prove that the homomorphism in (a) is onto.
(c) Prove that the kernel of the homomorphism in (a) may be identified with

W (M, T ).

Problems 13–21 concern a reductive Lie groupG that is semisimple. Notation is
as in §2.

13. Let t0 ⊕ a0 be a maximally noncompactθ stable Cartan subalgebra ofg0,
impose an ordering on the roots that takesa0 before it0, let b be a Borel
subalgebra ofg containingt ⊕ a and built from that ordering, and let bar
denote the conjugation ofg with respect tog0. Prove that the smallest Lie
subalgebra ofg containingb and b̄ is the complexification of a minimal
parabolic subalgebra ofg0.

14. Prove thatNg0(k0) = k0.
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15. LetG have a complexificationGC. Prove that the normalizer ofg0 in GC is
a reductive Lie group.

16. LetG have a complexificationGC, letU ⊆ GC be the analytic subgroup with
Lie algebrak0 ⊕ ip0, and leth0 = t0 ⊕ a0 be the decomposition into+1 and
−1 eigenspaces of aθ stable Cartan subalgebra ofg0. Prove that expia0 is
closed inU .

17. Give an example of a semisimpleG with complexificationGC such that
K ∩ expia0 strictly containsKsplit ∩ expia0. Herea0 is assumed maximal
abelian inp0.

18. Suppose thatG has a complexificationGC and that rankG = rankK . Prove
that ZGC = ZG .

19. Suppose that rankG = rankK . Prove that any two complexifications ofG
are holomorphically isomorphic.

20. Show that the conclusions of Problems 18 and 19 are false forG = SL(3, R).

21. Suppose thatG/K is Hermitian and thatg0 is simple. Show that there are
only two ways to impose aG invariant complex structure onG/K .

Problems 22–24 compare the integer span of the roots with the integer span of the
compact roots. It is assumed thatG is a reductive Lie group with rankG = rankK .

22. Fix a positive system�+. Attach to each simple noncompact root the integer
1 and to each simple compact root the integer 0; extend additively to the group
generated by the roots, obtaining a functionγ �→ n(γ ). Arguing as in Lemma
6.98, prove thatn(γ ) is odd whenγ is a positive noncompact root and is even
whenγ is a positive compact root.

23. Making use of the functionγ �→ (−1)n(γ ), prove that a noncompact root can
never be an integer combination of compact roots.

24. Suppose thatG is semisimple, thatg0 is simple, and thatG/K is not Hermitian.
Prove that the lattice generated by the compact roots has index 2 in the lattice
generated by all the roots.

Problems 25–29 give further properties of semisimple groups with rankG =
rankK . Let t0 ⊆ k0 be a Cartan subalgebra ofg0, and form roots, compact and
noncompact.

25. K acts onp via the adjoint representation. Identify the weights as the non-
compact roots, showing in particular that 0 is not a weight.

26. Show that the subalgebras ofg containingk are of the formk ⊕ ⊕
α∈E gα for

some subsetE of noncompact roots.
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27. Suppose thatk ⊕ ⊕
α∈E gα is a subalgebra ofg. Prove that

k ⊕
∑
α∈E

(gα ⊕ g−α) and k ⊕
⊕

α∈(E∩(−E))

gα

are subalgebras ofg that are the complexifications of subalgebras ofg0.

28. Suppose thatg0 is simple. Prove that the adjoint representation ofK on p

splits into at most two irreducible pieces.

29. Suppose thatg0 is simple, and suppose that the adjoint representation ofK on
p is reducible (necessarily into two pieces, according to Problem 28). Show
that the centerc0 of k0 is nonzero, thatZg0(c0) = k0, and that the irreducible
pieces arep+ andp−.

Problems 30–33 concern the groupG = SU (n, n) ∩ Sp(n, C). In the notation of
§9, let� be the set of allZ ∈ Mnn(C) such that 1n − Z∗ Z is positive definite and
Z = Zt .

30. Using Problem 15b from Chapter VI, prove thatG ∼= Sp(n, R).

31. With the members ofG written in block form, show that (7.112) defines an
action ofG on� by holomorphic transformations.

32. Identify the isotropy subgroup ofG at 0 with

K =
{(

A 0
0 A

) ∣∣∣ A ∈ U (n)

}
.

33. The diagonal subalgebra ofg0 is a compact Cartan subalgebra. Exhibit a good
ordering such thatp+ consists of block strictly upper-triangular matrices.

Problems 34–36 concern the groupG = SO∗(2n). In the notation of §9, let� be
the set of allZ ∈ Mnn(C) such that 1n − Z∗ Z is positive definite andZ = −Zt .

34. With the members ofG written in block form, show that (7.112) defines an
action ofG on� by holomorphic transformations.

35. Identify the isotropy subgroup ofG at 0 with

K =
{(

A 0
0 A

) ∣∣∣ A ∈ U (n)

}
.

36. The diagonal subalgebra ofg0 is a compact Cartan subalgebra. Exhibit a good
ordering such thatp+ consists of block strictly upper-triangular matrices.

Problems 37–41 concern the restricted roots in cases whenG is semisimple and
G/K is Hermitian.

37. In the example of §9 withG = SU (n, m),
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(a) show that the rootsγj produced in Lemma 7.143 areγ1 = e1 − en+m ,
γ2 = e2 − en+m−1, . . . , γm = em − em+1.

(b) show that the restricted roots (apart from Cayley transform) always in-
clude all±γj and all 1

2(±γi ±γj ). Show that there are no other restricted
roots ifm = n and that± 1

2γi are the only other restricted roots ifm < n.

38. In the example of Problems 30–33 withG = SU (n, n) ∩ Sp(n, C), a group
that is shown in Problem 30 to be isomorphic toSp(n, R),
(a) show that the rootsγj produced in Lemma 7.143 areγ1 = 2e1, . . . , γn =

2en.
(b) show that the restricted roots (apart from Cayley transform) are all±γj

and all 1
2(±γi ± γj ).

39. In the example of Problem 6 of Chapter VI and Problems 34–36 above with
G = SO∗(2n),
(a) show that the rootsγj produced in Lemma 7.143 areγ1 = e1 + en,

γ2 = e2 + en−1, . . . , γ[n/2] = e[n/2] + en−[n/2]+1.
(b) find the restricted roots apart from Cayley transform.

40. For generalG with G/K Hermitian, suppose thatα, β, andγ are roots with
α compact and withβ andγ positive noncompact in a good ordering. Prove
thatα + β andα + β + γ cannot both be roots.

41. Let the expansion of a root in terms of Lemma 7.143 beγ = ∑s
i=1 ciγi + γ ′

with γ ′ orthogonal toγ1, . . . , γs .
(a) Prove for eachi that 2ci is an integer with|2ci | ≤ 3.
(b) Rule outci = − 3

2 by using Problem 40 and theγi string containingγ ,
and rule outci = + 3

2 by applying this conclusion to−γ .
(c) Rule outci = ±1 for somej �= i by a similar argument.
(d) Show thatci �= 0 for at most two indicesi by a similar argument.
(e) Deduce that each restricted root, apart from Cayley transform, is of one

of the forms±γi , 1
2(±γi ± γj ), or ± 1

2γi .
(f) If g0 is simple, conclude that the restricted root system is of type(BC)s

or Cs .

Problems 42–44 yield a realization ofG/K , in the Hermitian case, as a particularly
nice unbounded open subset�′ of P+. Let notation be as in §9.

42. In the special case thatG = SU (1, 1), let u be the Cayley transform matrix
1√
2

(
1 i
i 1

)
, let G ′ = SL(2, R), and let

�′ =
{(

1 z
0 1

) ∣∣∣ Im z > 0

}
.
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It is easily verified thatuGu−1 = G ′. Prove thatuG B = G ′u B = �′K C P−

and thatG ′ acts on�′ by the usual action ofSL(2, R) on the upper half plane.

43. In the general case as in §9, letγ1, . . . , γs be constructed as in Lemma 7.143.
For eachj , construct an elementuj in GC that behaves for the 3-dimensional
group corresponding toγj like the elementu of Problem 42. Putu = ∏s

j=1 uj .

(a) Exhibitu as inP+K C P−.
(b) Let a0 be the maximal abelian subspace ofp0 constructed in Lemma

7.143, and letAp = expa0. Show thatu Apu−1 ⊆ K C.
(c) Show for a particular ordering ona∗

0 thatuNpu−1 ⊆ P+K C if Np is built
from the positive restricted roots.

(d) Writing G = Np ApK by the Iwasawa decomposition, prove thatuG B ⊆
P+K C P−.

44. Let G ′ = uGu−1. Prove thatG ′u B = �′K C P− for some open subset�′

of P+. Prove also that the resulting action ofG ′ on �′ is holomorphic and
transitive, and identify�′ with G/K .

Problems 45–51 give further information about quasisplit Lie algebras and inner
forms, which were introduced in Problems 28–35 of Chapter VI. Fix a complex
semisimple Lie algebrag, and letN be the order of the automorphism group of
the Dynkin diagram ofg. If g is simple, thenN is 1, 2, or 6, but other values ofN
are possible for general complex semisimpleg.

45. Forg = sl(n, C) ⊕ sl(n, C) with n > 2, show thatsl(n, R) ⊕ su(n) and
su(n)⊕ sl(n, R) are isomorphic real forms ofg but are not inner forms of one
another.

46. Prove the following:
(a) The number of inner classes of real forms ofg is ≤ N .
(b) The number of isomorphism classes of quasisplit real forms ofg is ≤ N .

(c) If the number of isomorphism classes of quasisplit real forms equalsN ,
then the number of inner classes of real forms ofg equalsN and any two
isomorphic real forms ofg are inner forms of one another.

47. Under the assumption thatN = 1, deduce the following from Problem 46:
(a) Any two real forms ofg are inner forms of one another.
(b) The Lie algebrag has no real form that is quasisplit but not split.

48. Prove that Aut(gR)/Int(gR) has order 2N if g is simple.

49. Under the assumption thatN = 2, deduce from Problems 46 and 48 that any
two isomorphic real forms ofg are inner forms of one another.

50. By referring to the tables in Appendix C, observe that there are 2 nonisomor-
phic quasisplit real forms of each of the complex simple Lie algebras of types
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An for n > 1, Dn for n > 4, andE6. Conclude that there are two inner classes
of real forms in each case and that any two isomorphic real forms are inner
forms of one another.

51. This problem usestriality , which, for current purposes, refers to members
of Aut g/Int g of order 3 wheng is a complex Lie algebra of typeD4. The
objective is to show thatg = so(8, C) contains at least two distinct real forms
g0 andg′

0 that are isomorphic toso(5, 3) but that are not inner forms of one
another. Letg0 be a Lie algebra isomorphic toso(5, 3), let θ be a Cartan
involution, and introduce a maximally noncompact Cartan subalgebra given
in standard notation byh0 = a0 ⊕ t0. Choose an ordering that takesa0 before
it0. In the usual notation for a Dynkin diagram of typeD4, the simple roots
e1 − e2 ande2 − e3 are real, ande3 − e4 ande3 + e4 are complex. Introduce an
automorphismτ of so(8, C) that corresponds to a counterclockwise rotationτ

of theD4 diagram through 1/3 of a revolution. Putg′
0 = τ(g0). For a suitable

normalization of root vectors used in definingτ , show that the conjugations
σ andσ ′ of g with respect tog0 andg′

0 satisfyσ ′σ = τ−1, and conclude that
g0 andg′

0 are not inner forms of one another.

Problems 52–57 give further information about groups of real rank one beyond
that in §6. LetG be an analytic group whose Lie algebrag is simple of real
rank one, letθ be a Cartan involution ofg, let g = k ⊕ p be the corresponding
Cartan decomposition, leta be a (1-dimensional) maximal abelian subspace ofp,
letg = g−2β ⊕g−β ⊕a⊕m⊕gβ ⊕g2β be the restricted-root space decomposition,
and letmβ andm2β be the dimensions ofgβ andg2β . Select a maximal abelian
subspacet of m, so that the restricted roots are the restrictions toa of the roots
relative to the Cartan subalgebraa ⊕ t. Let g1 = g−2β ⊕ a ⊕ m ⊕ g2β and
k1 = g1 ∩ k. Finally let K , A, G1, andK1 be the analytic subgroups ofG with Lie
algebrask, a, g1, andk1, and letM be the centralizer ofA in K .

52. If α is a root, writeαR + αI with αR the restriction toα andαI the restriction
to t. The complex conjugate root is̄α = αR − αI . Supposeα is complex.
(a) Prove that 2〈α, ᾱ〉/|α|2 is 0 or−1.
(b) Prove that 2〈α, ᾱ〉/|α|2 = 0 implies |α|2 = 1

2|2αR|2 and that
2〈α, ᾱ〉/|α|2 = −1 implies|α|2 = |2αR|2.

53. Prove that ifmβ andm2β are both nonzero, then 2β is a root when extended
to be 0 ont. Conclude thatmβ is even andm2β is odd.

54. Prove that ifm2β �= 0 andα is a complex root with 2〈α, ᾱ〉/|α|2 = 0, thenαR

is ±2β.

55. Prove that ifmβ andm2β are both nonzero, theng has a Cartan subalgebra
that lies ink. Prove that this Cartan subalgebra may be assumed to be of the
form t ⊕ R(X + θ X) with X ∈ g2β , so that it lies ink1.
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56. Suppose thatm2β �= 0 and thatg has a Cartan subalgebra lying ink. Prove
the following:
(a) 2β is a root when extended to be 0 ont.
(b) If there are roots of two different lengths, then every noncompact root is

short.

57. Suppose thatG has a complexificationGC, thatm2β �= 0, and thatg has a
Cartan subalgebra lying ink1. Problem 10 of Chapter VI produces an element
gθ of G such that Ad(gθ ) = θ , and (7.54) produces a certain elementγ2β in
M . Prove the following:
(a) Ad(γ2β) = −1 ongβ andg−β .
(b) γ2β is in the center ofM , the center ofK1, and the center ofG1, but it is

not in the center ofK if mβ �= 0.
(c) gθ is in the center ofK1 and the center ofK , but it is not inM and is not

in the center ofG.





CHAPTER VIII

Integration

Abstract. An m-dimensional manifoldM that is oriented admits a notion of integration
f �→ ∫

M f ω for any smoothm form ω. Here f can be any continuous real-valued
function of compact support. This notion of integration behaves in a predictable way
under diffeomorphism. Whenω satisfies a positivity condition relative to the orientation,
the integration defines a measure onM . A smooth mapM → N with dim M < dim N
carriesM to a set of measure zero.

For a Lie groupG, a left Haar measure is a nonzero Borel measure invariant under left
translations. Such a measure results from integration ofω if M = G and if the formω is
positive and left invariant. A left Haar measure is unique up to a multiplicative constant.
Left and right Haar measures are related by the modular function, which is given in terms
of the adjoint representation ofG on its Lie algebra. A group is unimodular if its Haar
measure is two-sided invariant. Unimodular Lie groups include those that are abelian or
compact or semisimple or reductive or nilpotent.

When a Lie groupG has the property that almost every element is a product of elements
of two closed subgroupsS andT with compact intersection, then the left Haar measures
on G, S, andT are related. As a consequence, Haar measure on a reductive Lie group has
a decomposition that mirrors the Iwasawa decomposition, and also Haar measure satisfies
various relationships with the Haar measures of parabolic subgroups. These integration
formulas lead to a theorem of Helgason that characterizes and parametrizes irreducible
finite-dimensional representations ofG with a nonzeroK fixed vector.

The Weyl Integration Formula tells how to integrate over a compact connected Lie group
by first integrating over conjugacy classes. It is a starting point for an analytic treatment
of parts of representation theory for such groups. Harish-Chandra generalized the Weyl
Integration Formula to reductive Lie groups that are not necessarily compact. The formula
relies on properties of Cartan subgroups proved in Chapter VII.

1. Differential Forms and Measure Zero

Let M be anm-dimensional manifold, understood to be smooth and to
have a countable base for its topology;M need not be connected. We say
that M is oriented if an atlas of compatible charts(Uα, ϕα) is given with
the property that them-by-m derivative matrices of all coordinate changes

(8.1) ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ)

523
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have everywhere positive determinant. WhenM is oriented, a compatible
chart(U, ϕ) is said to bepositive relative to(Uα, ϕα) if the derivative matrix
of ϕ ◦ ϕ−1

α has everywhere positive determinant for allα. We always have
the option of adjoining to the given atlas of charts for an orientedM any or
all other compatible charts(U, ϕ) that are positive relative to all(Uα, ϕα),
andM will still be oriented.

On an orientedM as above, there is a well defined notion of integration
involving smoothm forms, which is discussed in Chapter V of Chevalley
[1946], Chapter X of Helgason [1962], and elsewhere. In this section we
shall review the definition and properties, and then we shall apply the theory
in later sections in the context of Lie groups.

We shall make extensive use ofpullbacks of differential forms. If
� : M → N is smooth and ifω is a smoothk form on N , then�∗ω is the
smoothk form on M given by

(8.2) (�∗ω)p(ξ1, . . . , ξk) = ω�(p)(d�p(ξ1), . . . , d�p(ξk))

for p in M and ξ1, . . . , ξk in the tangent spaceTp(M); hered�p is the
differential of� at p. In caseM andN are open subsets ofRm andω is
the smoothm form F(y1, . . . , ym) dy1 ∧ · · · ∧ dym on N , the formula for
�∗ω on M is

(8.3) �∗ω = (F ◦ �)(x1, . . . , xm) det(�′(x1, . . . , xm)) dx1 ∧ · · · ∧ dxm,

where� hasm entriesy1(x1, . . . , xm), . . . , ym(x1, . . . , xm) and where�′

denotes the derivative matrix

(
∂yi

∂xj

)
.

Let ω be a smoothm form on M . The theory of integration provides a
definition of

∫
M f ω for all f in the spaceCcom(M) of continuous functions

of compact support onM . Namely we first assume thatf is compactly
supported in a coordinate neighborhoodUα. The local expression forω in
ϕα(Uα) is

(8.4) (ϕ−1
α )∗ω = Fα(x1, . . . , xm) dx1 ∧ · · · ∧ dxm

with Fα : ϕα(Uα) → R smooth. Sincef ◦ ϕ−1
α is compactly supported in

ϕα(Uα), it makes sense to define

(8.5a)
∫

M

f ω =
∫

ϕα(Uα)

( f ◦ϕ−1
α )(x1, . . . , xm)Fα(x1, . . . , xm) dx1 · · · dxm .
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If f is compactly supported in an intersectionUα ∩ Uβ , then the integral is
given also by

(8.5b)
∫

M

f ω =
∫

ϕβ(Uβ )

( f ◦ϕ−1
β )(y1, . . . , ym)Fβ(y1, . . . , ym) dy1 · · · dym .

To see that the right sides of (8.5) are equal, we use the change of variables
formula for multiple integrals. The change of variablesy = ϕβ ◦ ϕ−1

α (x)

in (8.1) expressesy1, . . . , ym as functions ofx1, . . . , xm, and (8.5b) there-
fore is

=
∫

ϕβ(Uα∩Uβ )

( f ◦ ϕ−1
β )(y1, . . . , ym)Fβ(y1, . . . , ym) dy1 · · · dym

=
∫

ϕα(Uα∩Uβ )

f ◦ ϕ−1
β ◦ ϕβ ◦ ϕ−1

α (x1, . . . , xm)

× Fβ ◦ ϕβ ◦ ϕ−1
α (x1, . . . , xm)| det(ϕβ ◦ ϕ−1

α )′| dx1 · · · dxm .

The right side here will be equal to the right side of (8.5a) if it is shown
that

(8.6) Fα

?= (Fβ ◦ ϕβ ◦ ϕ−1
α )| det(ϕβ ◦ ϕ−1

α )′|.
Now

Fα dx1 ∧ · · · ∧ dxm = (ϕ−1
α )∗ω from (8.4)

= (ϕβ ◦ ϕ−1
α )∗(ϕ−1

β )∗ω

= (ϕβ ◦ ϕ−1
α )∗(Fβ dy1 ∧ · · · dym)

from (8.4)

= (Fβ ◦ ϕβ ◦ ϕ−1
α ) det(ϕβ ◦ ϕ−1

α )′ dx1 ∧ · · · ∧ dxm

by (8.3).

Thus

(8.7a) Fα = (Fβ ◦ ϕβ ◦ ϕ−1
α ) det(ϕβ ◦ ϕ−1

α )′.

Since det(ϕβ ◦ ϕ−1
α )′ is everywhere positive, (8.6) follows from (8.7a).

Therefore
∫

M f ω is well defined if f is compactly supported inUα ∩ Uβ .
For future reference we rewrite (8.7a) in terms of coordinates as

(8.7b) Fβ(y1, . . . , ym) = Fα(x1, . . . , xm) det

(
∂yi

∂xj

)−1

.
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To define
∫

M f ω for general f in Ccom(M), we make use of a smooth
partition of unity{ψα} such thatψα is compactly supported inUα and only
finitely manyψα are nonvanishing on each compact set. Thenf = ∑

ψα f
is actually a finite sum, and we can define

(8.8)
∫

M

f ω =
∑ ∫

M

(ψα f )ω.

Using the consistency result proved above by means of (8.6), one shows
that this definition is unchanged if the partition of unity is changed, and
then

∫
M f ω is well defined. (For a proof one may consult either of the

above references.)
When ω is fixed, it is apparent from (8.5a) and (8.8) that the map

f �→ ∫
M f ω is a linear functional onCcom(M). We say thatω ispositive rel-

ative to the given atlas if each local expression (8.4) hasFα(x1, . . . , xm) ev-
erywhere positive onϕα(Uα). In this case the linear functionalf �→ ∫

M f ω

is positive in the sense thatf ≥ 0 implies
∫

M f ω ≥ 0. By the Riesz
Representation Theorem there exists a Borel measuredµω on M such that∫

M f ω = ∫
M f (x) duω(x) for all f ∈ Ccom(M). The first two propositions

tell how to create and recognize positiveω’s.

Proposition 8.9. If an m-dimensional manifoldM admits a nowhere-
vanishingm form ω, thenM can be oriented so thatω is positive.

PROOF. Let {(Uα, ϕα)} be an atlas forM . The components of eachUα

are open and coverUα. Thus there is no loss of generality in assuming
that each coordinate neighborhoodUα is connected. For eachUα, let Fα

be the function in (8.4) in the local expression forω in ϕα(Uα). Sinceω is
nowhere vanishing andUα is connected,Fα has constant sign. If the sign is
negative, we redefineϕα by following it with the map(x1, x2, . . . , xm) �→
(−x1, x2, . . . , xm), and thenFα is positive. In this way we can arrange that
all Fα are positive on their domains. Referring to (8.7b), we see that each

function det

(
∂yi

∂xj

)
is positive on its domain. HenceM is oriented. Since

the Fα are all positive,ω is positive relative to this orientation.

Proposition 8.10. If a connected manifoldM is oriented and ifω is a
nowhere-vanishing smoothm form on M , then eitherω is positive or−ω

is positive.

PROOF. At each pointp of M , all the functionsFα representingω locally
as in (8.4) haveFα(ϕα(p)) nonzero of the same sign because of (8.7b), the
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nowhere-vanishing ofω, and the fact thatM is oriented. LetS be the set
where this common sign is positive. Possibly replacingω by −ω, we may
assume thatS is nonempty. We show thatS is open and closed. Letp be inS
and letUα be a coordinate neighborhood containingp. ThenFα(ϕα(p)) >

0 sincep is in S, and henceFα ◦ ϕα is positive in a neighborhood ofp.
HenceS is open. Let{pn} be a sequence inS converging top in M , and
let Uα be a coordinate neighborhood containingp. ThenFα(ϕα(pn)) > 0
and Fα(ϕα(p)) 
= 0. Since limFα(ϕα(pn)) = Fα(ϕα(p)), Fα(ϕα(p)) is
> 0. Thereforep is in S, andS is closed. SinceM is connected andS is
nonempty open closed,S = M .

The above theory allows us to use nowhere-vanishing smoothm forms
to define measures on manifolds. But we can define sets of measure zero
without m forms and orientations. Let{(Uα, ϕα)} be an atlas for them-
dimensional manifoldM . We say that a subsetS of M hasmeasure zero
if ϕα(S ∩ Uα) hasm-dimensional Lebesgue measure 0 for allα.

Suppose thatM is oriented andω is a positivem form. If dµω is the
associated measure and ifω has local expressions as in (8.4), then (8.5a)
shows that

(8.11) dµω(S ∩ Uα) =
∫

ϕα(S∩Uα)

Fα(x1, . . . , xm) dx1 · · · dxm .

If S has measure zero in the sense of the previous paragraph, then the right
side is 0 and hencedµω(S ∩ Uα) = 0. Since a countable collection of
Uα ’s suffices to coverM , dµω(S) = 0. Thus a set a measure zero as in the
previous paragraph hasdµω(S) = 0.

Conversely ifω is a nowhere-vanishing positivem form, dµω(S) = 0
implies thatS has measure zero as above. In fact, the left side of (8.11)
is 0, and the integrand on the right side is> 0 everywhere. Therefore
ϕα(S ∩ Uα) has Lebesgue measure 0.

Let � : M → N be a smooth map betweenm-dimensional manifolds.
A critical point p of � is a point whered�p has rank< m. In this case,
�(p) is called acritical value.

Theorem 8.12 (Sard’s Theorem). If� : M → N is a smooth map
betweenm-dimensional manifolds, then the set of critical values of� has
measure zero inN .

PROOF. About each point ofM , we can choose a compatible chart(U, ϕ)

so that�(U ) is contained in a coordinate neighborhood ofN . Countably
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many of these charts inM cover M , and it is enough to consider one of
them. We may then compose with the coordinate mappings to see that it
is enough to treat the following situation:� is a smooth map defined on a
neighborhood ofC = {x ∈ Rm | 0 ≤ xi ≤ 1 for 1 ≤ i ≤ m} with values
in Rm, and we are to prove that� of the critical points inC has Lebesgue
measure 0 inRm.

For pointsx = (x1, . . . , xm) and x ′ = (x ′
1, . . . , x ′

m) in Rm, the Mean
Value Theorem gives

(8.13) �i(x ′) − �i(x) =
m∑

j=1

∂�i

∂xj
(zi)(x ′

j − xj),

wherezi is a point on the line segment fromx to x ′. Since the
∂�i

∂xj
are

bounded onC , we see as a consequence that

(8.14) ‖�(x ′) − �(x)‖ ≤ a‖x ′ − x‖

with a independent ofx andx ′. Let Lx(x ′) = (Lx,1(x ′), . . . , Lx,m(x ′)) be
the best first-order approximation to� aboutx , namely

(8.15) Lx,i(x ′) = �i(x) +
m∑

j=1

∂�i

∂xj
(x)(x ′

j − xj).

Subtracting (8.15) from (8.13), we obtain

�i(x ′) − Lx,i(x ′) =
m∑

j=1

(
∂�i

∂xj
(zi) − ∂�i

∂xj
(x)

)
(x ′

j − xj).

Since
∂�i

∂xj
is smooth and‖zi − x‖ ≤ ‖x ′ − x‖, we deduce that

(8.16) ‖�(x ′) − Lx(x ′)‖ ≤ b‖x ′ − x‖2

with b independent ofx andx ′.
If x is a critical point, let us bound the image of the set ofx ′ with

‖x ′ − x‖ ≤ c. The determinant of the linear part ofLx is 0, and henceLx

has image in a hyperplane. By (8.16),�(x ′) has distance≤ bc2 from this
hyperplane. In each of them − 1 perpendicular directions, (8.14) shows
that�(x ′) and�(x) are at distance≤ ac from each other. Thus�(x ′) is
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contained in a rectangular solid about�(x) of volume 2m(ac)m−1(bc2) =
2mam−1bcm+1.

We subdivideC into N m smaller cubes of side 1/N . If one of these
smaller cubes contains a critical pointx , then any pointx ′ in the smaller
cube has‖x ′ − x‖ ≤ √

m/N . By the result of the previous paragraph,
� of the cube is contained in a solid of volume 2mam−1b(

√
m/N )m+1.

The union of these solids, taken over all small cubes containing a critical
point, contains the critical values. Since there are at mostN m cubes, the
outer measure of the set of critical values is≤ 2mam−1bm

1
2 (m+1)N −1. This

estimate is valid for allN , and hence the set of critical values has Lebesgue
measure 0.

Corollary 8.17. If � : M → N is a smooth map between manifolds
with dim M < dim N , then the image of� has measure zero inN .

PROOF. Let dimM = k < m = dim N . Without loss of generality we
may assume thatM ⊆ Rk . Sard’s Theorem (Theorem 8.12) applies to the
composition of the projectionRm → Rk followed by�. Every point of the
domain is a critical point, and hence every point of the image is a critical
value. The result follows.

We define alower-dimensional set in N to be any set contained in the
countable union of smooth images of manifoldsM with dim M < dim N .
It follows from Corollary 8.17 that

(8.18) any lower-dimensional set inN has measure zero.

Let M andN be orientedm-dimensional manifolds, and let� : M → N
be a diffeomorphism. We say that� isorientation preserving if, for every
chart(Uα, ϕα) in the atlas forM , the chart(�(Uα), ϕα ◦ �−1) is positive
relative to the atlas forN . In this case the atlas of charts forN can be
taken to be{(�(Uα), ϕα ◦ �−1)}. Then the change of variables formula
for multiple integrals may be expressed using pullbacks as in the following
proposition.

Proposition 8.19. Let M andN be orientedm-dimensional manifolds,
and let� : M → N be an orientation-preserving diffeomorphism. Ifω is
a smoothm form on N , then∫

N

f ω =
∫

M

( f ◦ �)�∗ω

for every f ∈ Ccom(N ).
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PROOF. Let the atlas forM be {(Uα, ϕα)}, and take the atlas forN to
be{(�(Uα), ϕα ◦ �−1)}. It is enough to prove the result forf compactly
supported in a particular�(Uα). For suchf , (8.5) gives

(8.20a)∫
N

f ω =
∫

ϕα◦�−1(�(Uα))

f ◦�◦ϕ−1
α (x1, . . . , xm)Fα(x1, . . . , xm) dx1 · · · dxm,

whereFα is the function with

(8.20b) ((ϕα ◦ �−1)−1)∗ω = Fα(x1, . . . , xm) dx1 ∧ · · · ∧ dxm .

The function f ◦ � is compactly supported inUα, and (8.5) gives also

(8.20c)∫
M

( f ◦�)�∗ω =
∫

ϕα(Uα)

f ◦�◦ϕ−1
α (x1, . . . , xm)Fα(x1, . . . , xm) dx1 · · · dxm

since

(ϕ−1
α )∗�∗ω = ((ϕα ◦ �−1)−1)∗ω = Fα(x1, . . . , xm) dx1 ∧ · · · ∧ dxm

by (8.20b). The right sides of (8.20a) and (8.20c) are equal, and hence so
are the left sides.

2. Haar Measure for Lie Groups

Let G be a Lie group, and letg be its Lie algebra. Forg ∈ G, let
Lg : G → G andRg : G → G be the left and right translationsLg(x) = gx
and Rg(x) = xg. A smoothk form ω on G is left invariant if L∗

gω = ω

for all g ∈ G, right invariant if R∗
gω = ω for all g ∈ G.

Regardingg as the tangent space at 1 ofG, let X1, . . . , Xm be a basis
of g, and letX̃1, . . . , X̃m be the corresponding left-invariant vector fields
on G. We can define smooth 1 formsω1, . . . , ωm on G by the condition
that (ωi)p((X̃ j)p) = δi j for all p. Thenω1, . . . , ωm are left invariant, and
at each point ofG they form a basis of the dual of the tangent space at
that point. The differential formω = ω1 ∧ · · · ∧ ωm is therefore a smooth
m form that is nowhere vanishing onG. Since pullback commutes with
∧, ω is left invariant. Using Proposition 8.9, we can orientG so thatω is
positive. This proves part of the following theorem.
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Theorem 8.21. If G is a Lie group of dimensionm, thenG admits
a nowhere-vanishing left-invariant smoothm form ω. Then G can be
oriented so thatω is positive, andω defines a nonzero Borel measuredµl

on G that is left invariant in the sense thatdµl(Lg E) = dµl(E) for all
g ∈ G and every Borel setE in G.

PROOF. We have seen thatω exists and thatG may be oriented so
that ω is positive. Letdµl be the associated measure, so that

∫
G f ω =∫

G f (x) dµl(x) for all f ∈ Ccom(G). From Proposition 8.19 and the
equalityL∗

gω = ω, we have

(8.22)
∫

G

f (gx) dµl(x) =
∫

G

f (x) dµl(x)

for all f ∈ Ccom(G). If K is a compact set inG, we can apply (8.22) to allf
that are≥ the characteristic function ofK . Taking the infimum shows that
dµl(Lg−1 K ) = dµl(K ). SinceG has a countable base, the measuredµl

is automatically regular, and hencedµl(Lg−1 E) = dµl(E) for all Borel
setsE .

A nonzero Borel measure onG invariant under left translation is called a
left Haar measure onG. Theorem 8.21 thus says that a left Haar measure
exists.

In the construction of the left-invariantm form ω before Theorem 8.21,
a different basis ofG would have produced a multiple ofω, hence a
multiple of the left Haar measure in Theorem 8.21. If the second basis is
Y1, . . . , Ym and if Yj = ∑m

i=1 ai j Xi , then the multiple is det(ai j)
−1. When

the determinant is positive, we are led to orientG in the same way, otherwise
oppositely. The new left Haar measure is| det(ai j)|−1 times the old. The
next result strengthens this assertion of uniqueness of Haar measure.

Theorem 8.23. If G is a Lie group, then any two left Haar measures on
G are proportional.

PROOF. Let dµ1 anddµ2 be left Haar measures. Then the sumdµ =
dµ1 + dµ2 is a left Haar measure, anddµ(E) = 0 impliesdµ1(E) = 0.
By the Radon–Nikodym Theorem there exists a Borel functionh1 ≥ 0
such thatdµ1 = h1 dµ. Fix g in G. By the left invariance ofdµ1 anddµ,
we have∫

G

f (x)h1(g
−1x) dµ(x) =

∫
G

f (gx)h1(x) dµ(x) =
∫

G

f (gx) dµ1(x)

=
∫

G

f (x) dµ1(x) =
∫

G

f (x)h1(x) dµ(x)
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for every Borel functionf ≥ 0. Therefore the measuresh1(g−1x) dµ(x)

andh1(x) dµ(x) are equal, andh1(g−1x) = h1(x) for almost everyx ∈ G
(with respect todµ). We can regardh1(g−1x) andh1(x) as functions of
(g, x) ∈ G × G, and these are Borel functions since the group operations
are continuous. For eachg, they are equal for almost everyx . By Fubini’s
Theorem they are equal for almost every pair(g, x) (with respect to the
product measure), and then for almost everyx they are equal for almost
everyg. Pick such anx , sayx0. Then it follows thath1(x) = h1(x0) for
almost everyx . Thusdµ1 = h1(x0) dµ. Sodµ1 is a multiple ofdµ, and
so isdµ2.

A right Haar measure on G is a nonzero Borel measure invariant
under right translations. Such a measure may be constructed similarly by
starting from right-invariant 1 forms and creating a nonzero right-invariant
m form. As is true for left Haar measures, any two right Haar measures
are proportional. To simplify the notation, we shall denote particular left
and right Haar measures onG by dl x anddr x , respectively.

An important property of left and right Haar measures is that

(8.24) any nonempty open set has nonzero Haar measure.

In fact, in the case of a left Haar measure if any compact set is given, finitely
many left translates of the given open set together cover the compact set. If
the open set had 0 measure, so would its left translates and so would every
compact set. Then the measure would be identically 0 by regularity.

Another important property is that

(8.25) any lower-dimensional set inG has 0 Haar measure.

In fact, Theorems 8.21 and 8.23 show that left and right Haar measures
are given by nowhere-vanishing differential forms. The sets of measure 0
relative to Haar measure are therefore the same as the sets of measure zero
in the sense of Sard’s Theorem, and (8.25) is a special case of (8.18).

Since left translations onG commute with right translations,dl( · t) is
a left Haar measure for anyt ∈ G. Left Haar measures are proportional,
and we therefore define themodular function 
 : G → R+ of G by

(8.26) dl( · t) = 
(t)−1dl( · ).
Proposition 8.27. If G is a Lie group, then the modular function forG

is given by
(t) = | det Ad(t)|.



2. Haar Measure for Lie Groups 533

PROOF. If X is ing andX̃ is the corresponding left-invariant vector field,
then we can use Proposition 1.86 to make the computation

(d Rt−1)p(X̃ p)h = X̃ p(h ◦ Rt−1) = d

dr
h(p(expr X)t−1)|r=0

= d

dr
h(pt−1 exprAd(t)X)|r=0 = (Ad(t)X)˜h(pt−1),

and the conclusion is that

(8.28) (d Rt−1)p(X̃ p) = (Ad(t)X) p̃t−1.

Therefore the left-invariantm form ω has

(R∗
t−1ω)p((X̃1)p, . . . , (X̃m)p)

= ωpt−1((d Rt−1)p(X̃1)p, . . . , (d Rt−1)p(X̃m)p)

= ωpt−1((Ad(t)X1) p̃t−1, . . . , (Ad(t)Xm) p̃t−1) by (8.28)

= (det Ad(t))ωpt−1((X̃1)pt−1, . . . , (X̃m)pt−1),

and we obtain

(8.29) R∗
t−1ω = (det Ad(t))ω.

The assumption is thatω is positive, and thereforeR∗
t−1ω or −R∗

t−1ω is
positive according as the sign of det Ad(t). When det Ad(t) is positive,
Proposition 8.19 and (8.29) give

(det Ad(t))
∫

G

f (x) dl x = (det Ad(t))
∫

G

f ω =
∫

G

f R∗
t−1ω

=
∫

G

( f ◦ Rt)ω =
∫

G

f (xt) dl x

=
∫

G

f (x) dl(xt−1) = 
(t)
∫

G

f (x) dl x,

and thus det Ad(t) = 
(t). When det Ad(t) is negative, every step of this
computation is valid except for the first equality of the second line. Since
−R∗

t−1ω is positive, Proposition 8.19 requires a minus sign in its formula
in order to apply to� = Rt−1. Thus− det Ad(t) = 
(t). For all t , we
therefore have
(t) = | det Ad(t)|.
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Corollary 8.30. The modular function
 for G has the properties that

(a) 
 : G → R+ is a smooth homomorphism,
(b) 
(t) = 1 for t in any compact subgroup ofG and in any semisimple

analytic subgroup ofG,
(c) dl(x−1) and
(x) dl x are right Haar measures and are equal,
(d) dr(x−1) and
(x)−1 dr x are left Haar measures and are equal,
(e) dr(t · ) = 
(t) dr( · ) for any right Haar measure onG.

PROOF. Conclusion (a) is immediate from Proposition 8.27. The image
under
 of any compact subgroup ofG is a compact subgroup ofR+ and
hence is{1}. This proves the first half of (b), and the second half follows
from Lemma 4.28.

In (c) put dµ(x) = 
(x) dl x . This is a Borel measure since
 is
continuous (by (a)). Since
 is a homomorphism, (8.26) gives∫

G

f (xt) dµ(x) =
∫

G

f (xt)
(x) dl x =
∫

G

f (x)
(xt−1) dl(xt−1)

=
∫

G

f (x)
(x)
(t−1)
(t) dl x

=
∫

G

f (x)
(x) dl x =
∫

G

f (x) dµ(x).

Hencedµ(x) is a right Haar measure. It is clear thatdl(x−1) is a right
Haar measure, and thus Theorem 8.23 for right Haar measures implies that
dl(x−1) = c
(x) dl x for some constantc > 0. Changingx to x−1 in this
formula, we obtain

dl x = c
(x−1) dl(x−1) = c2
(x−1)
(x) dl x = c2 dl x .

Hencec = 1, and (c) is proved.
For (d) and (e) there is no loss of generality in assuming thatdr x =

dl(x−1) = 
(x) dl x , in view of (c). Conclusion (d) is immediate from this
identity if we replacex by x−1. For (e) we have∫

G

f (x) dr(t x) =
∫

G

f (t−1x) dr x =
∫

G

f (t−1x)
(x) dl x

=
∫

G

f (x)
(t x) dl x

= 
(t)
∫

G

f (x)
(x) dl x = 
(t)
∫

G

f (x) dr x,

and we conclude thatdr(t · ) = 
(t) dr( · ).
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The Lie groupG is said to beunimodular if every left Haar measure is
a right Haar measure (and vice versa). In this case we can speak ofHaar
measure onG. In view of (8.26),G is unimodular if and only if
(t) = 1
for all t ∈ G.

Corollary 8.31. The following kinds of Lie groups are always unimod-
ular:

(a) abelian Lie groups,
(b) compact Lie groups,
(c) semisimple Lie groups,
(d) reductive Lie groups,
(e) nilpotent Lie groups.

PROOF. Conclusion (a) is trivial, and (b) and (c) follow from Corollary
8.30b. For (d) let(G, K , θ, B) be reductive. By Proposition 7.27,G ∼=
0G × Zvec. A left Haar measure forG may be obtained as the product of
the left Haar measures of the factors, and (a) shows thatZvec is unimodular.
Hence it is enough to consider0G, which is reductive by Proposition 7.27c.
The modular function for0G must be 1 onK by Corollary 8.30b, andK
meets every component of0G. Thus it is enough to prove that0G0 is
unimodular. This group is generated by its center and its semisimple part.
The center is compact by Proposition 7.27, and the modular function must
be 1 there, by Corollary 8.30b. Again by Corollary 8.30b, the modular
function must be 1 on the semisimple part. Then (d) follows.

For (e) we appeal to Proposition 8.27. It is enough to prove that
det Ad(x) = 1 for all x in G. By Theorem 1.127 the exponential map
carries the Lie algebragontoG. If x = expX , then det Ad(x) = deteadX =
eTr adX . Sinceg is nilpotent, (1.31) shows that adX is a nilpotent linear
transformation. Therefore 0 is the only generalized eigenvalue of adX ,
and Tr adX = 0. This proves (e).

3. Decompositions of Haar Measure

In this section we letG be a Lie group, and we letdl x anddr x be left
and right Haar measures for it.

Theorem 8.32. Let G be a Lie group, and letS and T be closed
subgroups such thatS ∩ T is compact, multiplicationS × T → G is
an open map, and the set of productsST exhaustsG except possibly for a
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set of Haar measure 0. Let
T and
G denote the modular functions ofT
andG. Then the left Haar measures onG, S, andT can be normalized so
that ∫

G

f (x) dl x =
∫

S×T

f (st)

T (t)


G(t)
dls dl t

for all Borel functionsf ≥ 0 onG.

PROOF. Let � ⊆ G be the set of productsST , and letK = S ∩ T . The
groupS × T acts continuously on� by (s, t)ω = sωt−1, and the isotropy
subgroup at 1 is diagK . Thus the map(s, t) �→ st−1 descends to a map
(S×T )/diagK → �. This map is a homeomorphism since multiplication
S × T → G is an open map.

Hence any Borel measure on� can be reinterpreted as a Borel measure
on (S × T )/diagK . We apply this observation to the restriction of a left
Haar measuredl x for G from G to �, obtaining a Borel measuredµ on
(S × T )/diagK . On�, we have

dl(Ls0 Rt−1
0

x) = 
G(t0) dl x

by (8.26), and the action unwinds to

(8.33) dµ(L (s0,t0)x) = 
G(t0) dµ(x)

on (S × T )/diagK . Define a measuredµ̃(s, t) on S × T by∫
S×T

f (s, t) dµ̃(s, t) =
∫

(S×T )/diagK

[ ∫
K

f (sk, tk) dk
]

dµ((s, t)K ),

wheredk is a Haar measure onK normalized to have total mass 1. From
the formula (8.33) it follows that

dµ̃(s0s, t0t) = 
G(t0) dµ̃(s, t).

The same proof as for Theorem 8.23 shows that any two Borel measures
on S × T with this property are proportional, and
G(t) dls dl t is such a
measure. Therefore

dµ̃(s, t) = 
G(t) dls dl t

for a suitable normalization ofdls dl t .
The resulting formula is∫

�

f (x) dl x =
∫

S×T

f (st−1)
G(t) dls dl t
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for all Borel functionsf ≥ 0 on�. On the right side the change of variables
t �→ t−1 makes the right side become∫

S×T

f (st)
G(t)−1 dls 
T (t) dlt,

according to Corollary 8.30c, and we can replace� by G on the left side
since the complement of� in G has measure 0. This completes the proof.

If H is a closed subgroup ofG, then we can ask whetherG/H has
a nonzeroG invariant Borel measure. Theorem 8.36 below will give a
necessary and sufficient condition for this existence, but we need some
preparation. Fix a left Haar measuredlh for H . If f is in Ccom(G), define

(8.34a) f #(g) =
∫

H

f (gh) dlh.

This function is invariant under right translation byH , and we can define

(8.34b) f ##(gH) = f #(g).

The function f ## has compact support onG/H .

Lemma 8.35. The map f �→ f ## carriesCcom(G) onto Ccom(G/H),
and a nonnegative member ofCcom(G/H) has a nonnegative preimage in
Ccom(G).

PROOF. Let π : G → G/H be the quotient map. LetF ∈ Ccom(G/H)

be given, and letK be a compact set inG/H with F = 0 off K . We first
produce a compact set̃K in G with π(K̃ ) = K . For each coset inK , select
an inverse imagex and letNx be a compact neighborhood ofx in G. Since
π is open,π of the interior ofNx is open. These open sets coverK , and a
finite number of them suffices. Then we can takeK̃ to be the intersection
of π−1(K ) with the union of the finitely manyNx ’s.

Next let K H be a compact neighborhood of 1 inH . By (8.24) the
left Haar measure onH is positive onK H . Let K̃ ′ be the compact set
K̃ ′ = K̃ K H , so thatπ(K̃ ′) = π(K̃ ) = K . Choosef1 ∈ Ccom(G) with
f1 ≥ 0 everywhere and withf1 = 1 onK̃ ′. If g is in K̃ ′, then

∫
H f1(gh) dlh

is ≥ the H measure ofK H , and hencef ##
1 is > 0 on K . Define

f (g) =
 f1(g)

F(π(g))

f ##
1 (π(g))

if π(g) ∈ K

0 otherwise.
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Then f ## is F on K and is 0 offK , so that f ## = F everywhere.
Certainly f has compact support. To see thatf is continuous, it suffices

to check that the two formulas forf (g) fit together continuously at pointsg
of π−1(K ). It is enough to check points wheref (g) 
= 0. Saygn → g. We
must haveF(π(g)) 
= 0. SinceF is continuous,F(π(gn)) 
= 0 eventually.
Thus for all n sufficiently large, f (gn) is given by the first of the two
formulas. Thusf is continuous.

Theorem 8.36. Let G be a Lie group, letH be a closed subgroup, and
let 
G and
H be the respective modular functions. Then a necessary and
sufficient condition forG/H to have a nonzeroG invariant Borel measure
is that the restriction toH of 
G equal
H . In this case such a measure
dµ(gH) is unique up to a scalar, and it can be normalized so that

(8.37)
∫

G

f (g) dl g =
∫

G/H

[ ∫
H

f (gh) dlh
]

dµ(gH)

for all f ∈ Ccom(G).

PROOF. Let dµ(gH) be such a measure. In the notation of (8.34), we
can define a measuredµ̃(g) on G by∫

G

f (g) dµ̃(g) =
∫

G/H

f ##(gH) dµ(gH).

Since f �→ f ## commutes with left translation byG, dµ̃ is a left Haar
measure onG. By Theorem 8.23,dµ̃ is unique up to a scalar; hence
dµ(gH) is unique up to a scalar.

Under the assumption thatG/H has a nonzero invariant Borel measure,
we have just seen in essence that we can normalize the measure so that (8.37)
holds. If we replacef in (8.37) by f ( · h0), then the left side is multiplied
by
G(h0), and the right side is multiplied by
H (h0). Hence
G |H = 
H

is necessary for existence.
Let us prove that this condition is sufficient for existence. Givenh in

Ccom(G/H), we can choosef in Ccom(G) by Lemma 8.35 so thatf ## = h.
Then we defineL(h) = ∫

G f (g) dl g. If L is well defined, then it is linear,
Lemma 8.35 shows that it is positive, andL certainly is the same on a
function as on itsG translates. ThereforeL defines aG invariant Borel
measuredµ(gH) on G/H such that (8.37) holds.

Thus all we need to do is see thatL is well defined if
G |H = 
H . We
are thus to prove that iff ∈ Ccom(G) has f # = 0, then

∫
G f (g) dl g = 0.
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Let ψ be inCcom(G). Then we have

0 =
∫

G

ψ(g) f #(g) dl g

=
∫

G

[ ∫
H

ψ(g) f (gh) dlh
]

dl g

=
∫

H

[ ∫
G

ψ(g) f (gh) dl g
]

dlh

=
∫

H

[ ∫
G

ψ(gh−1) f (g) dl g
]

G(h) dlh by (8.26)

=
∫

G

f (g)
[ ∫

H

ψ(gh−1)
G(h) dlh
]

dl g

=
∫

G

f (g)
[ ∫

H

ψ(gh)
G(h)−1
H (h) dlh
]

dl g by Corollary 8.30c

=
∫

G

f (g)ψ#(g) dl g since
G |H = 
H .

By Lemma 8.35 we can chooseψ ∈ Ccom(G) so thatψ## = 1 on the
projection toG/H of the support off . Then the right side is

∫
G f (g) dl g,

and the conclusion is that this is 0. ThusL is well defined, and existence
is proved.

4. Application to Reductive Lie Groups

Let (G, K , θ, B) be a reductive Lie group. We shall use the notation of
Chapter VII, but we drop the subscripts 0 from real Lie algebras since we
shall have relatively few occurrences of their complexifications. Thus, for
example, the Cartan decomposition of the Lie algebra ofG will be written
g = k ⊕ p.

In this section we use Theorem 8.32 and Proposition 8.27 to give de-
compositions of Haar measures that mirror group decompositions in Chap-
ter VII. The groupG itself is unimodular by Corollary 8.31d, and we write
dx for a two-sided Haar measure. We shall be interested in parabolic
subgroupsM AN , and we need to compute the corresponding modular
function that is given by Proposition 8.27 as


M AN (man) = | det Adm+a+n(man)|.
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For the elementm, | det Adm+a+n(m)| = 1 by Corollary 8.30b. The element
a acts as 1 onm anda, and hence det Adm+a+n(a) = det Adn(a). On ana

root spacegλ, a acts byeλ loga, and thus det Adn(a) = e2ρA loga, where 2ρA

is the sum of all the positivea roots with multiplicities counted. Finally
det Adm+a+n(n) = 1 for the same reasons as in the proof of Corollary
8.31e. Therefore

(8.38) 
M AN (man) = | det Adm+a+n(man)| = e2ρA loga.

We can then apply Theorem 8.32 and Corollary 8.31 to obtain

(8.39a) dl(man) = 
N (n)


M AN (n)
dl(ma) dln = dm da dn.

By (8.38) and Corollary 8.30c,

(8.39b) dr(man) = e2ρA loga dm da dn.

Similarly for the subgroupAN of M AN , we have

(8.40) 
AN (an) = e2ρA loga

and

(8.41)
dl(an) = da dn

dr(an) = e2ρA loga da dn.

Now we shall apply Theorem 8.32 toG itself. Combining Corollary
8.30c with the fact thatG is unimodular, we can write

(8.42) dx = dls dr t

whenever the hypotheses in the theorem forS andT are satisfied.

Proposition 8.43. If G = K ApNp is an Iwasawa decomposition of the
reductive Lie groupG, then the Haar measures ofG, ApNp, Ap, andNp

can be normalized so that

dx = dk dr(an) = e2ρAp loga dk da dn.

If the Iwasawa decomposition is written instead asG = ApNpK , then the
decomposition of measures is

dx = dl(an) dk = da dn dk.

PROOF. If G is written asG = K ApNp, then we useS = K and
T = ApNp in Theorem 8.32. The hypotheses are satisfied since Proposition
7.31 shows thatS × T → G is a diffeomorphism. The second equality
follows from (8.41). The argument whenG = ApNpK is similar.
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Proposition 8.44. If G is a reductive Lie group andM AN is a parabolic
subgroup, so thatG = K M AN , then the Haar measures ofG, M AN , M ,
A, andN can be normalized so that

dx = dk dr(man) = e2ρA logadk dm da dn.

PROOF. We useS = K and T = M AN in Theorem 8.32. Here
S ∩ T = K ∩ M is compact, and we know thatG = K M AN . Since
ApNp ⊆ M AN andK × ApNp → G is open,K × M AN → G is open.
Then Theorem 8.32 gives the first equality, and the second equality follows
from (8.39b).

Proposition 8.45. If M AN is a parabolic subgroup of the reductive
Lie groupG, thenN −M AN is open inG and its complement is a lower-
dimensional set, hence a set of measure 0. The Haar measures ofG, M AN ,
N −, M , A, andN can be normalized so that

dx = dn̄ dr(man) = e2ρA logadn̄ dm da dn (n̄ ∈ N −).

PROOF. We useS = N − and T = M AN in Theorem 8.32. Here
S ∩ T = {1} by Lemma 7.64, andS × T → G is everywhere regular
(hence open) by Lemma 6.44. We need to see that the complement of
N −M AN is lower dimensional and has measure 0. LetMp ApNp ⊆ M AN
be a minimal parabolic subgroup. In the Bruhat decomposition ofG as in
Theorem 7.40, a double coset ofMp ApNp is of the form

Mp ApNpwMp ApNp = NpwMp ApNp = w(w−1Npw)Mp ApNp,

wherew is a representative inNK (ap) of a member ofNK (ap)/Mp. The
double coset is thus a translate of(w−1Npw)Mp ApNp. To compute the
dimension of this set, we observe that

dim Ad(w)−1
np + dim(mp ⊕ ap ⊕ np) = dimg.

Now Ad(w)−1np has 0 intersection withmp ⊕ ap ⊕ np if and only if
Ad(w)−1np = θnp, which happens for exactly one cosetwMp by Propo-
sition 7.32 and Theorem 2.63. This case corresponds to the open set
N −

p
Mp ApNp. In the other cases, there is a closed positive-dimensional

subgroupRw of w−1Npw such that the smooth map

w−1Npw × Mp ApNp → (w−1Npw)Mp ApNp
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given by(x, y) �→ xy−1 factors to a smooth map

(w−1Npw × Mp ApNp)/diagRw → (w−1Npw)Mp ApNp.

Hence in these cases(w−1Npw)Mp ApNp is the smooth image of a manifold
of dimension< dimG and is lower dimensional inG.

This proves forMp ApNp that N −
p

Mp ApNp is open with complement of
lower dimension. By (8.25) the complement is of Haar measure 0. Now
let us considerN −M AN . SinceMp ApNp ⊆ M AN , we have

N −
p

Mp ApNp = (Mp ApN −
p
)Mp ApNp

⊆ (M AN −)M AN = N −M AN .

Thus the open setN −M AN has complement of lower dimension and hence
of Haar measure 0.

Theorem 8.32 is therefore applicable, and we obtaindx = dn̄ dr(man).
The equalitydn̄ dr(man) = e2ρA loga dn̄ dm da dn follows from (8.39b).

Proposition 8.46. Let M AN be a parabolic subgroup of the reductive
Lie groupG, and letρA be as in (8.38). Forg in G, decomposeg according
to G = K M AN as

g = κ(g)µ(g) expH(g) n.

Then Haar measures, when suitably normalized, satisfy∫
K

f (k) dk =
∫

N−
f (κ(n̄))e−2ρA H(n̄) dn̄

for all continuous functions onK that are right invariant underK ∩ M .

REMARK. The expressionsκ(g) andµ(g) are not uniquely defined, but
H(g) is uniquely defined, as a consequence of the Iwasawa decomposition,
and f (κ(n̄)) will be seen to be well defined because of the assumed right
invariance underK ∩ M .

PROOF. Given f continuous onK and right invariant underK ∩ M ,
extend f to a functionF on G by

(8.47) F(kman) = e−2ρA loga f (k).

The right invariance off under K ∩ M makesF well defined since
K ∩ M AN = K ∩ M . Fix ϕ ≥ 0 in Ccom(M AN ) with∫

M AN

ϕ(man) dl(man) = 1;
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by averaging overK ∩ M , we may assume thatϕ is left invariant under
K ∩ M . Extendϕ to G by the definitionϕ(kman) = ϕ(man); the left
invariance ofϕ underK ∩ M makesϕ well defined. Then∫

M AN

ϕ(xman) dl(man) = 1 for all x ∈ G.

The left side of the formula in the conclusion is∫
K

f (k) dk

=
∫

K

f (k)
[ ∫

M AN

ϕ(kman) dl(man)
]

dk

=
∫

K×M AN

f (k)ϕ(kman)e−2ρA loga dk dr(man) by (8.39)

=
∫

K×M AN

F(kman)ϕ(kman) dk dr(man) by (8.47)

=
∫

G

F(x)ϕ(x) dx by Proposition 8.44,

while the right side of the formula is∫
N−

f (κ(n̄))e−2ρA H(n̄) dn̄

=
∫

N−
F(n̄)

[ ∫
M AN

ϕ(n̄man) dl(man)
]

dn̄ by (8.47)

=
∫

N−×M AN

F(n̄)e−2ρA logaϕ(n̄man) dn̄ dr(man) by (8.39)

=
∫

N−×M AN

F(n̄man)ϕ(n̄man) dn̄ dr(man) by (8.47)

=
∫

G

F(x)ϕ(x) dx by Proposition 8.45.

The proposition follows.

For an illustration of the use of Proposition 8.46, we shall prove a theorem
of Helgason that has important applications in the harmonic analysis of
G/K . We suppose that the reductive groupG is semisimple and has a
complexificationGC. We fix an Iwasawa decompositionG = K ApNp.
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Let tp be a maximal abelian subspace ofmp, so thattp ⊕ ap is a maximally
noncompactθ stable Cartan subalgebra ofg. Representations ofG yield
representations ofg, hence complex-linear representations ofgC. Then
the theory of Chapter V is applicable, and we use the complexification of
tp ⊕ ap as Cartan subalgebra for that purpose. Let
 and� be the sets
of roots and restricted roots, respectively, and let�+ be the set of positive
restricted roots relative tonp.

Roots and weights are real onitp⊕ap, and we introduce an ordering such
that the nonzero restriction toap of a member of
+ is a member of�+.
By arestricted weight of a finite-dimensional representation, we mean the
restriction toap of a weight. We introduce in an obvious fashion the notions
of restricted-weight spaces andrestricted-weight vectors. Because of
our choice of ordering, the restriction toap of the highest weight of a
finite-dimensional representation is the highest restricted weight.

Lemma 8.48. Let the reductive Lie groupG be semisimple. Ifπ is
an irreducible complex-linear representation ofgC, thenmp acts in each
restricted weight space ofπ , and the action bymp is irreducible in the
highest restricted-weight space.

PROOF. The first conclusion follows at once sincemp commutes withap.
Let v 
= 0 be a highest restricted-weight vector, say with weightν. Let V
be the space forπ , and letVν be the restricted-weight space corresponding
to ν. We writeg = θnp ⊕ mp ⊕ ap ⊕ np, express members ofU (gC) in the
corresponding basis given by the Poincar´e–Birkhoff–Witt Theorem, and
apply an element tov. Sincenp pushes restricted weights up andap acts by
scalars inVν andθnp pushes weights down, we see from the irreducibility
of π on V thatU (mC

p
)v = Vν . Sincev is an arbitrary nonzero member of

Vν , mp acts irreducibly onVν .

Theorem 8.49 (Helgason). Let the reductive Lie groupG be semisimple
and have a complexificationGC. For an irreducible finite-dimensional
representationπ of G, the following statements are equivalent:

(a) π has a nonzeroK fixed vector,
(b) Mp acts by the 1-dimensional trivial representation in the highest

restricted-weight space ofπ ,
(c) the highest weight̃ν of π vanishes ontp, and the restrictionν of ν̃

toap is such that〈ν, β〉/|β|2 is an integer for every restricted rootβ.
Conversely any dominantν ∈ a∗

p
such that〈ν, β〉/|β|2 is an integer for

every restricted rootβ is the highest restricted weight of some irreducible
finite-dimensionalπ with a nonzeroK fixed vector.
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PROOF. For the proofs that (a) through (c) are equivalent, there is no
loss in generality in assuming thatGC is simply connected, as we may
otherwise take a simply connected cover ofGC and replaceG by the analytic
subgroup of this cover with Lie algebrag. With GC simply connected, the
representationπ of G yields a representation ofg = k ⊕ p, then ofgC,
and then of the compact formu = k ⊕ ip. SinceGC is simply connected,
so is the analytic subgroupU with Lie algebrau (Theorem 6.31). The
representationπ therefore lifts fromu to U . By Proposition 4.6 we can
introduce a Hermitian inner product on the representation space so thatU
acts by unitary operators. Then it follows thatK acts by unitary operators
and itp ⊕ ap acts by Hermitian operators. In particular, distinct weight
spaces are orthogonal, and so are distinct restricted-weight spaces.

(a) ⇒ (b). Let φν be a nonzero highest restricted-weight vector, and
let φK be a nonzeroK fixed vector. Sincenp pushes restricted weights
up and since the exponential map carriesnp onto Np (Theorem 1.127),
π(n)φν = φν for n ∈ Np. Therefore

(π(kan)φν, φK ) = (π(a)φν, π(k)−1φK ) = eν loga(φν, φK ).

By the irreducibility ofπ and the fact thatG = K ApNp, the left side cannot
be identically 0, and hence(φν, φK ) on the right side is nonzero. The inner
product withφK is then an everywhere-nonzero linear functional on the
highest restricted-weight space, and the highest restricted-weight space
must be 1-dimensional. Ifφν is a nonzero vector of norm 1 in this space,
then(φK , φν)φν is the orthogonal projection ofφK into this space. Since
Mp commutes withap, the action byMp commutes with this projection.
But Mp acts trivially onφK sinceMp ⊆ K , and thereforeMp acts trivially
onφν .

(b) ⇒ (a). Letv 
= 0 be in the highest restricted-weight space, with
restricted weightν. Then

∫
K π(k)v dk is obviously fixed byK , and the

problem is to see that it is not 0. Sincev is assumed to be fixed byMp,
k �→ π(k)v is a function onK right invariant underMp. By Proposition
8.46,∫

K

π(k)v dk =
∫

N−
p

π(κ(n̄))ve−2ρAp H(n̄) dn̄ =
∫

N−
p

π(n̄)ve(−ν−2ρAp )H(n̄) dn̄.

Heree(−ν−2ρAp )H(n̄) is everywhere positive sinceν is real, and(π(n̄)v, v) =
|v|2 since the exponential map carriesθnp onto N −

p
, θnp lowers restricted

weights, and the different restricted-weight spaces are orthogonal. There-

fore
( ∫

K π(k)v dk, v
)

is positive, and
∫

K π(k)v dk is not 0.
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(b) ⇒ (c). Since(Mp)0 acts trivially, it follows immediately that̃ν
vanishes ontp. For each restricted rootβ, defineγβ = exp 2π i |β|−2Hβ as
in (7.57). This element is inMp by (7.58). SinceGC is simply connected,
π extends to a holomorphic representation ofGC. Then we can compute
π(γβ) on a vectorv of restricted weightν as

(8.50) π(γβ)v = π(exp(2π i |β|−2Hβ))v = e2π i〈ν,β〉/|β|2v.

Since the left side equalsv by (b),〈ν, β〉/|β|2 must be an integer.
(c) ⇒ (b). The action of(Mp)0 on the highest restricted-weight space is

irreducible by Lemma 8.48. Sincẽν vanishes ontp, the highest weight of
this representation of(Mp)0 is 0. Thus(Mp)0 acts trivially, and the space
is 1-dimensional. The calculation (8.50), in the presence of (c), shows that
eachγβ acts trivially. Since theγβ that come from real roots generateF
(by Theorem 7.55) and sinceMp = (F)(Mp)0 (by Corollary 7.52),Mp acts
trivially.

We are left with the converse statement. Supposeν ∈ a∗
p

is such that
〈ν, β〉/|β|2 is an integer≥ 0 for all β ∈ �+. Defineν̃ to beν on ap and
0 on tp. We are to prove that̃ν is the highest weight of an irreducible
finite-dimensional representation ofG with a K fixed vector. The form
ν̃ is dominant. If it is algebraically integral, then Theorem 5.5 gives us a
complex-linear representationπ of gC with highest weight̃ν. Some finite
covering group̃G of G will have a simply connected complexification, and
thenπ lifts to G̃. By the implication (c)⇒ (a),π has a nonzerõK fixed
vector. Since the kernel of̃G → G is in K̃ and since such elements must
then act trivially,π descends to a representation ofG with a nonzeroK
fixed vector. In other words, it is enough to prove thatν̃ is algebraically
integral.

Let α be a root, and letβ be its restriction toap. Since〈̃ν, α〉 = 〈ν, β〉,
we may assume thatβ 
= 0. Let |α|2 = C |β|2. Then

2〈̃ν, α〉
|α|2 = 2〈ν, β〉

C |β|2 ,

and it is enough to show that either

(8.51a) 2/C is an integer

or

(8.51b) |2/C | = 1
2 and 〈ν, β〉/|β|2 is even.
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Write α = β + ε with ε ∈ it∗
p
. Thenθα is the rootθα = −β + ε. Thus

−θα = β − ε is a root with the same length asα.
If α and−θα are multiples of one another, thenε = 0 andC = 1, so

that 2/C is an integer. Ifα and−θα are not multiples of one another, then
the Schwarz inequality gives

(8.52)

(−1 or 0 or + 1) = 2〈α, −θα〉
|α|2 = 2〈β + ε, β − ε〉

|α|2

= 2(|β|2 − |ε|2)
|α|2 = 2(2|β|2 − |α|2)

|α|2 = 4

C
− 2.

If the left side of (8.52) is−1, then 2/C = 1
2. Since the left side of (8.52)

is −1, α − θα = 2β is a root, hence also a restricted root. By assumption,
〈ν, 2β〉/|2β|2 is an integer; hence〈ν, β〉/|β|2 is even. Thus (8.51b) holds.
If the left side of (8.52) is 0, then 2/C = 1 and (8.51a) holds.

To complete the proof, we show that the left side of (8.52) cannot be+1.
If it is +1, thenα − (−θα) = 2ε is a root vanishing onap, and hence any
root vector for it is inmC

p
⊆ kC. However this root is also equal toα + θα,

and [Xα, θ Xα] must be a root vector. Sinceθ [ Xα, θ Xα] = −[ Xα, θ Xα],
[ Xα, θ Xα] is in pC. Thus the root vector is inkC ∩ pC = 0, and we have a
contradiction.

5. Weyl Integration Formula

The original Weyl Integration Formula tells how to integrate over a
compact connected Lie group by first integrating over each conjugacy class
and then integrating over the set of conjugacy classes. LetG be a compact
connected Lie group, letT be a maximal torus, and letg0 and t0 be the
respective Lie algebras. Letm = dimG andl = dim T . As in §VII.8, an
elementg of G is regular if the eigenspace of Ad(g) for eigenvalue 1 has
dimensionl. Let G ′ andT ′ be the sets of regular elements inG andT ;
these are open subsets ofG andT , respectively.

Theorem 4.36 implies that the smooth mapG × T → G given by
ψ(g, t) = gtg−1 is ontoG. Fix g ∈ G andt ∈ T . If we identify tangent
spaces atg, t , andgtg−1 with g0, t0, andg0 by left translation, then (4.45)
computes the differential ofψ at (g, t) as

dψ(X, H) = Ad(g)((Ad(t−1) − 1)X + H) for X ∈ g0, H ∈ t0.
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The mapψ descends toG/T × T → G, and we call the descended map
ψ also. We may identify the tangent space ofG/T with an orthogonal
complementt⊥0 to t0 in g0 (relative to an invariant inner product). The
spacet⊥0 is invariant under Ad(t−1) − 1, and we can write

dψ(X, H) = Ad(g)((Ad(t−1) − 1)X + H) for X ∈ t
⊥
0 , H ∈ t0.

Now dψ at (g, t) is essentially a map ofg0 to itself, with matrix

(dψ)(g,t) = Ad(g)

t0 t⊥0(
1 0
0 Ad(t−1) − 1

)
.

Since det Ad(g) = 1 by compactness and connectedness ofG,

(8.53) det(dψ)(g,t) = det((Ad(t−1) − 1)|t⊥
0
).

We can think of building a left-invariant(m − l) form on G/T from the
duals of theX ’s in t⊥0 and a left-invariantl form on T from the duals of
the H ’s in t0. We may think of a left-invariantm form onG as the wedge
of these forms. Referring to Proposition 8.19 and (8.7b) and taking (8.53)
into account, we at first expect an integral formula

(8.54a)∫
G

f (x) dx
?=

∫
T

[ ∫
G/T

f (gtg−1) d(gT )
] ∣∣ det(Ad(t−1) − 1)|t⊥

0

∣∣ dt

if the measures are normalized so that

(8.54b)
∫

G

f (x) dx =
∫

G/T

[ ∫
T

f (xt) dt
]

d(xT ).

But Proposition 8.19 fails to be applicable in two ways. One is that the
onto mapψ : G/T × T → G has differential of determinant 0 at some
points, and the other is thatψ is not one-one even if we exclude points of
the domain where the differential has determinant 0.

From (8.53) we can exclude the points where the differential has deter-
minant 0 if we restrictψ to a mapψ : G/T × T ′ → G ′. To understand
T ′, consider Ad(t−1)−1 as a linear map of the complexificationg to itself.
If 
 = 
(g, t) is the set of roots, then Ad(t−1) − 1 is diagonable with
eigenvalues 0 with multiplicityl and alsoξα(t−1) − 1 with multiplicity 1
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each. Hence
∣∣ det(Ad(t−1) − 1)|t⊥

0

∣∣ = ∣∣ ∏
α∈
 (ξα(t−1) − 1)

∣∣. If we fix a

positive system
+ and recognize thatξα(t−1) = ξ−α(t−1), then we see that

(8.55)
∣∣ det(Ad(t−1) − 1)|t⊥

0

∣∣ =
∏

α∈
+
|ξα(t

−1) − 1|2.

Puttingt = expi H with i H ∈ t0, we haveξα(t−1) = e−iα(H). Thus the set
in the torus where (8.55) is 0 is a countable union of lower-dimensional
sets and is a lower-dimensional set. By (8.25) the singular set inT has
dt measure 0. The singular set inG is the smooth image of the product
of G/T and the singular set inT , hence is lower dimensional and is of
measure 0 fordµ(gT ). Therefore we may disregard the singular set and
considerψ as a mapG/T × T ′ → G ′.

The mapψ : G/T × T ′ → G ′ is not, however, one-one. Ifw is in
NG(T ), then

(8.56) ψ(gwT, w−1tw) = ψ(gT, t).

SincegwT 
= gT whenw is not in ZG(T ) = T , each member ofG ′ has
at least|W (G, T )| preimages.

Lemma 8.57. Each member ofG ′ has exactly|W (G, T )| preimages
under the mapψ : G/T × T ′ → G ′.

PROOF. Let us call two members ofG/T × T ′ equivalent, written∼, if
they are related by a memberw of NG(T ) as in (8.56), namely

(gwT, w−1tw) ∼ (gT, t).

Each equivalence class has exactly|W (G, T )| members.
Now suppose thatψ(gT, s) = ψ(hT, t) with s andt regular. We shall

show that

(8.58) (gT, s) ∼ (hT, t),

and then the lemma will follow. The given equalityψ(gT, s) = ψ(hT, t)
means thatgsg−1 = hth−1. Proposition 4.53 shows thats andt are conju-
gate viaNG(T ). Says = w−1tw. Thenhth−1 = gw−1twg−1, andwg−1h
centralizes the elementt . Sincet is regular andG has a complexification,
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Corollary 7.106 shows thatwg−1h is in NG(T ), saywg−1h = w′. Then
h = gw−1w′, and we have

(hT, t) = (gw−1w′T, t)

= (gw−1w′T, w′−1tw′)

∼ (gw−1T, t)

∼ (gT, w−1tw)

= (gT, s).

This proves (8.58) and the lemma.

Now we look at Proposition 8.19 again. Instead of assuming that
� : M → N is an orientation-preserving diffeomorphism, we assume
for somen that� is an everywhere regularn-to-1 map ofM onto N with
dim M = dim N . Then the proof of Proposition 8.19 applies with easy
modifications to give

(8.59) n
∫

N

f ω =
∫

M

( f ◦ �)�∗ω.

Therefore we have the following result in place of (8.54).

Theorem 8.60 (Weyl Integration Formula). LetT be a maximal torus
of the compact connected Lie groupG, and let invariant measures onG,
T , andG/T be normalized so that∫

G

f (x) dx =
∫

G/T

[ ∫
T

f (xt) dt
]

d(xT )

for all continuousf onG. Then every Borel functionF ≥ 0 onG satisfies∫
G

F(x) dx = 1

|W (G, T )|
∫

T

[ ∫
G/T

F(gtg−1) d(gT )
]
|D(t)|2 dt,

|D(t)|2 =
∏

α∈
+
|1 − ξα(t

−1)|2.where

The integration formula in Theorem 8.60 is a starting point for an an-
alytic treatment of parts of representation theory for compact connected
Lie groups. For a given such group for whichδ is analytically integral,
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let us sketch how the theorem leads simultaneously to a construction of an
irreducible representation with given dominant analytically integral highest
weight and to a proof of the Weyl Character Formula.

Define

(8.61) D(t) = ξδ(t)
∏

α∈
+
(1 − ξ−α(t)),

so that Theorem 8.60 for any Borel functionf constant on conjugacy
classes and either nonnegative or integrable reduces to

(8.62)
∫

G

f (x) dx = 1

|W (G, T )|
∫

T

f (t)|D(t)|2 dt

if we takedx , dt , andd(gT ) to have total mass one. Forλ ∈ t∗ dominant
and analytically integral, define

χλ(t) =
∑

s∈W (G,T ) ε(s)ξs(λ+δ)(t)

D(t)
.

Thenχλ is invariant underW (G, T ), and Proposition 4.53 shows thatχλ(t)
extends to a functionχλ on G constant on conjugacy classes. Applying
(8.62) with f = |χλ|2, we see that

(8.63a)
∫

G

|χλ|2 dx = 1.

Applying (8.62) with f = χλχλ′ , we see that

(8.63b)
∫

G

χλ(x)χλ′(x) dx = 0 if λ 
= λ′.

Let χ be the character of an irreducible finite-dimensional representation
of G. On T , χ(t) must be of the form

∑
µ ξµ(t), where theµ’s are

the weights repeated according to their multiplicities. Alsoχ(t) is even
underW (G, T ). ThenD(t)χ(t) is odd underW (G, T ) and is of the form∑

ν nνξν(t) with eachnν in Z. Focusing on the dominantν’s and seeing that
theν’s orthogonal to a root must drop out, we find thatχ(t) = ∑

λ aλχλ(t)
with aλ ∈ Z. By (8.63),∫

G

|χ(x)|2 dx =
∑

λ

|aλ|2.



552 VIII. Integration

For an irreducible character Corollary 4.16 shows that the left side is 1. So
oneaλ is ±1 and the others are 0. Sinceχ(t) is of the form

∑
µ ξµ(t), we

readily find thataλ = +1 for someλ. Hence every irreducible character is
of the formχ = χλ for someλ. This proves the Weyl Character Formula.
Using the Peter–Weyl Theorem (Theorem 4.20), we readily see that no
L2 function onG that is constant on conjugacy classes can be orthogonal
to all irreducible characters. Then it follows from (8.63b) that everyχλ

is an irreducible character. This proves the existence of an irreducible
representation corresponding to a given dominant analytically integral form
as highest weight.

For reductive Lie groups that are not necessarily compact, there is a
formula analogous to Theorem 8.60. This formula is a starting point for
the analytic treatment of representation theory on such groups. We state the
result as Theorem 8.64 but omit the proof. The proof makes use of Theorem
7.108 and of other variants of results that we applied in the compact case.

Theorem 8.64 (Harish-Chandra). LetG be a reductive Lie group, let
(h1)0, . . . , (hr)0 be a maximal set of nonconjugateθ stable Cartan subal-
gebras ofg0, and letH1, . . . , Hr be the corresponding Cartan subgroups.
Let the invariant measures on eachHj andG/Hj be normalized so that∫

G

f (x) dx =
∫

G/Hj

[ ∫
Hj

f (gh) dh
]

d(gHj) for all f ∈ Ccom(G).

Then every Borel functionF ≥ 0 onG satisfies∫
G

F(x) dx =
r∑

j=1

1

|W (G, Hj)|
∫

Hj

[ ∫
G/Hj

F(ghg−1) d(gHj)
]
|DHj (h)|2 dh,

where
|DHj (h)|2 =

∏
α∈
(g,hj )

|1 − ξα(h
−1)|.

6. Problems

1. Prove that ifM is an orientedm-dimensional manifold, thenM admits a
nowhere-vanishing smoothm form.
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2. Prove that the zero locus of a nonzero real analytic function on a cube inRn

has Lebesgue measure 0.

3. Let G be the group of all real matrices

(
a b
0 1

)
with a > 0. Show that

a−2 da db is a left Haar measure and thata−1 da db is a right Haar measure.

4. Let G be a noncompact semisimple Lie group with finite center, and let
Mp ApNp be a minimal parabolic subgroup. Prove thatG/Mp ApNp has no
nonzeroG invariant Borel measure.

5. Prove that the complement of the set of regular points in a reductive Lie group
G is a closed set of Haar measure 0.

Problems 6–8 concern Haar measure onGL(n, R).

6. Why is Haar measure onGL(n, R) two-sided invariant?

7. Regardgl(n, R) as ann2-dimensional vector space overR. For eachx in
GL(n, R), letLx denote left multiplication byx . Prove that detLx = (detx)n.

8. Let Ei j be the matrix that is 1 in the(i, j)th place and is 0 elsewhere. Regard
{Ei j } as the standard basis ofgl(n, R), and introduce Lebesgue measure
accordingly.
(a) Why does{x ∈ gl(n, R) | detx = 0} have Lebesgue measure 0?
(b) Deduce from Problem 7 that| dety|−n dy is a Haar measure forGL(n, R).

Problems 9–12 concern the functioneνHp(x) for a semisimple Lie groupG with
a complexificationGC. Here it is assumed thatG = K ApNp is an Iwasawa
decomposition ofG and that elements decompose asx = κ(g) expHp(x) n. Let
ap be the Lie algebra ofAp, and letν be ina∗

p.

9. Let π be an irreducible finite-dimensional representation ofG on V, and
introduce a Hermitian inner product inV as in the proof of Theorem 8.49. If
π has highest restricted weightν and ifv is in the restricted-weight space for
ν, prove that‖π(x)v‖2 = e2νHp(x)‖v‖2.

10. In G = SL(3, R), let K = SO(3) and let Mp ApNp be upper-triangular.

Introduce parameters forN−
p by writing N−

p =
{

n̄ =
( 1 0 0

x 1 0
z y 1

)}
. Let

f1 − f2, f2 − f3, and f1 − f3 be the positive restricted roots as usual, and let
ρp denote half their sum (namelyf1 − f3).

(a) Show thate2 f1Hp(n̄) = 1+ x2+ z2 ande2( f1+ f2)Hp(n̄) = 1+ y2+ (z − xy)2

for n̄ ∈ N−
p .

(b) Deduce thate2ρp Hp(n̄) = (1+ x2 + z2)(1+ y2 + (z − xy)2) for n̄ ∈ N−
p .
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11. InG = SO(n, 1)0, let K = SO(n)×{1} andap = R(E1,n+1 + En+1,1), with
Ei j as in Problem 8. Ifλ(E1,n+1 + En+1,1) > 0, say thatλ ∈ a∗

p is positive,
and obtainG = K ApNp accordingly.
(a) Using the standard representation ofSO(n, 1)0, computee2λHp(x) for a

suitableλ and allx ∈ G.
(b) Deduce a formula fore2ρp Hp(x) from the result of (a). Hereρp is half the

sum of the positive restricted roots repeated according to their multiplic-
ities.

12. In G = SU (n, 1), let K = S(U (n) × U (1)), and letap and positivity be as
in Problem 11. Repeat the two parts of Problem 11 for this group.



CHAPTER IX

Induced Representations and Branching Theorems

Abstract. The definition of unitary representation of a compact group extends to the
case that the vector space is replaced by an infinite-dimensional Hilbert space, provided
care is taken to incorporate a suitable notion of continuity. The theorem is that each unitary
representation of a compact groupG splits as the orthogonal sum of finite-dimensional
irreducible invariant subspaces. These invariant subspaces may be grouped according to
the equivalence class of the irreducible representation, and there is an explicit formula for
the orthogonal projection on the closure of the sum of all the spaces of a given type. As a
result of this formula, one can speak of the multiplicity of each irreducible representation
in the given representation.

The left-regular and right-regular representations ofG onL2(G) are examples of unitary
representations. So is the left-regular representation ofG on L2(G/H) for any closed
subgroupH. More generally, ifH is a closed subgroup andσ is a unitary representation
of H, the induced representation ofσ from H to G is an example. Ifσ is irreducible,
Frobenius reciprocity says that the multiplicity of any irreducible representationτ of G in
the induced representation equals the multiplicity ofσ in the restriction ofτ to H .

Branching theorems give multiplicities of irreducible representations ofH in the re-
striction of irreducible representations ofG. Three classical branching theorems deal with
passing fromU (n) to U (n − 1), from SO(n) to SO(n − 1), and fromSp(n) to Sp(n − 1).
These may all be derived from Kostant’s Branching Theorem, which gives a formula for
multiplicities when passing from a compact connected Lie group to a closed connected
subgroup. Under a favorable hypothesis the Kostant formula expresses each multiplicity as
an alternating sum of values of a certain partition function.

Some further branching theorems of interest are those for whichG/H is a compact
symmetric space in the sense thatH is the identity component of the group of fixed elements
under an involution ofG. Helgason’s Theorem translates into a theorem in this setting for
the case of the trivial representation ofH by means of Riemannian duality. An important
example of a compact symmetric space is(G × G)/diagG; a branching theorem for this
situation tells how the tensor product of two irreducible representations ofG decomposes.

A cancellation-free combinatorial algorithm for decomposing tensor products for the uni-
tary groupU (n) is of great utility. It leads to branching theorems for the compact symmetric
spacesU (n)/SO(n) andU (2n)/Sp(n). In turn the first of these branching theorems helps in
understanding branching for the compact symmetric spaceSO(n +m)/(SO(n)× SO(m)).

Iteration of branching theorems for compact symmetric spaces permits analysis of some
complicated induced representations. Of special note isL2(K/(K ∩ M0)) when G is a
reductive Lie group,K is the fixed group under the global Cartan involution, andM AN is
the Langlands decomposition of any maximal parabolic subgroup.

555
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1. Infinite-dimensional Representations of Compact Groups

In the discussion of the representation theory of compact groups in
Chapter IV, all the representations were finite dimensional. A number of
applications of compact groups, however, involve naturally arising infinite-
dimensional representations, and a theory of such representations is needed.
We address this problem in the first two sections of this chapter.

Throughout this chapter,G will denote a compact group, anddx will
denote a two-sided Haar measure onG of total mass 1. To avoid having to
discuss some small measure-theoretic complications, we shall state results
for general compact groups but assume in proofs thatG is separable as
a topological group. This matter will not be an issue after §2, whenG
will always be a Lie group. For commentary about the measure-theoretic
complications, see the Historical Notes.

If V is a complex Hilbert space with inner product( · , · ) and norm‖ · ‖,
then aunitary operator U on V is a linear transformation fromV onto
itself that preserves the norm in the sense that‖U (v)‖ = ‖v‖ for all v in
V . EquivalentlyV is to be a linear operator ofV onto itself that preserves
the inner product in the sense that(U (v), U (v′)) = (v, v′) for all v andv′

in V . The unitary operators onV form a group. They are characterized by
havingU−1 = U ∗, whereU ∗ is the adjoint ofU .

A unitary representation of G on the complex Hilbert spaceV is a
homomorphism ofG into the group of unitary operators onV such that a
certain continuity property holds. Continuity is a more subtle matter in the
present context than it was in §IV.2 because not all possible definitions of
continuity are equivalent here. The continuity property we choose is that
the group actionG × V → V , given byg × v �→ �(g)v, is continuous.
When� is unitary, this property is equivalent withstrong continuity, that
g �→ �(g)v is continuous for everyv in V .

Let us see this equivalence. Strong continuity results from fixing theV
variable in the definition of continuity of the group action, and therefore
continuity of the group action implies strong continuity. In the reverse
direction the triangle inequality and the equality‖�(g)‖ = 1 give

‖�(g)v − �(g0)v0‖ ≤ ‖�(g)(v − v0)‖ + ‖�(g)v0 − �(g0)v0‖
= ‖v − v0‖ + ‖�(g)v0 − �(g0)v0‖,

and it follows that strong continuity implies continuity of the group action.
With this definition of continuity in place, an example of a unitary

representation is theleft-regular representation of G on the complex
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Hilbert spaceL2(G), given by(l(g) f )(x) = f (g−1x). Strong continuity
is satisfied according to Lemma 4.17. Theright-regular representation
of G on L2(G), given by(r(g) f )(x) = f (xg) also satisfies this continuity
property.

In working with a unitary representation� of G on V , it is helpful
to define�( f ) for f in L1(G) as a smeared-out version of the various
�(x) for x in G. Formally�( f ) is to be

∫
G f (x)�(x) dx . But to avoid

integrating functions whose values are in an infinite-dimensional space,
we define�( f ) as follows: The function

∫
G f (x)(�(x)v, v′) dx of v and

v′ is linear in v, conjugate linear inv′, and bounded in the sense that∣∣ ∫
G f (x)(�(x)v, v′) dx

∣∣ ≤ ‖ f ‖1‖v‖‖v′‖. It follows from the elementary
theory of Hilbert spaces that there exists a unique linear operator�( f )

such that

(9.1a) (�( f )v, v′) =
∫

G

f (x)(�(x)v, v′) dx

for all v andv′ in V . This operator satisfies

(9.1b) ‖�( f )‖ ≤ ‖ f ‖1

and

(9.1c) �( f )∗ = �( f ∗),

where f ∗(x) = f (x−1). From the existence and uniqueness of�( f ), it
follows that�( f ) depends linearly onf .

Another property of the application of� to functions is that convolution
goes into product. Theconvolution f ∗ h of two L1 functions f andh
is given by( f ∗ h)(x) = ∫

G f (xy−1)h(y) dy = ∫
G f (y)h(y−1x) dy. The

result is anL1 function by Fubini’s Theorem. Then we have

(9.1d) �( f ∗ h) = �( f )�(h).

The formal computation to prove (9.1d) is

�( f ∗ h) =
∫

G

∫
G

f (xy−1)h(y)�(x) dy dx

=
∫

G

∫
G

f (xy−1)h(y)�(x) dx dy

=
∫

G

∫
G

f (x)h(y)�(xy) dx dy
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=
∫

G

∫
G

f (x)h(y)�(x)�(y) dx dy

= �( f )�(h).

To make this computation rigorous, we put the appropriate inner products
in place and use Fubini’s Theorem to justify the interchange of order of
integration:

(�( f ∗ h)v, v′) = ∫
G

∫
G f (xy−1)h(y)(�(x)v, v′) dy dx

= ∫
G

∫
G f (xy−1)h(y)(�(x)v, v′) dx dy

= ∫
G

∫
G f (x)h(y)(�(xy)v, v′) dx dy

= ∫
G

∫
G f (x)h(y)(�(x)�(y)v, v′) dx dy

= ∫
G

∫
G f (x)h(y)(�(y)v, �(x)∗v′) dx dy

= ∫
G

∫
G f (x)h(y)(�(y)v, �(x)∗v′) dy dx

= ∫
G f (x)(�(h)v, �(x)∗v′) dx

= ∫
G f (x)(�(x)�(h)v, v′) dx

= (�( f )�(h)v, v′).

This kind of computation translating a formal argument about�( f ) into a
rigorous argument is one that we shall normally omit from now on.

An important instance of the convolutionf ∗h is the case thatf andh are
characters of irreducible finite-dimensional representations. The formula
in this case is

(9.2) χτ ∗ χτ ′ =
{

d−1
τ χτ if τ ∼= τ ′ anddτ is the degree ofτ

0 if τ andτ ′ are inequivalent.

To prove (9.2), one expands the characters in terms of matrix coefficients
and computes the integrals using Schur orthogonality (Corollary 4.10).

If f ≥ 0 vanishes outside an open neighborhoodN of 1 in G and has∫
G f (x) dx = 1, then(�( f )v−v, v′) = ∫

G f (x)(�(x)v−v, v′) dx . When
‖v′‖ ≤ 1, the Schwarz inequality therefore gives

|(�( f )v−v, v′)| ≤
∫

N

f (x)‖�(x)v − v‖‖v′‖ dx ≤ sup
x∈N

‖�(x)v − v‖.

Taking the supremum overv′ with ‖v′‖ ≤ 1 allows us to conclude that

(9.3) ‖�( f )v − v‖ ≤ sup
x∈N

‖�(x)v − v‖.
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We shall make use of this inequality shortly.
An invariant subspacefor a unitary representation� on V is a vector

subspaceU such that�(g)U ⊆ U for all g ∈ G. This notion is useful
mainly whenU is a closed subspace. In any event ifU is invariant, so is
the closed orthogonal complementU⊥ sinceu⊥ ∈ U⊥ andu ∈ U imply
that

(�(g)u⊥, u) = (u⊥, �(g)∗u) = (u⊥, �(g)−1u) = (u⊥, �(g−1)u)

is in (u⊥, U ) = 0. If V = 0, the representation isirreducible if its only
closed invariant subspaces are 0 andV .

Two unitary representations ofG, � on V and�′ on V ′, are said to be
unitarily equivalent if there is a norm-preserving linearE : V → V ′ with
a norm-preserving inverse such that�′(g)E = E�(g) for all g ∈ G.

Theorem 9.4. If � is a unitary representation of the compact group
G on a complex Hilbert spaceV , thenV is the orthogonal sum of finite-
dimensional irreducible invariant subspaces.

PROOF. By Zorn’s Lemma, choose a maximal orthogonal set of finite-
dimensional irreducible invariant subspaces. LetU be the closure of the
sum. Arguing by contradiction, suppose thatU is not all of V . Then
U⊥ is a nonzero closed invariant subspace. Fixv = 0 in U⊥. For each
open neighborhoodN of 1 in G, let fN be the characteristic function ofN
divided by the measure ofN . Then fN is an integrable function≥ 0 with
integral 1. It is immediate from (9.1a) that�( fN )v is in U⊥ for everyN .
Inequality (9.3) and strong continuity show that�( fN )v tends tov as N
shrinks to{1}. Hence some�( fN )v is not 0. Fix such anN .

Choose by the Peter–Weyl Theorem (Theorem 4.20) a functionh in the
linear span of all matrix coefficients for all finite-dimensional irreducible
unitary representations so that‖ fN − h‖2 ≤ 1

2‖�( fN )v‖/‖v‖. Then

‖�( fN )v − �(h)v‖ = ‖�( fN − h)v‖ ≤ ‖ fN − h‖1‖v‖
≤ ‖ fN − h‖2‖v‖ ≤ 1

2‖�( fN )v‖

by (9.1b) and the inequality‖F‖1 ≤ ‖F‖2. Hence

‖�(h)v‖ ≥ ‖�( fN )v‖ − ‖�( fN )v − �(h)v‖ ≥ 1
2‖�( fN )v‖ > 0,

and�(h)v is not 0.



560 IX. Induced Representations and Branching Theorems

The functionh lies in some finite-dimensional subspaceS of L2(G) that
is invariant under left translation. Leth1, . . . , hn be a basis ofS, and write
hj(g−1x) = ∑

i ci j(g)hi(x). The formal computation

�(g)�(hj)v = �(g)

∫
G

hj(x)�(x)v dx =
∫

G

hj(x)�(gx)v dx

=
∫

G

hj(g
−1x)�(x)v dx =

n∑
i=1

ci j(g)

∫
G

hi(x)�(x)v dx

=
n∑

i=1

ci j(g)�(hi)v

suggests that the subspace
∑

j C�(hj)v, which is finite dimensional and
lies in U⊥, is an invariant subspace for� containing the nonzero vector
�(h)v. To justify the formal computation, we argue as in the proof
of (9.1d), redoing the calculation with an inner product withv′ in place
throughout. The existence of this subspace ofU⊥ contradicts the maxi-
mality of U and proves the theorem.

Corollary 9.5. Every irreducible unitary representation of a compact
group is finite dimensional.

PROOF. This is immediate from Theorem 9.4.

Corollary 9.6. Let� be a unitary representation of the compact groupG
on a complex Hilbert spaceV . For each irreducible unitary representation
τ of G, let Eτ be the orthogonal projection on the sum of all irreducible
invariant subspaces ofV that are equivalent withτ . ThenEτ is given by
dτ�(χτ ), wheredτ is the degree ofτ andχτ is the character ofτ , and
the image ofEτ is the orthogonal sum of irreducible invariant subspaces
that are equivalent withτ . Moreover, ifτ andτ ′ are inequivalent, then
Eτ Eτ ′ = Eτ ′ Eτ = 0. Finally everyv in V satisfies

v =
∑

τ

Eτ v,

with the sum taken over a set of representativesτ of all equivalence classes
of irreducible unitary representations ofG.

PROOF. Let τ be irreducible with degreedτ , and putE ′
τ = dτ�(χτ ).
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Formulas (9.1c), (4.14), (9.1d), and (9.2) give

E ′
τ
∗ = dτ�(χτ

∗) = dτ�(χτ c) = dτ�(χτ ) = E ′
τ ,

E ′
τ E ′

τ ′ = dτ dτ ′�(χτ )�(χτ ′) = dτ dτ ′�(χτ ∗ χτ ′) = 0 if τ � τ ′,

E ′
τ

2 = d2
τ �(χτ ∗ χτ ) = dτ�(χτ ) = E ′

τ .

The first and third of these formulas say thatE ′
τ is an orthogonal projection,

and the second formula says thatE ′
τ E ′

τ ′ = E ′
τ ′ E ′

τ = 0 if τ and τ ′ are
inequivalent.

Let U be an irreducible finite-dimensional subspace ofV on which�|U
is equivalent withτ , and letu1, . . . , un be an orthonormal basis ofU . If we
write �(x)uj = ∑n

i=1 �i j(x)ui , then�i j(x) = (�(x)uj , ui) andχτ (x) =∑n
i=1 �i i(x). Thus a formal computation with Schur orthogonality gives

E ′
τ uj = dτ

∫
G

χτ (x)�(x)uj dx = dτ

∫
G

∑
i,k

�kk(x)�i j(x)ui dx = uj ,

and we can justify this computation by using inner products withv′ through-
out. As a result, we see thatE ′

τ is the identity on every irreducible subspace
of typeτ .

Now let us applyE ′
τ to a Hilbert space orthogonal sumV = ∑

Vα

of the kind in Theorem 9.4. We have just seen thatE ′
τ is the identity

on Vα if Vα is of typeτ . If Vα is of typeτ ′ with τ ′ inequivalent withτ ,
then E ′

τ ′ is the identity onVα, and we haveE ′
τ u = E ′

τ E ′
τ ′u = 0 for all

u ∈ Vα. ConsequentlyE ′
τ is 0 onVα, and we conclude thatE ′

τ = Eτ . This
completes the proof.

It follows from Corollary 9.6 that the number of occurrences of irre-
ducible subspaces of typeτ in a decomposition of the kind in Theorem
9.4 is independent of the decomposition. As a result of the corollary, this
number may be obtained as the quotient(dim imageEτ )/dτ . We write
[� : τ ] for this quantity and call it themultiplicity of τ in �. Each
multiplicity is a cardinal number, but it may be treated simply as a member
of the set{0, 1, 2, . . . , ∞} when the underlying Hilbert space is separable.
When� is finite dimensional, §IV.2 provides us with a way of computing
multiplicities in terms of characters, and the present notion may be regarded
as a generalization to the infinite-dimensional case.

For an example, consider the right-regular representationr of G on
L2(G). Let τ be an irreducible unitary representation, letu1, . . . , un be an
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orthonormal basis of the space on whichτ acts, and form matrices relative
to this basis that realize eachτ(x). The formula isτi j(x) = (τ (x)uj , ui).
The matrix coefficients corresponding to a fixed row, those withi fixed
and j varying, form an irreducible invariant subspace forr of typeτ , and
these spaces are orthogonal to one another by Schur orthogonality. Thus
[r : τ ] is at leastdτ . On the other hand, Corollary 4.21 says that such
matrix coefficients, asτ varies through representatives of all equivalence
classes of irreducible representations, form a complete orthogonal system
in L2(G). The coefficients corresponding to anyτ ′ inequivalent withτ are
in the image ofEτ ′ and are not of typeτ . It follows that [r : τ ] equalsdτ

and that the spaces of typeτ can be taken to be the span of each row of
matrix coefficients forτ .

For the left-regular representationl of G on L2(G), one can reason
similarly. The results are that [l : τ ] equalsdτ and that the spaces of type
τ can be taken to be the span of the columns of matrix coefficients for the
contragredientτ c.

Let Ĝ be the set of equivalence classes of irreducible representations of
G. The multiplicities of each member of̂G within a unitary representation
of G determine the representation up to unitary equivalence. In fact, the
various multiplicities are certainly not changed under a unitary equivalence,
and if a set of multiplicities is given, any unitary representation ofG
with those multiplicities is unitarily equivalent to the orthogonal sum of
irreducible representations with each irreducible taken as many times as the
multiplicity indicates. We shall be interested in techniques for computing
these multiplicities.

Proposition 9.7.Let � andτ be unitary representations of the compact
groupG on spacesV � andV τ , respectively, and supposeτ is irreducible.
Then

[� : τ ] = dimC HomG(V �, V τ ) = dimC HomG(V τ , V �),

where the subscriptsG refer to linear maps respecting the indicated actions
by G.

PROOF. By Schur’s Lemma (Proposition 4.8) and Corollary 9.6, any
member of HomG(V �, V τ ) annihilates(Eτ V �)⊥. Write, by a second
application of Corollary 9.6,Eτ V � as the orthogonal sum of irreducible
subspacesVα with eachVα equivalent toV τ . For eachVα, the space of linear
maps fromVα to V τ respecting the action byG is at least 1-dimensional. It
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is at most 1-dimensional by Schur’s Lemma in the form of Corollary 4.9.
Then it follows that

[� : τ ] = dimC HomG(V �, V τ ).

Taking adjoints, we obtain

dimC HomG(V �, V τ ) = dimC HomG(V τ , V �).

2. Induced Representations and Frobenius Reciprocity

In this section we continue to assume thatG is a compact group, and
we continue to write out proofs only under the additional assumption that
G is separable.

A wider class of examples of infinite-dimensional unitary representa-
tions than the regular representations onL2(G) is obtained as follows: Let
H be a closed subgroup ofG, and letl be theleft-regular representation
of G on L2(G/H), given by(l(g) f )(x H) = f (g−1x H).

This is a unitary representation, and it can be realized also as taking
place in a certain closed subspace ofL2(G). Namely the identification
f �→ F given byF(x) = f (x H) carriesL2(G/H) onto the subspace of
members ofL2(G) that are right-invariant underH , a closed subspace that
we shall denote byL2(G, C, 1H ). The result is a unitary equivalence of
representations ofG.

The realization ofL2(G/H) asL2(G, C, 1H ) suggests a generalization
in which C and 1H are replaced by a Hilbert spaceV and a unitary rep-
resentationσ of H on V . The case of most interest is thatσ is finite
dimensional, but the theory is no more complicated ifV is allowed to be
infinite dimensional but separable. We shall not have occasion to apply the
theory to nonseparable Hilbert spaces, and we defer to the Historical Notes
any discussion of the complications in that case.

Let the inner product and norm forV be denoted( · , · )V and | · |V .
A function F from G to V is (weakly) measurable ifx �→ (F(x), v)V is
Borel measurable for allv ∈ V . In this case let{vn} be an orthonormal
basis ofV . Then the function|F(x)|2V = ∑

n |(F(x), vn)V |2 is measurable
and is independent of the choice of orthonormal basis. We say thatF is
in L2(G, V ) if it is measurable and if‖F‖2 = (

∫
G |F(x)|2V dx)1/2 is finite.

Technically the spaceL2(G, V ) is the Hilbert space of such functions with
two such functions identified if they differ on a set of measure 0, but
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one usually speaks of functions, rather than their equivalence classes, as
members ofL2.

We define theleft-regular representation l of G on L2(G, V ) by
(l(g)F)(x) = F(g−1x). To verify the strong continuity, we use the same
argument as for Lemma 4.17 once we know that the continuous functions
from G to V are dense inL2(G, V ). This density is a consequence of
the density in the scalar case, which was proved in §IV.3: if{vn} is an
orthonormal basis ofV , then the finite linear combinations of functions
f vn with f scalar-valued and continuous are continuous intoV and form
a dense subset ofL2(G, V ).

Let us interject some remarks about Fubini’s Theorem. Fubini’s Theo-
rem is usually regarded as a statement about the interchange of integrals
of nonnegative measurable functions on a product measure space that is
totally finite or totallyσ -finite, but it says more. For one thing, it says
that the result of performing the inner integration is a measurable function
of the other variable. For another thing, through its statement in the case
of a characteristic function, it gives insight into sets of measure 0; if a
measurable set in the product space has the property that almost every slice
in one direction has measure 0, then almost every slice in the other direction
has measure 0.

Let H be a closed subgroup ofG, and letσ be a unitary representation
of H on V . Define

(9.8)

L2(G, V, σ ) =
{

F ∈ L2(G, V )

∣∣∣∣∣ F(xh) = σ(h)−1F(x)

for almost every pair
(x, h) ∈ G × H

}

=
{

F ∈ L2(G, V )

∣∣∣∣∣ For everyh ∈ H ,
F(xh) = σ(h)−1F(x)

for a.e.x ∈ G

}
.

The equality of the two expressions in braces requires some comment. The
equality is meant to convey that an equivalence class of functions inL2

containing a function having one of the defining properties in (9.8) contains
a member that has the other of the defining properties, and vice versa. With
this interpretation the second expression is contained in the first by Fubini’s
Theorem. IfF is in the first space, we can adjustF on a subset ofG of
measure 0 to make it be in the second space. This adjustment is done by
integration as follows. Formally we considerF1(x) = ∫

H σ(h)F(xh) dh.
By Fubini’s Theorem, for almost allx ∈ G, we haveF(xh) = σ(h)−1F(x)

for almost allh ∈ H , and thesex ’s haveF1(x) = F(x). For the remaining
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x ’s, we setF1(x) = 0. ThenF1 is in the second space, andF1 and F
yield the same member ofL2(G, V ). This argument is formal in that it
used integrals of vector-valued functions. To make it precise, we work
throughout with inner products with an arbitraryv ∈ V ; we omit these
details.

In practice it is a little easier to use the second expression in (9.8), and
we shall tend to ignore the first expression. Some authors work instead
with the subspace of continuous members ofL2(G, V, σ ), for which there
are no exceptionalx ’s andh’s; this approach succeeds because it can be
shown that the subspace of continuous members is dense inL2(G, V, σ ).

For F in L2(G, V, σ ) and g in G, define(�(g)F)(x) = F(g−1x).
The system of operators�(g) is nothing more than the restriction to an
invariant subspace of the left-regular representation ofG on L2(G, V ).
Thus� is a unitary representation ofG on L2(G, V, σ ). It is theinduced
representationof σ from H to G and is denoted indGH σ .

From the definitions it follows immediately that ifσ is the finite or
countably infinite orthogonal sum of unitary representationsσn on separable
Hilbert spaces, then indG

H σ is unitarily equivalent with the orthogonal sum
of the indG

H σn.

Theorem 9.9(Frobenius reciprocity). LetH be a closed subgroup of
the compact groupG, let σ be an irreducible unitary representation ofH
on V σ , let τ be an irreducible unitary representation ofG on V τ , and let
� = indG

H σ act onV �. Then there is a canonical vector-space isomorphism

HomG(V τ , V �) ∼= HomH (V τ , V σ ),

and consequently
[indG

H σ : τ ] = [τ |H : σ ].

REMARKS. Restriction to a subgroup is a way of passing from represen-
tations ofG to representations ofH , and induction is a way of passing in
the opposite direction. Frobenius reciprocity gives a sense in which these
constructions are adjoint to each other.

PROOF. We shall prove the isomorphism. The equality of multiplicities
is then immediate from Proposition 9.7.

The spaceV � is contained inL2(G, V σ ), and L2(G, V σ ) is simply
the direct sum ofdσ copies ofL2(G), dσ being the degree. Thereforeτ
occurs exactlydσ dτ times in L2(G, V σ ) and at most that many times in
V �. By Schur’s Lemma we then know that the image of any member
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of HomG(V τ , V �) lies in the subspace of continuous members ofV �.
If e denotes evaluation at 1 inG, it therefore makes sense to form the
compositioneA wheneverA is in HomG(V τ , V �). Forv in V τ , we have

σ(h)(eAv) = σ(h)[(Av)(1)] = (Av)(h−1)

= (�(h)(Av))(1) = (Aτ(h)v)(1) = eAτ(h)v.

ThuseA is in HomH (V τ , V σ ), and the linear mape carries HomG(V τ , V �)

into HomH (V τ , V σ ). To complete the proof, we show thate is an isomor-
phism.

To see thate is one-one, suppose thateAv = 0 for all v in V τ . Then
(Av)(1) = 0 for all v. Applying this conclusion tov = τ(g)−1v′ gives

0 = (Av)(1) = (Aτ(g)−1v′)(1) = (�(g)−1 Av′)(1) = (Av′)(g),

and soAv′ = 0. Sincev′ is arbitrary,A = 0. Thuse is one-one.
To see thate is onto, leta be in HomH (V τ , V σ ). Define Av(g) =

a(τ (g)−1v) for v ∈ V τ andg ∈ G. Then

Av(gh) = a(τ (h)−1τ(g)−1v) = σ(h)−1(a(τ (g)−1v)) = σ(h)−1(Av(g))

shows thatAv is in V �. In fact,A is in HomG(V τ , V �) because the equality

(�(g0)Av)(g) = Av(g−1
0 g) = a(τ (g)−1(τ (g0)v)) = A(τ (g0)v)(g)

implies�(g0)A = Aτ(g0). Finally e carriesA to a because the equality

eAv = Av(1) = a(τ (1)v) = av

implieseA = a. Thuse is onto, and the proof is complete.

The final topic of this section is “induction in stages,” which refers to
the legitimacy of forming an induced representation by first inducing to
an intermediate group and then inducing from there to the whole group.
Induction in stages may be regarded as adjoint to the obvious notion of
restriction in stages—that ifH and H1 are closed subgroups ofG and
H ⊆ H1 ⊆ G, then the effect of restricting fromG to H1 and afterward
restricting toH is the same as the effect of restricting fromG to H directly.
We can quantify this relationship by means of multiplicities as follows. Let
τ andσ be irreducible unitary representations ofG andH . Decomposing
τ underH1 and the result underH , we see that

(9.10) [τ : σ ] =
∑
σ1∈Ĥ1

[τ : σ1][σ1 : σ ].
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Induction in stages is more subtle than restriction in stages and requires
some justification. When inducing representations in stages, even if we
start with an irreducible representation, the intermediate representation is
likely to occur in a subspace of someL2(G, V ) with V infinite dimensional.
Before stating the result about induction in stages, let us therefore check
in the case of interest that all the Hilbert spaces that arise are separable.

Proposition 9.11.Let G be a separable compact group. ThenL2(G) is
a separable Hilbert space. In fact,L2(G, V ) is a separable Hilbert space
wheneverV is a separable Hilbert space.

PROOF. Fix a countable base for the topology ofG. For each pairU and
V in the countable base such thatU ⊆ V , choose, by Urysohn’s Lemma,
a continuous real-valued function that is 1 onU and 0 offV . The resulting
subset of the spaceC(G) of continuous complex-valued functions onG is
countable and separates points onG. The associative algebra overQ + iQ
generated by these functions and the constant 1 is countable, is closed
under conjugation, and is uniformly dense in the associative algebra over
C generated by these functions and 1. The latter algebra is uniformly dense
in C(G) by the Stone–Weierstrass Theorem. SinceC(G) is known from
§IV.3 to be dense inL2(G), we conclude thatL2(G) is separable. This
proves the first statement.

If V is a separable Hilbert space, let{vn} be a countable orthonormal
basis. Choose a countable dense set{ fk} in L2(G). Then the set of finite
rational linear combinations of functionsfkvn is a countable dense set in
L2(G, V ).

Proposition 9.12(induction in stages). LetG be a separable compact
group, and letH andH1 be closed subgroups withH ⊆ H1 ⊆ G. If σ is
an irreducible unitary representation ofH , then

indG
H σ is unitarily equivalent with indGH1

indH1
H σ.

REMARKS. In fact, the unitary equivalence is canonical, but we shall
not need this sharper statement. The functions in the Hilbert space of
the doubly induced representation are functions onG whose values are
functions onH1, thus are functions of pairs(g, h1). Their values are in
the spaceV σ on whichσ acts. The functions in the space of indG

H σ are
functions fromG to V σ . The unitary equivalence is given in effect by
evaluating the functions of pairs(g, h1) at h1 = 1. Since the functions
in question are unaffected by changes on sets of measure 0, some work is
needed to make sense of this argument.
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PROOF. Let τ andσ be irreducible unitary representations ofG andH .
Decomposingτ underH1 and the result underH leads to the multiplicity
formula (9.10). Frobenius reciprocity (Theorem 9.9) then gives

(9.13) [indG
H σ : τ ] =

∑
σ1∈Ĥ1

[indG
H1

σ1 : τ ][indH1
H σ : σ1].

The representation indH1
H σ is the orthogonal sum over allσ1 of [indH1

H σ : σ1]
copies ofσ1, and hence the induced representation indG

H1
indH1

H σ is unitarily
equivalent with the orthogonal sum over allσ1 of [indH1

H σ : σ1] copies of
indG

H1
σ1. Thus the right side of (9.13) is

= [indG
H1

indH1
H σ : τ ].

Therefore the two representations in question have the same respective
multiplicities, and they must be unitarily equivalent.

3. Classical Branching Theorems

Let H be a closed subgroup of the compact groupG. Frobenius reci-
procity deals with the multiplicities of irreducible representations ofG in
induced representations fromH toG, reducing their computation to finding
multiplicities of irreducible representations ofG when restricted toH . In
particular, this approach applies to finding the multiplicities forL2(G/H).
A theorem about computing multiplicities for an irreducible representation
upon restriction to a closed subgroup is called abranching theorem or
branching rule. The rest of this chapter will be concerned with results of
this type.

We shall concentrate on the case thatG is a connected Lie group and that
the closed subgroupH is connected. In the next section we shall see that
there is a direct formula that handles all examples. However, this formula
involves an alternating sum of a great many terms, and it gives a useful
answer only in a limited number of situations. It is natural therefore to try
to form an arsenal of situations that can be handled recursively, preferably
in a small number of steps.

For this purpose a natural first step is to look at the various series of
classical compact connected groups and to isolate the effect of restricting
an irreducible representation to the next smaller group in the same series.
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In this section we list three theorems of this kind, postponing their proofs
to §5.

Our groups are as follows. We work with the unitary groupsU (n), the
rotation groupsSO(N ) with N = 2n + 1 or N = 2n, and the quaternion
unitary groupsSp(n). The rotation groups are not simply connected, but
we omit discussion of their simply connected covers. In each case we use
the standard embedding of the subgroupH of next smaller size in the upper
left block of the given groupG, with the members ofH filled out with 1’s
on the diagonal. A different choice for an embedding ofH will yield the
same branching if the two subgroups are conjugate viaG, as is the case if
H is embedded in the lower right block ofG, for example.

We parametrize irreducible representations ofG and H as usual by
highest weights. The maximal toriT are as in §IV.5 for the most part. In the
case ofU (n), the maximal torus is the diagonal subgroup. ForSO(2n +1)

it consists of block diagonal matrices withn blocks consisting of 2-by-2
rotation matrices and with 1 block consisting of the entry 1, and forSO(2n)

it consists of block diagonal matrices withn blocks consisting of 2-by-2
rotation matrices. To have highest-weight theory apply conveniently to
Sp(n), we realizeSp(n) as Sp(n, C) ∩ U (2n); then the maximal torus
consists of diagonal matrices whose(n + j)th entry is the reciprocal of the
j th entry for 1≤ j ≤ n.

In each case the notation for members of the complexified dual of the Lie
algebra ofT is to be as in the corresponding example of §II.1. We writet for
the Lie algebra ofT . The positive roots are as in (2.50). The analytically
integral members of(tC)∗ in each case are of the forma1e1 + · · · + anen

with all aj equal to integers.
We begin with the branching theorem forU (n). ForU (n), the condition

of dominance is thata1 ≥ · · · ≥ an.

Theorem 9.14(Weyl). ForU (n), the irreducible representation with
highest weighta1e1 + · · · + anen decomposes with multiplicity 1 under
U (n −1), and the representations ofU (n −1) that appear are exactly those
with highest weightsc1e1 + · · · + cn−1en−1 such that

(9.15) a1 ≥ c1 ≥ a2 ≥ · · · ≥ an−1 ≥ cn−1 ≥ an.

EXAMPLE. L2(U (n)/U (n − 1)). The spaceU (n)/U (n − 1) may be
regarded as the unit sphere inCn. Frobenius reciprocity says that the mul-
tiplicity of an irreducible representationτ of U (n) in L2(U (n)/U (n − 1))

equals the multiplicity of the trivial representation ofU (n − 1) in τ |U (n−1).
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Let τ have highest weighta1e1 + · · · + anen. A brief calculation using
Theorem 9.14 shows that

[τ |U (n−1) : 1] =
{

1 if (a1, . . . , an) = (q, 0, . . . , 0, −p)

0 otherwise.

The representation with highest weightqe1− pen can be seen to be realized
concretely in the subspaceHp,q of homogeneous harmonic polynomials
in (z1, . . . , zn, z̄1, . . . , z̄n) in which p factors ofz’s andq factors of z̄’s
are involved; here “harmonic” means that the polynomial is annihilated
by the usual Laplacian

∑n
j=1

(
∂2

∂x2
j

+ ∂2

∂y2
j

)
. Thus L2(U (n)/U (n − 1)) is

unitarily equivalent with the sum of all the spacesHp,q , each occurring
with multiplicity 1. This conclusion, obtained from Theorem 9.14 with
just a brief calculation, begs for an analytic interpretation. Here is such an
interpretation: Any homogeneous polynomial involvingp of thez’s andq
of thez̄’s is uniquely a sumhp,q +|z|2hp−1,q−1+|z|4hp−2,q−2+· · · with each
of theh’s in the indicated space of homogeneous harmonic polynomials.
On the unit sphere each of the powers of|z| restricts to the constant 1, and
hence every polynomial on the sphere is the sum of harmonic polynomials
of the required kind. Compare with Problems 9–17 in Chapter IV.

Now we state the branching theorem for the rotation groups. The con-
dition of dominance for the integral forma1e1 +· · ·+anen for SO(2n +1)

andSO(2n) is that

a1 ≥ · · · ≥ an ≥ 0 for the case ofN = 2n + 1,

a1 ≥ · · · ≥ an−1 ≥ |an| for the case ofN = 2n.

Theorem 9.16(Murnaghan).

(a) ForSO(2n + 1), the irreducible representation with highest weight
a1e1 + · · · + anen decomposes with multiplicity 1 underSO(2n), and
the representations ofSO(2n) that appear are exactly those with highest
weights(c1, . . . , cn) such that

(9.17a) a1 ≥ c1 ≥ a2 ≥ c2 ≥ · · · ≥ an−1 ≥ cn−1 ≥ an ≥ |cn|.
(b) For SO(2n), the irreducible representation with highest weight

a1e1 + · · · + anen decomposes with multiplicity 1 underSO(2n − 1),
and the representations ofSO(2n − 1) that appear are exactly those with
highest weights(c1, . . . , cn−1) such that

(9.17b) a1 ≥ c1 ≥ a2 ≥ c2 ≥ · · · ≥ an−1 ≥ cn−1 ≥ |an|.
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Finally we state the branching theorem forSp(n). The condition
of dominance for the integral forma1e1 + · · · + anen for Sp(n) is that
a1 ≥ · · · ≥ an ≥ 0.

Theorem 9.18(Zhelobenko). ForSp(n), the irreducible representation
with highest weighta1e1 + · · · + anen decomposes underSp(n − 1) as
follows: the number of times the representation ofSp(n − 1) with highest
weight (c1, . . . , cn−1) occurs in the given representation ofSp(n) equals
the number of integern-tuples(b1, . . . , bn) such that

(9.19)
a1 ≥ b1 ≥ a2 ≥ · · · ≥ an−1 ≥ bn−1 ≥ an ≥ bn ≥ 0,

b1 ≥ c1 ≥ b2 ≥ · · · ≥ bn−1 ≥ cn−1 ≥ bn.

If there are no suchn-tuples(b1, . . . , bn), then it is understood that the
multiplicity is 0.

Any of the above three theorems can be iterated. For example, the
irreducible representation ofU (n) with highest weighta1e1 + · · · + anen

decomposes underU (n−2) as follows: the number of times the irreducible
representation ofU (n−2) with highest weightc1e1+· · ·+cn−2en−2 occurs
in the given representation ofU (n) equals the number of(n − 1)-tuples
(b1, . . . , bn−1) such that

a1 ≥ b1 ≥ a2 ≥ · · · ≥ an−1 ≥ bn−1 ≥ an

and
b1 ≥ c1 ≥ b2 ≥ · · · ≥ bn−2 ≥ cn−2 ≥ bn−1.

An iterated answer of this kind, however, may be unsatisfactory for some
purposes. As the number of iterations increases, this kind of answer be-
comes more like an algorithm than a theorem. If the result of the algorithm
is to be applied by substituting it into some other formula, the answer from
the formula may be completely opaque.

4. Overview of Branching

The previous section mentioned that there is a general formula that
handles all examples of branching for compact connected Lie groups. This
is due to Kostant. The full branching formula of Kostant’s involves the
same kind of passage to the limit that is involved in §V.6 in deriving the
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Weyl Dimension Formula from the Weyl Character Formula. But in this
book we shall restrict the treatment of Kostant’s formula to the situation
where no passage to the limit is needed.

Although the formula can always be used to calculate particular exam-
ples, it finds rather few theoretical applications. We shall use it in the next
section to derive results implying the classical branching theorems of the
previous section, and those will be our only applications of it.

Despite the paucity of theoretical applications, the special hypothesis
in the theorem that eliminates any passage to the limit has philosophical
implications for us. It will enable us to focus attention on an approach to
getting concrete branching formulas in a great many practical situations.
We return to this point after stating and proving the theorem.

Let G be a connected compact Lie group, and letH be a connected
closed subgroup. The special assumption is that the centralizer inG of a
maximal torusS of H is abelian and is therefore a maximal torusT of G.
Equivalently the assumption is that some regular element ofH is regular
in G. We examine the assumption more closely later in this section.

Let us establish some notation for the theorem. Let�G be the set of
roots of(gC, tC), let �H be the set of roots of(hC, sC), and letWG be the
Weyl group of�G . Introduce compatible positive systems�+

G and�+
H by

defining positivity relative to anH regular element ofis, let bar denote
restriction from the dual(tC)∗ to the dual(sC)∗, and letδG be half the sum of
the members of�+

G . The restrictions tosC of the members of�+
G , repeated

according to their multiplicities, are the nonzero positive weights ofsC in
gC. Deleting from this set the members of�+

H , each with multiplicity 1,
we obtain the set	 of positive weights ofsC in gC/hC, repeated according
to multiplicities. The associatedKostant partition function is defined as
follows: P(ν) is the number of ways that a member of(sC)∗ can be written
as a sum of members of	, with the multiple versions of a member of	

being regarded as distinct.

Theorem 9.20(Kostant’s Branching Theorem). LetG be a compact
connected Lie group, letH be a closed connected subgroup, suppose that
the centralizer inG of a maximal torusS of H is abelian and is therefore a
maximal torusT of G, and let other notation be as above. Letλ ∈ (tC)∗ be
the highest weight of an irreducible representationτ of G, and letµ ∈ (sC)∗

be the highest weight of an irreducible representationσ of H . Then the
multiplicity of σ in the restriction ofτ to H is given by

mλ(µ) =
∑

w∈WG

ε(w)P(w(λ + δG) − δG − µ).
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PROOF. The theorem generalizes the Kostant Multiplicity Formula for
the weights of a representation (Corollary 5.83), and the proof is a variant
of the proof of that special case. As in the special case, one needs to
make rigorous an argument involving multiplication of formal series; here
we defineQ+ to be the set of all nonnegative integer combinations of
members of	, and matters here are justified by working in a ringZ〈(sC)∗〉
defined relative to thisQ+. NamelyZ〈(sC)∗〉 is the set of allf ∈ Z(sC)∗

whose support is contained in the union of a finite number of setsνi − Q+

with eachνi in (sC)∗.
The special assumption about regularity insC enters as follows. Pos-

itivity for both H and G is defined relative to someH regular element
X ∈ is; specifically a memberα of �G is positive ifα(X) > 0. Hence the
restrictions tois of all members of	 lie in an open half space ofis∗, and
it follows thatP(ν) is finite for allν ∈ (sC)∗. With this finiteness in hand,
it follows that

(9.21)
( ∑

β∈	

(
1 − e−β

)mβ

)( ∑
ν∈Q+

P(ν)e−ν
)

= 1,

wheremβ is the multiplicity of β in gC/hC. This formula generalizes
Lemma 5.72.

Let χλ andχµ be characters forG and H , respectively. Using bar to
indicate restriction, not complex conjugation, we have

(9.22) χλ =
∑
µ∈F

mλ(µ)χµ

as an identity inZ[(sC)∗]; here F is a finite set ofH dominant weights.
The construction of	 makes

(9.23)
∏

α∈�+
G

(
1 − e−ᾱ

) =
( ∑

β∈	

(
1 − e−β

)mβ

)( ∏
γ∈�+

H

(
1 − e−γ

))
.

In (9.22) we substitute forχµ from the Weyl character forH and obtain

(9.24) χλ

∏
γ∈�+

H

(
1 − e−γ

) =
∑

p∈WH ,
µ∈F

mλ(µ)ε(p)ep(µ+δH )−δH ,

whereWH is the Weyl group ofH andδH is half the sum of the members of
�+

H . Substitution from (9.21) and (9.23) into the left side of (9.24) yields

χλ

( ∏
α∈�+

G

(
1 − e−ᾱ

))( ∑
ν∈Q+

P(ν)e−ν
)

=
∑

p∈WH ,
µ∈F

mλ(µ)ε(p)ep(µ+δH )−δH .
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The Weyl character formula forG implies that

χλ

∏
α∈�+

G

(
1 − e−ᾱ

) =
∑

w∈WG

ε(w)ew(λ+δG )−δG

in Z[(sC)∗], and we can substitute and obtain

(9.25)
∑

w∈WG ,
ν∈Q+

ε(w)P(ν)ew(λ+δG )−δG−ν =
∑

p∈WH ,
µ∈F

mλ(µ)ε(p)ep(µ+δH )−δH .

The theorem will follow by equating the coefficients ofeµ on the two sides
of (9.25). On the right side the equationp(µ + δH ) − δH = µ forces
p = 1 by Chevalley’s Lemma in the form of Corollary 2.73 becauseµ

is H dominant. Thus the coefficient ofeµ on the right side of (9.25) is
mλ(µ). On the left side the coefficient ofeµ is the sum ofε(w)P(ν) over
all w ∈ WG andν ∈ Q+ such thatw(λ + δG) − δG − ν = µ. This sum is
just

∑
w∈WG

ε(w)P(w(λ + δG) − δG − µ), and the proof is complete.

Let us study in more detail the special assumption in the theorem—that
the centralizer ofs in g is abelian. There are two standard situations where
this assumption is satisfied. The obvious one of these is whens is already
maximal abelian ing. We refer to this as the situation ofequal rank. This
is the case, for example, whenH = T and the theorem reduces to the
formula for the multiplicity of a weight. The less obvious one is when
the subgroupH is the identity component of the set of fixed points of an
involution ofG. We refer to this situation as that of acompact symmetric
space.

Let us accept for the moment that the special assumption in Theorem
9.20 is satisfied in the situation of a compact symmetric space, and let
us examine the circumstances in the classical branching theorems in the
previous section. In the case of branching fromG = SO(n) to H =
SO(n − 1), the subgroupH is the identity component of the set of fixed
points of the involution ofG given by conjugation by the diagonal matrix
diag(1, . . . , 1, −1). Thus this is the situation of a compact symmetric
space. The case withG = U (n) and H = U (n − 1) is not that of a
compact symmetric space, nor is it an equal-rank case. Yet this situation
does satisfy the special assumption in the theorem, essentially because
every root forU (n) is determined by its restriction toU (n − 1).

The case withG = Sp(n) andH = Sp(n − 1) is more decisive. It does
not satisfy the special assumption, and we are led to look for a remedy.



4. Overview of Branching 575

If we think of G = Sp(n) as the unitary group over the quaternions, then
the case ofSO(n) suggests considering conjugation by diag(1, . . . , 1, −1).
The identity component of the set of fixed points isH1 = Sp(n−1)×Sp(1),
and thus we have a relevant compact symmetric space. Theorem 9.20 will
be applicable withH1 as subgroup. We can thus handle the branching in
two stages, passing fromG to H1 and then fromH1 to H .

For uniformity we can use the same technique withG = U (n), passing
from G to H1 = U (n − 1) × U (1) and then fromH1 to H = U (n − 1).
In this way all of the classical branching reduces to instances of branching
associated with compact symmetric spaces.

What is the scope of compact symmetric spaces? LetU be a compact
semisimple Lie group, let� be an involution ofU , letu0 be the Lie algebra
of U , and letθ be the corresponding involution ofu0. Let B be the Killing
form foru0; this is negative definite by Corollary 4.26 and Cartan’s Criterion
for Semisimplicity (Theorem 1.45). IfK is the identity component of the
fixed set of� andk0 is its Lie algebra, then we can writeu0 = k0 ⊕ q0,
whereq0 is the−1 eigenspace ofθ . Corollary 4.22 allows us to regard
U as a closed linear group, and then Proposition 7.12 says thatU has a
complexificationU C. We use the Lie algebra ofU C as the complexification
u of u0. Putp0 = iq0 andg0 = k0 ⊕ p0. From the definition ofk0 and
q0 as eigenspaces forθ , it follows that [k0, k0] ⊆ k0, [k0, p0] ⊆ p0, and
[p0, p0] ⊆ k0. In particular,g0 is a real form ofu and is semisimple. Also
the complex extension ofB is negative definite onk0 and positive definite
onp0. By the definition in §VI.2,g0 = k0⊕p0 is a Cartan decomposition of
g0. If G is the analytic subgroup ofU C with Lie algebrag0, G/K is called
thenoncompact Riemannian dualof the compact symmetric spaceU/K .

The proof that the special assumption in Theorem 9.20 is satisfied for the
passage fromU to K is easy. Proposition 6.60 shows that the centralizer
of a maximal abelian subspaces0 of k0 in g0 is abelian, equaling the sum of
s0 and an abelian subspacea0 of p0. Then the centralizer ofs0 in u0 is the
sum ofs0 andia0 and is abelian. Thus the special assumption is satisfied.

G K U/K
U (n, m) U (n) × U (m) U (n + m)/(U (n) × U (m))

SO(n, m)0 SO(n) × SO(m) SO(n + m)/(SO(n) × SO(m))
Sp(n, m) Sp(n) × Sp(m) Sp(n + m)/(Sp(n) × Sp(m))

GL(n, R)0 SO(n) U (n)/SO(n)
GL(n, H) Sp(n) U (2n)/Sp(n)
SO∗(2n) U (n) SO(2n)/U (n)
Sp(n, R) U (n) Sp(n)/U (n)
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In Chapter VI we took advantage of Cartan decompositions to classify
real semisimple Lie algebras. We can refer to that classification now to find,
up to isomorphisms and coverings, all the compact semisimple groups and
involutions. The ones associated to the classical noncomplex Lie groups
are as in the accompanying table, except that special unitary groups have
been replaced by unitary groups throughout.

The first three, withm = 1, are what govern the classical branching the-
orems. Later in this chapter we shall observe some things about branching
in the context of the other compact symmetric spaces.

One more kind ofG of interest along with those in the above table is a
group whose Lie algebrag0 is complex simple. In this case,k0 is a compact
form of g0. Using Theorem 6.94 to unwind matters, we are led to the
compact symmetric space(K × K )/diagK . The involution in question
interchanges the two coordinates.

We can easily make sense of branching fromK × K to diagK . If τ1

andτ2 are irreducible representations ofK , then theouter tensor product
τ1⊗̂τ2 given by(k1, k2) �→ τ1(k1)⊗τ2(k2) is an irreducible representation of
K ×K . Application of Corollary 4.21 shows that all irreducible representa-
tions ofK × K are of this form. Restricting such a representation to diagK
yields the representationk �→ τ1(k) ⊗ τ2(k), which is the ordinary tensor
productτ1 ⊗ τ2 for K . In other words, branching fromK × K to diagK is
understood as soon as one understands how to decompose representations
of K under tensor product.

In practice the list of branching theorems produced from an understand-
ing of branching for compact symmetric spaces is much longer than the
above table might suggest. The reason is that many pairs(G, H) arising in
practice can be analyzed as a succession of compact symmetric spaces. We
give just one example, together with an indication how it can be generalized.
The groupSp(n, 1) has real rank one, and it is of interest to know what
irreducible representations occur inL2(K/M), M having been defined in
§VI.5. For this example,K = Sp(n) × Sp(1), and M is isomorphic to
Sp(n − 1) × Sp(1). However, the embedding ofM in K is subtle. Let
K1 = (Sp(n − 1) × Sp(1)) × Sp(1) be embedded inK in the expected
way. If we regroupK1 asSp(n − 1) × (Sp(1) × Sp(1)), thenM embeds
in K1 asSp(n − 1) × diagSp(1). ThusK/M is built from two compact
symmetric spaces, one that amounts toSp(n)/(Sp(n − 1) × Sp(1)) and
another that amounts to(Sp(1) × Sp(1))/diagSp(1).

What is happening in this example is a fairly general phenomenon. Let
the restricted-root space decomposition of the Lie algebra be written

g = g−2α ⊕ g−α ⊕ a ⊕ m ⊕ gα ⊕ g2α,
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with a ⊕ m forming the 0 restricted-root space. The linear transformation
ϕ fromgC to itself given as the scalari k ongkα is an automorphism ofgC of
order 4. SinceSp(n, 1)C is simply connected,ϕ lifts to an automorphism
� of Sp(n, 1)C with �4 = 1. Sinceϕ2 has real eigenvalues,�2 carries
G to itself. Alsoϕ2 commutes with the Cartan involution, and thus�2

carriesK to itself. The map�2 is an involution ofK , andK1 is the identity
component of the fixed group under�2. In turn,� is an involution ofK1,
andM is the identity component of the fixed group under�.

5. Proofs of Classical Branching Theorems

In this section we prove Theorems 9.14, 9.16, and 9.18 using Kostant’s
Branching Theorem (Theorem 9.20). The different cases have a certain
similarity to them. Consequently we shall give the proof in full forU (n),
but we shall omit parts of the later proofs that consist of easy calculations
or repetitive arguments.

1) Branching from U (n) to U (n − 1). We use (9.13) withG = U (n),
H1 = U (n − 1) × U (1), andH = U (n − 1). The given highest weights
areλ = ∑n

j=1 aj ej with a1 ≥ · · · ≥ an andµ = ∑n−1
j=1 cj ej with c1 ≥ · · · ≥

cn−1. The only termsσ1 that can make a contribution to (9.13) are those
with highest weight of the formµ1 = ∑n

j=1 cj ej for somecn. However,τ
is scalar on scalar matrices, and it follows for every weightν of τ thatλ
andν have the same inner product withe1 +· · ·+ en. Sinceν = ∑n

j=1 cj ej

is such a weight, we must have
∑n

j=1 aj = ∑n
j=1 cj . In other words,cn is

completely determined.
We may as well therefore assume from the outset that the branching is

fromU (n) toU (n−1)×U (1)and thatµ = ∑n
j=1 cj ej with c1 ≥ · · · ≥ cn−1.

For the passage fromU (n) to U (n − 1) × U (1), we use Theorem 9.20.
The multiplicity being computed is

(9.26) mλ(µ) =
∑

w∈WG

ε(w)P(w(λ + δ) − (µ + δ)).

HereWG is the symmetric group on{1, . . . , n}, the roots in	 are theei −en

with 1 ≤ i ≤ n − 1, andP andδ are given by

P(ν) =
{

1 if 〈ν, ej〉 ≥ 0 for all j < n and〈ν, e1 + · · · + en〉 = 0

0 otherwise

δ = 1
2(n − 1)e1 + 1

2(n − 3)e2 + · · · − 1
2(n − 1)en.
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We are to prove thatmλ(µ) is 1 if (9.15) holds and is 0 otherwise.
We begin with two lemmas. The first one gives a necessary condition

for mλ(µ) to be nonzero, and the second one concentrates on the value of
thewth term of (9.26). After the two lemmas, we prove two propositions
that together prove Theorem 9.14.

Lemma 9.27.Every term of (9.26) is 0 unless
∑n

j=1 aj = ∑n
j=1 cj .

PROOF. The formula forP shows that thewth term of (9.26) is 0 unless

0 = 〈w(λ + δ) − (µ + δ), e1 + · · · + en〉
= 〈λ + δ, w−1(e1 + · · · + en)〉 − 〈µ + δ, e1 + · · · + en〉
= 〈λ − µ, e1 + · · · + en〉

=
n∑

j=1

aj −
n∑

j=1

cj .

Lemma 9.28. Fix i with i < n, and suppose thatcj ≥ aj+1 for j ≤ i .
ThenP(w(λ + δ) − (µ + δ)) = 0 unlesswej = ej for j ≤ i .

PROOF. Fix l with l ≤ i . Chooser = r(l) with wer = el . Then

〈w(λ + δ) − (µ + δ), el〉 = 〈λ + δ, er〉 − 〈µ + δ, el〉 = (ar − cl) − (r − l).

For thewth term to be nonzero, this has to be≥ 0, and thus we must have
ar ≥ cl + (r − l) ≥ al+1 + (r − l). The casel = 1 hasar ≥ a2 + (r − 1).
If r ≥ 2, thena2 ≥ ar ≥ a2 + (r − 1), contradiction. Sol = 1 implies
r = 1, andwe1 = e1. Inductively suppose thatwej = ej for j < l. We
havewer(l) = el . From above,

ar(l) ≥ al+1 + (r(l) − l).

We know thatr(l) ≥ l. If r(l) > l, then

al+1 ≥ ar(l) ≥ al+1 + (r(l) − l) > al+1,

contradiction. Thusr(l) = l, and the induction is complete.

Proposition 9.29.If c1 ≥ a2, c2 ≥ a3, . . . , cn−1 ≥ an hold, then

mλ(µ) =
{

1 if ai ≥ ci for 1 ≤ i ≤ n − 1 andcn = ∑n
i=1 ai − ∑n−1

i=1 ci

0 otherwise.
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PROOF. Lemma 9.28 shows that thewth term can contribute tomλ(µ)

only if wej = ej for j ≤ n − 1. Thus we need consider onlyw = 1. We
have

P(1(λ + δ) − (µ + δ)) = P(λ − µ) = P
(∑n

j=1(aj − cj)
)
.

The formula forP shows thatP is 1 if

aj − cj ≥ 0 for j < n and an − cn = −
∑
i<n

(ai − ci),

and it is 0 otherwise. The proposition follows.

Proposition 9.30. If one or more of the inequalitiesc1 ≥ a2, c2 ≥ a3,
. . . , cn−1 ≥ an fails, thenmλ(µ) = 0.

PROOF. In view of Lemma 9.27, we may assume that
∑n

i=1 ci = ∑n
i=1 ai .

Choosei as small as possible so thatci < ai+1. Here 1≤ i ≤ n−1. Lemma
9.28 shows that thewth term of (9.26) gives 0 unlesswej = ej for j < i . So
we may limit consideration to terms in whichw has this property. We shall
show that thew term cancels with thewp term, wherep is the reflection in
the rootei − ei+1. Definek andl by wei = ek andwei+1 = el . Herek ≥ i
andl ≥ i sincewej = ej for j < i . We have

wp(λ+ δ)− (µ+ δ) = w(λ+ δ)− (µ+ δ)− (ai − ai+1 + 1)w(ei − ei+1),

and the arguments ofP for w andwp have the samej th component except
possibly for j = k and j = l. For thek th component,

(9.31)

〈wp(λ + δ) − (µ + δ), ek〉 = 〈wp(λ + δ), wei〉 − 〈µ + δ, ek〉
= 〈λ + δ, ei+1〉 − 〈µ + δ, ek〉
= (ai+1 − ck) + (k − i − 1)

and

(9.32)
〈w(λ + δ) − (µ + δ), ek〉 = 〈λ + δ, ei〉 − 〈µ + δ, ek〉

= (ai − ck) + (k − i).

Assumek < n for the moment. We have

ck − k ≤ ci − i < ai+1 − i
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and hence
ck − k ≤ ai+1 − (i + 1).

So (9.31) is≥ 0. Since (9.31) is< (9.32), we see that (9.32) is> 0.
Similarly for thel th component,

(9.33)
〈wp(λ + δ) − (µ + δ), el〉 = 〈λ + δ, ei〉 − 〈µ + δ, el〉

= (ai − cl) + (l − i)

and

(9.34) 〈w(λ + δ) − (µ + δ), el〉 = (ai+1 − cl) + (l − i − 1).

Under the assumptionl < n, (9.34) is≥ 0 and (9.33) is> 0.
Now we want to see thatP has the same value onw(λ + δ) − (µ + δ)

andwp(λ + δ) − (µ + δ). Since we are assuming
∑n

i=1 ci = ∑n
i=1 ai , the

formula forP gives

(9.35a)

P(w(λ + δ) − (µ + δ)) = 1 if and only if

〈w(λ + δ) − (µ + δ), ej〉 ≥ 0 for 1 ≤ j ≤ n − 1

(9.35b)

P(wp(λ + δ) − (µ + δ)) = 1 if and only if

〈wp(λ + δ) − (µ + δ), ej〉 ≥ 0 for 1 ≤ j ≤ n − 1.

First suppose thatk < n andl < n. We have seen thatw(λ+δ)−(µ+δ)

andwp(λ + δ) − (µ + δ) match in all components but thek th andl th and
that thek th andl th components are≥ 0 for each. Hence (9.35) gives

(9.36) P(w(λ + δ) − (µ + δ)) = P(wp(λ + δ) − (µ + δ))

whenk < n andl < n.
Next suppose thatk = n. We have seen thatw(λ + δ) − (µ + δ) and

wp(λ + δ) − (µ + δ) match in all components but thenth andl th, hence in
all of the firstn − 1 components but thel th. In thel th component, they are
≥ 0. Hence (9.35) gives (9.36) whenk = n.

Finally if l = n, then we argue similarly, and (9.35) gives (9.36) when
l = n.
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2a) Branching from SO(2n+1) to SO(2n). The given highest weights
areλ = ∑n

j=1 aj ej with a1 ≥ · · · ≥ an ≥ 0 andµ = ∑n
j=1 cj ej with

c1 ≥ · · · ≥ cn−1 ≥ |cn|.
The multiplicity being computed is again as in (9.26). The membersw

of the Weyl groupWG are of the formw = sp with s a sign change andp a
permutation, the roots in	 are theei with 1 ≤ i ≤ n, and the expressions
for P andδ are

P(ν) =
{

1 if 〈ν, ej〉 ≥ 0 for all j ≤ n

0 otherwise

δ = (n + 1
2)e1 + (n − 1

2)e2 + · · · + 1
2en.

We are to prove thatmλ(µ) is 1 if (9.17a) holds and is 0 otherwise.
The argument proceeds in the same style as for the unitary groups. There

are two lemmas and two propositions.

Lemma 9.37.Write w = sp with s a sign change andp a permutation.
Then thewth term can contribute to (9.26) only ifs equals 1 ors equals the
root reflectionsen .

PROOF. Consider the expression〈w(λ + δ) − (µ + δ), ej〉 for j < n.
Since〈µ + δ, ej〉 > 0, we must have〈w(λ + δ), ej〉 > 0 for thewth term
of (9.26) to be nonzero. Thereforew−1ej > 0 for j < n, and hence
p−1s−1ej > 0 for j < n. This means thats−1ej > 0 for j < n, and hence
s = 1 or s = sen .

Lemma 9.38. Fix i with i < n, and suppose thatcj ≥ aj+1 for j ≤ i .
ThenP(w(λ + δ) − (µ + δ)) = 0 unlesswej = ej for j ≤ i .

PROOF. The proof is the same as for Lemma 9.28. Lemma 9.37 shows
that we need not considerwer = −el sincew−1ej > 0 for j < n.

Proposition 9.39.If c1 ≥ a2, c2 ≥ a3, . . . , cn−1 ≥ an hold, then

mλ(µ) =
{

1 if ai ≥ ci for 1 ≤ i ≤ n − 1 andan ≥ |cn|
0 otherwise.

PROOF. The proof is similar to that for Proposition 9.29. Thewth term
can contribute tomλ(µ) only if wej = ej for j ≤ n − 1. Thus the only
possible contributions tomλ(µ) are fromw = 1 andw = sen .
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Proposition 9.40. If one or more of the inequalitiesc1 ≥ a2, c2 ≥ a3,
. . . , cn−1 ≥ an fails, thenmλ(µ) = 0.

PROOF. The proof is along the same lines as the one for Proposition
9.30, and we retain that notation. Again thewp term will cancel with the
w term. This timewei = ±ek andwei+1 = ±el with k ≥ i andl ≥ i , and
the minus signs must be carried along as possibilities ifk = n or l = n.
For thek th component, we readily check that

(9.41) 〈wp(λ + δ) − (µ + δ), ek〉 and 〈w(λ + δ) − (µ + δ), ek〉

are both≥ 0 if wei = +ek . For k = n, if wei = −en, then the members
of (9.41) are both< 0. Thus the arguments ofP in thewp andw terms
have the same sign in thek th component. For thel th component,

(9.42) 〈wp(λ + δ) − (µ + δ), el〉 and 〈w(λ + δ) − (µ + δ), el〉

are both≥ 0 if wei+1 = +el . Forl = n, if wei+1 = −el , then the members
of (9.42) are both< 0. Thus the arguments ofP in thewp andw terms
have the same sign in thel th component. The proposition follows.

2b) Branching from SO(2n) to SO(2n−1). The given highest weights
areλ = ∑n

j=1 aj ej with a1 ≥ · · · ≥ an−1 ≥ |an| andµ = ∑n−1
j=1 cj ej with

c1 ≥ · · · ≥ cn−1 ≥ 0.
The multiplicity being computed is

(9.43) mλ(µ) =
∑

w∈WG

ε(w)P(w(λ + δ) − δ − µ),

where the bar indicates restriction to the firstn − 1 components. The
membersw of the Weyl groupWG are of the formw = sp with s an even
sign change andp a permutation, andδ is given by

δ = (n − 1)e1 + (n − 2)e2 + · · · + en−1.

Let us compute the set of weights	. The restrictions of the positive roots
of SO(2n) are theei ± ej with i < j < n and thee1, . . . , en−1. The
ei ± ej have multiplicity 1 as weights inSO(2n) and correspond to roots in
SO(2n−1); thus they do not contribute to	. The weightse1, . . . , en−1 have
multiplicity 2 in SO(2n) from restriction ofej ± en; one instance of each
corresponds to a root ofSO(2n − 1), and the other instance contributes to
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	. TheP function is therefore defined relative to the weightse1, . . . , en−1,
each with multiplicity 1. Thus

P(ν) =
{

1 if 〈ν, ej〉 ≥ 0 for all j ≤ n − 1

0 otherwise.

We are to prove thatmλ(µ) is 1 if (9.17b) holds and is 0 otherwise.
This time we begin with three lemmas, the second and third of which are

similar to the lemmas for branching fromSO(2n + 1) to SO(2n). After
the three lemmas, we prove two propositions that together prove Theorem
9.16b.

Lemma 9.44. It is enough to prove the branching formula under the
assumptionan ≥ 0.

PROOF. The matrix diag(1, . . . , 1, −1) normalizesSO(2n), and conju-
gation ofSO(2n) by it leavesSO(2n −1) fixed, negates the last variable in
the Lie algebra of the maximal torus ofSO(2n), and leaves stable the set of
positive roots ofSO(2n). Thus it carries an irreducible representation of
SO(2n) with highest weighta1e1 + · · ·+ an−1en−1 + anen to an irreducible
representation with highest weighta1e1 +· · ·+an−1en−1 −anen. Therefore
the restrictions toSO(2n − 1) of these two irreducible representations of
SO(2n) are equivalent.

In both cases restriction toSO(2n − 1) is asserted to yield all irre-
ducible representations with highest weightsc1e1+· · ·+cn−1en−1 such that
a1 ≥ c1 ≥ a2 ≥ c2 ≥ · · · ≥ an−1 ≥ cn−1 ≥ |an|, and the lemma follows.

From now on, we accordingly assume thatan ≥ 0.

Lemma 9.45.Forw in WG , thewth term can contribute tomλ(µ) only
if w is a permutation.

PROOF. Consider〈w(λ+δ)−(µ+δ), ej〉 for j < n. Since〈µ+δ, ej〉 >

0, we must have〈w(λ+δ), ej〉 > 0 for thewth term ofmλ(µ) to be nonzero.
Therefore〈λ + δ, w−1ej〉 > 0 for j < n. Since〈λ + δ, ej ′ 〉 > 0 if j ′ < n,
the only two situations in which we can havew−1ej = −ej ′ are j = n and
j ′ = n. The number of signs changed byw−1 has to be even, and hence
this number must be 0 or 2. If it is 0, thenw is a permutation. If it is 2,
then j and j ′ cannot both ben. So there is somej < n with w−1ej = −en,
and we find that〈λ + δ, −en〉 > 0. The left side of this inequality is−an,
and we obtain a contradiction since Lemma 9.44 has allowed us to assume
thatan ≥ 0.
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Lemma 9.46. Fix i with i < n, and suppose thatcj ≥ aj+1 for j ≤ i .
ThenP(w(λ + δ) − (µ + δ)) = 0 unlesswej = ej for j ≤ i .

PROOF. The proof is the same as for Lemma 9.28. Lemma 9.45 shows
thatw may be assumed to be a permutation.

Proposition 9.47.If c1 ≥ a2, c2 ≥ a3, . . . , cn−1 ≥ an hold, then

mλ(µ) =
{

1 if ai ≥ ci for 1 ≤ i ≤ n − 1

0 otherwise.

PROOF. The proof is similar to that for Proposition 9.29. Thewth term
can contribute tomλ(µ) only if w is a permutation andwej = ej for
j ≤ n − 1. Thus the only possible contribution tomλ(µ) is fromw = 1.

Proposition 9.48. If one or more of the inequalitiesc1 ≥ a2, c2 ≥ a3,
. . . , cn−1 ≥ an fails, thenmλ(µ) = 0.

PROOF. The proof proceeds along the same lines as the ones for Propo-
sitions 9.30 and 9.40, and we retain that earlier notation. Again thewp
term will cancel with thew term. This timewei = ek andwei+1 = el , and
minus signs do not enter. We readily find that

〈wp(λ + δ) − (µ + δ), ek〉 and 〈w(λ + δ) − (µ + δ), ek〉

are both≥ 0 and that

〈wp(λ + δ) − (µ + δ), el〉 and 〈w(λ + δ) − (µ + δ), el〉

are both≥ 0. Thus the arguments ofP in thewp andw terms have the
same sign in thek th component and the same sign in thel th component.
The proposition follows.

3) Branching from Sp(n) to Sp(n − 1). This case is considerably
more complicated than the previous ones and is an indicator of the depth of
branching theorems with multiplicities≥ 1. We use restriction in stages.
In (9.13) we takeG = Sp(n), H1 = Sp(n − 1) × Sp(1), and H =
Sp(n − 1). The given highest weights forG and H areλ = ∑n

j=1 aj ej

with a1 ≥ · · · ≥ an ≥ 0 andµ = ∑n−1
j=1 cj ej with c1 ≥ · · · ≥ cn−1 ≥ 0.

Any irreducible representation ofH1 is the outer tensor product of an
irreducible representation ofSp(n − 1) and an irreducible representation
of Sp(1) ∼= SU (2). The only termsσ1 for H1 that can make a contribution
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to (9.13) are those for which the representation on theSp(n − 1) factor
matches the givenσ . Initially we take the representation on theSp(1)

factor to be arbitrary, say with highest weightc0en for an integerc0 ≥ 0.
Since restriction fromSp(1) to {1} yields the trivial representation with
multiplicity equal to the dimension, we see that

(9.49) m H
λ

( ∑n−1
j=1 cj ej

) =
∞∑

c0=0

(c0 + 1)m H1
λ

( ∑n−1
j=1 cj ej + c0en

)
,

wherem H
λ andm H1

λ are the multiplicities of the respective representations
of Sp(n − 1) andSp(n − 1) × Sp(1) in the given representation ofSp(n).
Thus in principle Theorem 9.18 will follow from an explicit branching
theorem for passing fromSp(n) to Sp(n − 1) × Sp(1). We shall state
such an explicit branching theorem and sketch its proof, leaving for the
Historical Notes a derivation of Theorem 9.18 from it.

Theorem 9.50(Lepowsky). ForSp(n), the irreducible representation
with highest weightλ = a1e1 +· · ·+anen decomposes under the subgroup
Sp(n − 1) × Sp(1) into the sum of representations with highest weights
µ = c1e1 + · · ·+ cn−1en−1 + c0en and multiplicitiesmλ(µ) as follows. The
multiplicity is 0 unless the integers

A1 = a1 − max(a2, c1)

A2 = min(a2, c1) − max(a3, c2)

...

An−1 = min(an−1, cn−2) − max(an, cn−1)

An = min(an, cn−1)

are all≥ 0 and alsoc0 has the same parity as
∑n

j=1 aj − ∑n−1
j=1 cj . In this

case the multiplicity is

mλ(µ) = P(A1e1+· · ·+ Anen −c0en)−P(A1e1+· · ·+ Anen +(c0+2)en),

whereP is the Kostant partition function defined relative to the set	 ={
ei ± en

∣∣ 1 ≤ i ≤ n − 1
}
.

REMARK. The conditionAi ≥ 0 for i ≤ n is equivalent with the
existence of integersbi as in (9.19) and is equivalent also with the 2n − 3
inequalitiesai ≥ ci for i ≤ n − 1 andci ≥ ai+2 for i ≤ n − 2.
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The multiplicity being computed is again as in (9.26). The membersw

of the Weyl groupWG are of the formw = sp with s a sign change andp
a permutation, the roots in	 are theei ± en with 1 ≤ i ≤ n − 1, andδ is
ne1 + (n − 1)e2 + · · · + 1en. The partition functionP satisfies

(9.51) P(ν) = 0 unless

{ 〈ν, e1 + · · · + en〉 is even and
〈ν, ei〉 ≥ 0 for 1 ≤ i ≤ n − 1

because every member of	 satisfies these properties.
The argument proceeds in the same style as for the unitary and rotation

groups except that there are more steps, specifically three lemmas and three
propositions. After the first proposition we pause to develop some needed
properties of general partition functions. The three propositions, together
with the first lemma below, prove Theorem 9.50.

Lemma 9.52.Every term of (9.26) is 0 unlessc0 has the same parity as∑n
j=1 aj − ∑n−1

j=1 cj .

PROOF. For anyw ∈ WG , we have the following congruence modulo 2:

〈w(λ+δ) − (µ+δ), e1 + · · · + en〉 ≡ 〈(λ+δ) − (µ+δ), e1 + · · · + en〉
≡ ∑n

j=1 aj − ∑n−1
j=1 cj − c0.

According to the first condition in (9.51), the left side must be even forP
to be nonzero, and hence the right side must be even.

Lemma 9.53.Write w = sp with s a sign change andp a permutation.
Then thewth term can contribute to (9.26) only ifs equals 1 ors equals the
root reflections2en .

PROOF. The proof is the same as for Lemma 9.37.

Lemma 9.53 divides the relevant elements of the Weyl group into two
kinds, p ands2en p for permutationsp. SinceP(s2enν) = P(ν), we have

P(s2en p(λ + δ) − (µ + δ)) = P(p(λ + δ) − s2en(µ + δ))

= P(p(λ + δ) − (µ + δ) + (2c0 + 2)en).

In other words the term fors2en p behaves like the term forp except that
c0 gets replaced by−(c0 + 2). This observation enables us to treat the
two kinds of elements separately. In fact, even in the final answer for the
multiplicity, the contributions from the two kinds of Weyl groups elements
remain separate: the permutationsp contributeP(A1e1+· · ·+Anen−c0en),
and the elementss2en p contributeP(A1e1 + · · · + Anen + (c0 + 2)en) with
a minus sign. Thus from now on, we work only with elementsw of WG

that are permutations.
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Lemma 9.54.Fix a permutationw. If c1 ≥ a3, c2 ≥ a4, . . . , cn−2 ≥ an

hold, thenP(w(λ + δ) − (µ + δ)) = 0 unless every equalitywei = ej

implies j ≥ i − 1.

PROOF. Suppose that thew term is not 0. Fixi , and definej bywei = ej .
We may assume thatj < n andi ≥ 3 since otherwise there is nothing to
prove. We have

〈w(λ + δ) − (µ + δ), ej〉 = 〈λ + δ, ei〉 − 〈µ + δ, ej〉 = (ai − cj) + ( j − i).

By (9.51) the left side is≥ 0. On the other hand, ifj < i − 1, then the
inequalitiesai ≤ ci−2 and−cj ≤ −ci−2 imply

(ai − cj) + ( j − i) < (ci−2 − ci−2) − 1 < 0,

and we have a contradiction.

Proposition 9.55.If c1 ≥ a3, c2 ≥ a4, . . . , cn−2 ≥ an hold and ifai < ci

for somei < n, thenP(w(λ+ δ)− (µ+ δ)) = 0 for every permutationw.

PROOF. Suppose that thew term is nonzero. Definej andk by ej = wei

andek = w−1ei . Lemma 9.54 givesi ≤ j + 1 andk ≤ i + 1. The claim is
thati ≤ j − 1 andk ≤ i − 1. For this purpose we may assume thatj < n.
To see thati ≤ j − 1, we write

〈w(λ + δ) − (µ + δ), ej〉 = (ai − cj) + ( j − i) < (ci − cj) + ( j − i).

By (9.51) the left side is≥ 0. If i > j − 1, then both terms on the right
side are≤ 0, and we have a contradiction. Similarly to see thatk ≤ i − 1,
we write

〈w(λ + δ) − (µ + δ), ei〉 = (ak − ci) + (i − k) < (ak − ai) + (i − k).

If k > i − 1, then both terms on the right side are≤ 0, and we have a
contradiction to the fact that the left side is≥ 0.

Therefore we havewei = ej andwek = ei with k < i < j . Since
j > i , w{ei+1, . . . , en} does not containej , and thusw{ei+1, . . . , en}
meets{e1, . . . , ei}. Sincek < i , ei is not in w{ei+1, . . . , en}. Hence
w{ei+1, . . . , en} meets{e1, . . . , ei−1}. Consequently there exist indicesr
ands with wes = er , s ≥ i + 1, andr ≤ i − 1. But thenr < s − 1, in
contradiction to Lemma 9.54. This completes the proof.
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For the proofs of the last two propositions, we shall need three identities
concerning partition functions. It will be helpful to derive these in some
generality. Let� be a finite set lying in an open half space of a Euclidean
space. For our purposes each member of� will have multiplicity 1, but
higher multiplicity can be handled by giving different names to the different
versions of the same element. We writeP� for the associated partition
function:P�(ν) is the number of nonnegative-integer tuples{nω | ω ∈ �}
such thatν = ∑

ω∈� nωω. If α1, . . . , αk are members of�, we writeP�
α1,...,αk

for P�′
when�′ is the set� with α1, . . . , αk removed.

Let us derive the identities. Ifα is in �, then

P�(ν) = P�(ν − α) + P�
α (ν)

for all ν. In fact, the left side counts the number of expansions ofν in terms
of �, and the right side breaks this count disjointly into two parts—the first
part for all expansions containingα at least once and the second part for all
expansions not containingα. Iterating this identityn ≥ 0 times, we obtain

(9.56) P�(ν) − P�(ν − nα) =
n−1∑
j=0

P�
α (ν − jα)

for all ν. If α andβ are both in� and if γ = α − β, then we can write a
version of (9.56) forβ, namely

P�(ν − nγ ) − P�(ν − nα) =
n−1∑
j=0

P�
β (ν − nγ − jβ),

and the result upon subtraction is

(9.57) P�(ν) −P�(ν − nγ ) =
n−1∑
j=0

[
P�

α (ν − jα) −P�
β (ν − nγ − jβ)

]
.

Now suppose thatω = 0 is in the Euclidean space and thatζ is the
only member of� for which 〈ζ, ω〉 = 0. Let us normalizeω so that
〈ζ, ω〉 = 1. If an expansion ofν in terms of� involvesnζ , then〈ν, ω〉 = n.
Applying (9.56) forn and thenn + 1, we obtain

(9.58) P�(ν) = P�(ν − 〈ν, ω〉ζ ) = P�
ζ (ν − 〈ν, ω〉ζ )

provided〈ν, ω〉 is an integer≥ 0.
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Proposition 9.59. If c1 ≥ a3, c2 ≥ a4, . . . , cn−2 ≥ an hold and if
aj ≥ cj for all j < n, then the sum ofε(w)P(w(λ + δ) − (µ + δ)) over all
permutationsw is P(A1e1 + · · · + Anen − c0en).

REMARK. By the same proof, an analogous summation formula ap-
plies for the elementss2en p of the Weyl group and yields the other term
−P(A1e1 + · · · + Anen + (c0 + 2)en) for the multiplicity in Theorem 9.50.

PROOF. The idea is to reduce matters to the case that

(9.60) c1 ≥ a2, c2 ≥ a3, . . . , cn−1 ≥ an.

If these inequalities are satisfied, then the proof of Lemma 9.28 shows that
P(w(λ+δ)−(µ+δ)) = 0 except forw = 1. Forw = 1, these inequalities
make Aj = aj − cj for j < n, and consequently(λ + δ) − (µ + δ) =
A1e1 + · · · + Anen − c0en. Thus the proposition is immediate under the
assumption that (9.60) holds.

In the general case suppose thatλ′ = ∑n
j=1 a′

j ej andµ′ = ∑n−1
j=1 c′

j ej +
c0en are given withc′

1 ≥ a′
3, c′

2 ≥ a′
4, . . . , c′

n−2 ≥ a′
n, with a′

j ≥ c′
j for

all j < n, and withc′
i < a′

i+1 for somei < n. We may assume thati
is as small as possible with this property. Defineci = a′

i+1, ai+1 = c′
i ,

cj = c′
j for j = i , andaj = a′

j for j = i + 1. Then letλ = ∑n
j=1 aj ej

andµ = ∑n−1
j=1 cj ej + c0en. A quick check shows thatλ andµ satisfy the

hypotheses of the proposition, that theAj ’s are unchanged, and that the
first index j , if any, with cj < aj+1 has j > i . Writing (i i +1) for the
transposition ofi andi + 1, we shall show that

(9.61) P(w(λ + δ) − (µ + δ)) − P(w(i i +1)(λ + δ) − (µ + δ))

?= P(w(λ′ + δ) − (µ′ + δ)) − P(w(i i +1)(λ′ + δ) − (µ′ + δ))

for all permutationsw. When this identity is multiplied byε(w) and
summed onw, it shows that twice the sum ofε(w)P(w(λ + δ) − (µ + δ))

equals twice the sum ofε(w)P(w(λ′ + δ) − (µ′ + δ)). Consequently an
induction on the indexi reduces the proposition to the case where (9.60)
holds, and we have seen that it holds there.

Thus the proposition will follow once (9.61) is proved. Possibly replac-
ing w by w(i i+1) in this identity, we may assume thatw(ei − ei+1) > 0.
Definer ands by er = wei andes = wei+1. Our normalization ofw makes
r < s. The argument of Lemma 9.28, applied withi − 1 in place ofi ,
shows that all four terms in (9.61) are 0 unlesswej = ej for j ≤ i − 1.
Thus we may assume thatr ≥ i . Let us prove that we may taker = i .
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If r > i , then thej with wej = ei cannot bei or i + 1 and thus has to
satisfy j ≥ i + 2. Consequently Lemma 9.54 shows that the first term on
each side of (9.61) is 0. Similarly thej ′ with w(i i +1)ej ′ = ei cannot be
i or i + 1 and thus has to satisfyj ′ ≥ i + 2. Hence Lemma 9.54 shows
that the second term on each side of (9.61) is 0. Therefore we may assume
thatr = i .

We now compute the respective sides of (9.61) using (9.56), (9.57),
and (9.58). There will be two cases,s < n ands = n. The first case will
be the harder, and we handle that first. At the end we indicate what happens
whens = n. To simplify some of the notation, we abbreviateea − eb as
eab.

We begin with the left side of (9.61). The difference of the arguments
of P in the two terms on the left side is〈λ + δ, ei,i+1〉eis . We are going to
apply (9.57) withγ = eis . Hereγ = α − β with α = ein andβ = esn.
Application of (9.57) shows that the left side of (9.61) is

(9.62) =
ai −ai+1∑

j=0

[
Pein(w(λ + δ) − (µ + δ) − jein)

− Pesn(w(λ + δ) − (µ + δ) − 〈λ + δ, ei,i+1〉eis − jesn)
]
.

In the first term of (9.62), thei th component of the argument ofP is

〈w(λ + δ) − (µ + δ) − jein, ei〉 = ai − ci − j.

For j > ai − ci , the term drops out by (9.51). Thus we need not sum the
first term beyondj = ai − ci . Since we have arranged thatci ≥ ai+1, we
can change the upper limit of the sum for the first term fromai − ai+1 to
ai − ci . In the second term of (9.62), thei th component of the argument of
P is ai+1 − ci − 1, and this is< 0 for every j . Thus every member of the
second sum in (9.62) is 0.

We apply (9.58) to the first term of (9.62), taking� = 	−{ein}, ζ =
ei + en, andω = ei . In the second term of (9.62), we subtract from the
argument a multiple ofes + en to make thes th component 0; this does
not affect anything since every member of the sum remains equal to 0.
After these steps we interchange thei th ands th arguments in the second
term, taking advantage of symmetry. The resulting expression for (9.62)
simplifies to
ai −ci∑
j=0

[
P(w(λ + δ) − (µ + δ) + (ci − ai)ei + (ci − ai + 2 j)en)

− P(w(λ + δ) − (µ + δ) + (ci − ai)ei − ((ci − cs) + (s − i))es

+ ((cs − ai) + (i − s) + 2 j)en)
]
.
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The difference in the arguments of the two terms works out to be
((ci − cs) + (s − i))(es + en). Thus (9.56) withα = es + en shows
that the above expression is

=
ai −ci∑
j=0

(ci −cs )+(s−i−1)∑
k=0

Pes+en(w(λ+δ) − (µ+δ) + (ci −ai)ei + (ci −ai +2 j)en − k(es +en)).

The coefficient ofes in the argument is

〈λ + δ, ei+1〉 − 〈µ + δ, es〉 − k = (ai+1 − cs) + (s − i − 1) − k,

and so the term drops out ifk > (ai+1 − cs) + (s − i − 1). Sinceci ≥ ai+1,
we can replace the upper limit in the sum by(ai+1 − cs) + (s − i − 1). For
the terms that have not dropped out, we apply (9.58) withζ = esn, and the
result is that the left side of (9.61) is

(9.63) =
ai −ci∑
j=0

(ai+1−cs )+(s−i−1)∑
k=0

P(w(λ + δ) − (µ + δ) − ((ai+1 − cs) + (s − i − 1))es

+ (ci − ai)ei + (ai+1 − ai + ci − cs + (s − i − 1) + 2 j − 2k)en).

Now we compute the right side of (9.61). The formulas that relateλ′ to
λ andµ′ to µ are

(9.64) λ′ = λ + (ci − ai+1)ei+1 and µ′ = µ − (ci − ai+1)ei .

The difference of the arguments ofP in the two terms on the right side of
(9.61) is(ai − ci + 1)eis . Thus (9.57) shows that the right side of (9.61) is

(9.65) =
ai −ci∑
j=0

[
Pein(w(λ′ + δ) − (µ′ + δ) − jein)

− Pesn(w(λ′ + δ) − (µ′ + δ) − 〈λ′ + δ, ei,i+1〉eis − jesn)
]
.

In the first term of (9.65), thei th component of the argument ofP is
ai − ai+1 − j ≥ ci − ai+1 ≥ 0. In the second term thes th component
of the argument is(ai − cs) + (s − i) − j ≥ (ci − cs) + (s − i) ≥ 0. We
apply (9.58) to both terms, usingζ = ei + en in the first andζ = es + en
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in the second, and then we interchange thei th ands th components in the
second term. The result is that (9.65) simplifies to

ai −ci∑
j=0

[
P(w(λ′ + δ) − (µ′ + δ) − (ai − ai+1)ei − (ai − ai+1 − 2 j)en)

− P(w(λ′ + δ) − (µ′ + δ) − (ai − ai+1)ei − (ai+1 − cs + s − i)es

− (ai − cs + s − i − 2 j)en)
]
.

The difference in the arguments for the two terms is now equal to
(ai+1 −cs + s − i)(es +en). Thus (9.56) withα = es +en shows that (9.65)
simplifies further to

=
ai −ci∑
j=0

(ai+1−cs )+(s−i−1)∑
k=0

Pes+en(w(λ′+δ) − (µ′+δ) + (ai+1−ai)ei − kes + (ai+1−ai +2 j − k)en).

The coefficient ofes in the argument is

〈λ′ + δ, ei+1〉 − 〈µ′ + δ, es〉 − k,

and the smallest that this gets to be isci−ai+1 ≥ 0. Thus we can apply (9.58)
with ζ = esn, and we find that (9.65) simplifies finally to (9.63). Thus the
left side in (9.61) agrees with the right side, and (9.61) is proved in the case
thats < n.

When s = n, we proceed similarly with each side of (9.61), but the
simpler formula (9.56) may be used in place of (9.57). Once (9.58) has
been used once with each side, no further steps are necessary, and we find
that the left and right sides of (9.61) have been simplified to the same
expression.

Proposition 9.66. If one or more of the inequalitiesc1 ≥ a3, c2 ≥ a4,
. . . , cn−2 ≥ an fails, thenmλ(µ) = 0.

PROOF. Fix an i ≤ n − 2 with ci < ai+2. The idea is to show that the
sum ofε(w)P(w(λ+ δ)− (µ+ δ)) over all permutationsw cancels in sets
of six. To describe the sets of six, we need some facts about the symmetric
groupSu,v on the integers{u, u + 1, . . . , v}. Let us writeckl for the cyclic
permutation withk ≤ l that sendsk into k + 1, k + 1 into k + 2, . . . ,
l − 1 into l, andl into k. If k = k ′ are integers≥ u, thenc−1

kv ck ′v cannot
be inSu,v−1, and it follows thatSu,v = ⋃v

k=u ckvSu,v−1. Similarly we have
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Su,v = Su+1,v

⋃v

l=u cul . Iterating the first kind of decomposition and then
the second, we find that each memberw ofS1,n has a unique decomposition
asw = pzq with

p = ckn ,nckn−1,n−1 · · · cki+3,i+3 and q = ci−1,li−1ci−2,li−2 · · · c1,l1

and with allkj ≥ i , all lj ≤ n, andz ∈ Si,i+2. A set of six consists of all
w with a commonp and a commonq. The properties ofp andq that we
need are

(9.67)
i ≤ p(i) < p(i + 1) < p(i + 2),

q−1(i) < q−1(i + 1) < q−1(i + 2) ≤ i + 2.

Definei ′ = i + 1 andi ′′ = i + 2, and abbreviateea − eb aseab during
the remainder of the proof. Fixp andq as above, and definer = p(i),
s = p(i ′), andt = p(i ′′), so thati ≤ r < s < t by (9.67). The proof
divides into two cases,t < n andt = n. The case thatt = n is the simpler,
and its proof can be obtained from the proof whent < n by replacingt by
n and by dropping some of the terms. Thus we shall assume thatt < n
from now on.

For z equal to 1 orcii ′ or cii ′′ , an application of (9.57) withα = esn,
β = etn, andγ = est gives

P(pzq(λ + δ) − (µ + δ)) − P(pci ′i ′′ zq(λ + δ) − (µ + δ))

=
〈λ+δ,q−1z−1ei ′ i ′′ 〉−1∑

j=0

[
Pesn(pzq(λ + δ) − (µ + δ) − jesn))

− Petn(pzq(λ+δ) − (µ+δ) − 〈λ+δ, q−1z−1ei ′i ′′ 〉est − jetn))
]
.

We multiply this equation byε(z) and add for the three values ofz. On
the left side we have our desired sum of six terms of (9.26), apart from a
factor of ε(pq), and on the right side we have six sums, three involving
Pesn and three involvingPetn . The limits of summation for the two sets of
three sums are the same; with their coefficient signs in place, they are

(9.68)
〈λ+δ,q−1ei ′ i ′′ 〉−1∑

j=0

, −
〈λ+δ,q−1eii ′′ 〉−1∑

j=0

,

〈λ+δ,q−1eii ′ 〉−1∑
j=0

.

The middle one we break into two parts as
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(9.69) −
〈λ+δ,q−1eii ′′ 〉−1∑

j=0

= −
〈λ+δ,q−1eii ′′ 〉−1∑
j=〈λ+δ,q−1eii ′ 〉

−
〈λ+δ,q−1eii ′ 〉−1∑

j=0

.

With the first sum on the right side of (9.69), we change variables using
j ′ = j − 〈λ + δ, q−1eii ′ 〉, and then we changej ′ back to j . The new limits
of summation are from 0 to〈λ + δ, q−1ei ′i ′′ 〉 − 1. This adjusted sum gets
lumped with the first sum in (9.68), and the second sum on the right side
of (9.69) gets lumped with the third sum in (9.68). The expression we get
is

=
〈λ+δ,q−1ei ′ i ′′ 〉−1∑

j=0

[
Pesn(pq(λ + δ) − (µ + δ) − jesn))

− Pesn(pcii ′q(λ + δ) − (µ + δ) − ( j + 〈λ + δ, q−1eii ′ 〉)esn)
]

−
〈λ+δ,q−1ei ′ i ′′ 〉−1∑

j=0

[
Petn(pq(λ + δ) − (µ + δ) − 〈λ + δ, q−1ei ′i ′′ 〉est − jetn)

− Petn(pcii ′q(λ + δ) − (µ + δ) − 〈λ + δ, q−1eii ′′ 〉est

− ( j + 〈λ + δ, q−1eii ′ 〉)etn)
]

−
〈λ+δ,q−1eii ′ 〉−1∑

k=0

[
Pesn(pcii ′q(λ + δ) − (µ + δ) − kesn))

− Pesn(pcii ′′q(λ + δ) − (µ + δ) − kesn)
]

+
〈λ+δ,q−1eii ′ 〉−1∑

k=0

[
Petn(pcii ′q(λ + δ) − (µ + δ) − 〈λ + δ, q−1eii ′′ 〉est − ketn)

− Petn(pcii ′′q(λ + δ) − (µ + δ) − 〈λ + δ, q−1eii ′ 〉est − ketn)
]
.

In this expression we have four sums of differences, and we find that the
respective differences of the arguments ofP are

〈λ + δ, q−1eii ′ 〉ern, 〈λ + δ, q−1eii ′ 〉ern,

〈λ + δ, q−1ei ′i ′′ 〉ert , and 〈λ + δ, q−1ei ′i ′′ 〉ers .

To handle the first and second sums of differences, we use (9.56) with
α = ern. For the third sum of differences, we use (9.57) withα = ern and
β = etn. For the fourth sum of differences, we use (9.57) withα = ern and
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β = esn. The expression is then

=
〈λ+δ,q−1ei ′ i ′′ 〉−1∑

j=0

〈λ+δ,q−1eii ′ 〉−1∑
k=0[

Pesn ,ern(pq(λ + δ) − (µ + δ) − jesn − kern)

− Petn ,ern(pq(λ + δ) − (µ + δ) − 〈λ + δ, q−1ei ′i ′′ 〉est − jetn − kern)

− Pesn ,ern(pcii ′q(λ + δ) − (µ + δ) − kesn − jern)

+ Pesn ,etn(pcii ′q(λ + δ) − (µ + δ) − kesn − jetn − 〈λ + δ, q−1ei ′i ′′ 〉ert)

+ Petn ,ern(pcii ′q(λ + δ) − (µ + δ) − 〈λ + δ, q−1eii ′′ 〉est − ketn − jern)

− Petn ,esn(pcii ′q(λ + δ) − (µ + δ) − 〈λ + δ, q−1eii ′′ 〉est − ketn − jesn

− 〈λ + δ, q−1ei ′i ′′ 〉ers)
]
.

Let us call the terms within bracketsA, B, C, D, E, F . The proof is
completed by showing for eachj andk that A cancels withC , B cancels
with E , andD cancels withF . We compute the differences of the arguments
of P for the three pairs, seeing that they are(〈λ+ δ, q−1eii ′ 〉− k + j) times
ers , ert , andest in the three cases. The proofs of cancellation are similar in
the three cases, and we give only the one for cancelingA andC .

The idea is to apply (9.58) twice to each ofA andC , once withζ = er +en

and once withζ = es + en. The arguments ofA andC differ only in ther th

ands th components, and the inner products of the arguments wither + es

are equal. Hence simplification ofA andC by means of (9.58) will make
the arguments equal, and the terms will cancel.

To be able to apply (9.58) in this way, we have to know that ther th

ands th components of the arguments ofA andC are≥ 0 for every j and
k. This verification will be the only place where we use the hypothesis
ci < ai+2. To begin with, we know thatk ≤ 〈λ + δ, q−1eii ′ 〉, and thus
(〈λ + δ, q−1eii ′ 〉 − k + j) is ≥ 0. Then for each( j, k), we have

〈argument(A), er〉 − 〈argument(C), er〉 = 〈(≥ 0)er , er〉 ≥ 0,

from which it follows that both arguments haver th component≥ 0 if C
does. Similarly both arguments haves th component≥ 0 if A does. We
have

〈argument(C), er〉 = 〈pcii ′q(λ + δ), er〉 − 〈µ + δ, er〉 − j

= 〈λ + δ, q−1ei ′ 〉 − 〈µ + δ, er〉 − j
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≥ 〈λ + δ, q−1ei ′′ 〉 − 〈µ + δ, er〉 + 1

≥ 〈λ + δ, ei ′′ 〉 − 〈µ + δ, ei〉 + 1

= ai ′′ − ci + 〈δ, ei ′′ − ei〉 + 1

= ai+2 − ci − 1

≥ 0.

The three inequalities above respectively use the upper bound onj , the
inequalities (9.67), and the hypothesisci < ai+2. Also

〈argument(A), es〉 = 〈pq(λ + δ), es〉 − 〈µ + δ, es〉 − j

= 〈λ + δ, q−1ei ′ 〉 − 〈µ + δ, es〉 − j

≥ 〈λ + δ, q−1ei ′ 〉 − 〈µ + δ, er〉 − j sincer < s

≥ 0,

the last step following from the preceding computation. This completes
the proof.

6. Tensor Products and Littlewood–Richardson Coefficients

Let us return to the framework of §4 of finding the multiplicities of the
irreducible representations ofG in L2(G/H)whenG/H can be constructed
from a succession of compact symmetric spaces. The starting point is
branching theorems in the context of compact symmetric spacesU/K .
In this section we begin a discussion of some further results of this kind
beyond those proved in §5. Some of them have the property of handling
only some representations ofU or K , but they are still applicable to the
problem of analyzingL2(G/H).

The first such result, given below as Theorem 9.70, handles the trivial
representation ofK . WhenU is semisimple, Theorem 9.70 is a direct
translation, via Riemannian duality, of part of Helgason’s Theorem (The-
orem 8.49) because Lemma 8.48 shows thatM fixes a nonzero highest
weight vector if and only ifM acts by the trivial representation in the
highest restricted-weight space. For generalU , Theorem 9.70 follows
from the result in the semisimple case because Theorem 4.29 shows that
the semisimple part ofU is closed and because the additional contribution
to M comes from the identity component of the subgroup of the center
fixed by�.
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Theorem 9.70. Let U be a compact connected Lie group with Lie
algebrau, let K be the identity component of the set of fixed elements
under an involution�, let ϕ be the differential of�, and letu = k ⊕ q

be the eigenspace decomposition ofu underϕ. Choose a maximal abelian
subspaceb of q, let s be a maximal abelian subspace of the centralizer of
b in k, and putt = b ⊕ s. Let M be the centralizer ofb in K . Impose
an ordering on(it)∗ that takesib beforeis. Then an irreducible finite-
dimensional representationπ of U has a nonzeroK fixed vector if and
only if M fixes a nonzero highest-weight vector ofπ .

A particularly simple yet illuminating example is the case of tensor
products for a compact connected Lie groupG. As we saw in §4, this
case arises from the compact symmetric spaceU/K with U = G × G and
K = diagG. Let us examine this case in detail.

First let us consider the example directly, writingτλ for an irreducible
representation ofG with highest weightλ and writingχλ for its character.
By (4.13), (4.15), and Corollary 4.16, the multiplicity ofτµ in τλ1 ⊗ τλ2 is
just

(9.71) [τλ1 ⊗ τλ2 : τµ] =
∫

G

χλ1χλ2χµ dx .

If µ = 1, then the integral is nonzero if and only ifχλ2 = χλ1, thus if and
only if τλ2 is equivalent withτ c

λ1
. In this case the multiplicity is 1.

Now let us consider this example from the point of view of Theo-
rem 9.70. Ifc is a Cartan subalgebra of the Lie algebra ofG, then we
can takeb = {

(X, −X)
∣∣ X ∈ c

}
. We are forced to lets = diagc,

and we havet = c ⊕ c. A member(λ1, λ2) of (it)∗ decomposes as
1
2(λ1 − λ2, λ2 − λ1) + 1

2(λ1 + λ2, λ1 + λ2) with the first term carried
on ib and the second term carried onis. Roots are of the form(α, 0)

and (0, α) with α ∈ �G , and their corresponding decompositions are
1
2(α, −α) + 1

2(α, α) and 1
2(−α, α) + 1

2(α, α). Sinceib comes beforeis,
according to the hypotheses of Theorem 9.70, the sign of(α, 0) is deter-
mined by1

2(α, −α). Thus(α, 0) > 0 implies(0, −α) > 0. Consequently
�+

U is determined by a choice of�+
G and is given by

�+
U = {

(α, 0)
∣∣ α ∈ �+

G

} ∪ {
(0, −α)

∣∣ α ∈ �+
G

}
.

Dominance for(λ1, λ2) therefore means that〈λ1, α〉 ≥ 0 and〈λ2, α〉 ≤ 0
for all α ∈ �+

G . That is,λ1 and−λ2 are to be dominant for�+
G . We know

from §4 that every irreducible representation ofG × G is an outer tensor
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product; suppose that the irreducible representation ofU with highest
weight (λ1, λ2) is the outer tensor productτ⊗̂τ ′. Thenτ is just τλ1 up
to equivalence, butτ ′ haslowest weightλ2. Soτ ′ is an irreducible repre-
sentation whose contragredient has highest weight−λ2. In other words,
τ ′c = τ−λ2 andτ ′ = τ c

−λ2
, up to equivalence. Thus the irreducible repre-

sentation ofU with highest weight(λ1, λ2) is equivalent withτλ1⊗̂τ c
−λ2

.
To understand the content of Theorem 9.70 for this example, we need to
identify M . The groupM is the subgroup of elements(x, x) in G × G
with Ad(x, x)(X, −X) = (X, −X) for all X in c. By Corollary 4.52 an
elementx of G with Ad(x)X = X for all X in c must itself be in expc, and
henceM = exps. The condition of Theorem 9.70 is that(λ1, λ2) vanish
on s, hence thatλ1 + λ2 = 0. Then−λ2 = λ1 andτλ1⊗̂τ c

−λ2
is equivalent

with τλ1⊗̂τ c
λ1

.
Theorem 9.70 detects only what tensor products contain the trivial

representation. With any of our tools so far—namely the multiplicity
formula (9.71), Kostant’s Branching Theorem (Theorem 9.20), or even
Problem 17 at the end of this chapter—we are left with a great deal of
computation to decompose any particular tensor product. For example,
if N is the order of the Weyl group ofG, then the Kostant formula for
checking a multiplicity within a tensor product hasN 2 terms.

For particular groupsG, there are better methods for decomposing tensor
products. Of particular interest is the unitary groupG = U (n). Before
giving results in that case, we need one general fact.

Proposition 9.72. In a compact connected Lie groupG, let λ′′ be any
highest weight inτλ ⊗ τλ′ , i.e., the highest weight of some irreducible
constituent. Thenλ′′ is of the formλ′′ = λ + µ′ for some weightµ′ of τλ′ .

PROOF. Write aλ′′ highest weight vector in terms of weight vectors of
τλ andτλ′ asv = ∑

µ+µ′=λ′′(vµ ⊗ vµ′), allowing more than one term per
choice ofµ, if necessary, and taking thevµ′ ’s to be linearly independent.
Chooseµ = µ0 as large as possible so that there is a nonzero termvµ ⊗vµ′ .
If Eα is a root vector for a positive rootα, then

0 = Eαv =
∑

µ+µ′=λ′′
(Eαvµ ⊗ vµ′) +

∑
µ+µ′=λ′′

(vµ ⊗ Eαvµ′).

The only way a vector of weightµ0+α can occur in the first member of the
tensor products on the right side is from termsEαvµ0⊗vµ′ withµ′ = λ′′−µ0.
Since the corresponding vectorsvµ′ are linearly independent,Eαvµ0 is 0
for eachvµ0 that occurs. Therefore any suchvµ0 is a highest weight vector
for τλ. We conclude thatµ0 = λ and thatλ′′ is of the required form.
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Now we examine tensor products whenG is the unitary groupU (n). It
is traditional to study representations ofU (n) in a normalized form that
can be obtained by multiplying by a suitable power of the 1-dimensional
determinant representation: A representationτ of U (n) is a polynomial
representation if all of its matrix coefficientsx �→ (τ (x)ψ ′, ψ) are
polynomial functions of the entriesxi j . Equivalently all of the matrix
coefficients of the holomorphic extension ofτ to GL(n, C) are to be
holomorphic polynomials of the entries of the matrix inGL(n, C). This
notion is preserved under passage from a representation to an equivalent
representation and under direct sums, tensor products, and subrepresenta-
tions. Consequently any irreducible constituent of the tensor product of
two polynomial representations is again a polynomial representation.

An integral formν = ∑n
j=1 νj ej for U (n) is nonnegativeif νj ≥ 0 for

all j . Restricting a polynomial representation to the diagonal matrices,
we see that every weight of a polynomial representation is nonnegative.
Conversely we can see that any irreducible representation whose highest
weight is nonnegative is a polynomial representation. In fact, the standard
representation, with highest weighte1, is a polynomial representation. The
usual representation in alternating tensors of rankk lies in thek-fold tensor
product of the standard representation with itself and is therefore polyno-
mial; its highest weight is

∑k
j=1 ej . Finally, if we adopt the convention

thatλn+1 = 0, a general highest weightλ = ∑n
j=1 λj ej can be rewritten as

the sumλ = ∑n
k=1(λk − λk+1)

∑k
i=1 ei . An irreducible representation with

highest weightλ thus lies in a suitable tensor product of alternating-tensor
representations and is polynomial.

The classical representation theory for the unitary group deals with irre-
ducible polynomial representations, which we now know are the irreducible
representations with nonnegative highest weight or, equivalently, with all
weights nonnegative. The restriction that an irreducible representation
have nonnegative highest weight is not a serious one, since any irreducible
τ is of the formτ ′ ⊗ (det)−N with τ ′ polynomial if the integerN is large
enough.

Let τλ be an irreducible polynomial representation with highest weight
λ = ∑n

j=1 λj ej . We define thedepth of τλ or λ to be the largestj ≥ 0 such
thatλj = 0. If λ has depthd, theparts of λ are thed positive integersλj .
To τλ or λ, we associate adiagram, sometimes called a “Ferrers diagram.”
This consists of a collection of left-justified rows of boxes:λ1 in the first
row,λ2 in the second row,. . . ,λd in thed th row. The integern is suppressed.
For example, the highest weight 4e1 + 2e2 + e3 + e4 is associated to the
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diagram

We shall allow ourselves to replace the boxes in a diagram by various
integers, retaining the pattern. Thus if we use 0’s in place of boxes above,
we obtain

0 0 0 0
0 0
0
0

as the diagram.
If ν is a nonnegative integral form, we write‖ν‖ for 〈ν, e1 + · · · + en〉.

This number is the same for all weights of an irreducible representation.
In the example above of a diagram with boxes, the depth is the number of
rows, namely 4, and the common value of‖ν‖ is the total number of boxes,
namely 8.

Let us suppose that the tensor product of two irreducible polynomial rep-
resentationsτµ andτν of U (n) decomposes into irreducible representations
as

(9.73) τµ ⊗ τν
∼=

∑
depth(λ)≤n

cλ
µντλ.

The integerscλ
µν , which are≥ 0, are calledLittlewood-Richardson

coefficients. We shall give without proof a recipe for computing these
coefficients that is rapid and involves no cancellation of terms.

Fix µ andν and suppose thatτλ actually occurs inτµ ⊗ τν in the sense
thatcλ

µν = 0. Thenλ is nonnegative and‖λ‖ = ‖µ‖ + ‖ν‖ because every
weight of the tensor product has these properties. A more subtle property
of λ is thatλ is the sum ofµ and a nonnegative integral form (and also
the sum ofν and a nonnegative integral form); this follows immediately
from Proposition 9.72. In terms of diagrams, this relationship means that
the diagram ofµ is a subset of the diagram ofλ, and we consequently
write µ ⊆ λ for this relationship. To find all possibleλ’s, we may think of
enlarging the diagram ofµ with ‖ν‖ additional boxes or 0’s and hoping to
determine which enlarged diagrams correspond toλ’s that actually occur.
Of course, the enlarged diagram needs to correspond to a dominant form,
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and thus the lengths of its rows are decreasing. But that condition is not
enough. The additional data that are needed to describe whichλ’s actually
occur are what we shall call the “symbols” ofν: if ν = ∑

νj ej has depth
d, thesymbolsof ν areν1 occurrences of the integer 1,ν2 occurrences of
the integer 2,. . . , andνd occurrences of the integerd. The diagram ofµ
is written with 0’s in place, and the enlargement is formed by putting the
symbols ofν into place in such a way that the diagram of a dominant form
results. For example, letµ = 4e1+2e2+e3+e4 andν = 3e1+e2+e3+e4.
The symbols ofν are{1, 1, 1, 2, 3, 4}. One conceivable enlargement of the
diagram ofµ is

0 0 0 0 1 1
0 0 1 2
0 3 4
0

In fact, this particular enlargement will not be an allowable one in the
theorem below because it does not satisfy condition (c).

Theorem 9.74(Littlewood–Richardson). Letτµ andτν be irreducible
polynomial representations ofU (n), and letτλ be a polynomial representa-
tion ofU (n) with ‖λ‖ = ‖µ‖+‖ν‖ andµ ⊆ λ. Representµ by a diagram
of 0’s, and consider enlargements of that diagram, using the symbols ofν,
to diagrams ofλ. Then the numbercλ

µν of times thatτλ occurs inτµ ⊗ τν

equals the number of enlarged diagrams such that

(a) the integers along each row of the enlarged diagram are increasing
but not necessarily strictly increasing,

(b) the nonzero integers down each column are strictly increasing, and
(c) the nonzero integers in the enlarged diagram, when read from right

to left and row by row starting from the top row, are such that each
initial segment never has more of an integeri than an integerj with
1 ≤ j < i .

In the enlarged diagram before the statement of the theorem, the se-
quence of integers addressed by (c) is 112143. This does not satisfy (c)
because the initial segment 11214 has more 4’s than 3’s.

In the theorem ifcλ
µν = 0, thenν ⊆ λ is forced.

EXAMPLE. Tensor productτµ ⊗ τν in U (3), whereµ = ν = 2e1 + e2.

The diagram forµ is

[
0 0
0

]
, and the symbols ofν are{1, 1, 2}. The first
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symbol ofν that we encounter in (c) has to be a 1, and then no symbol
2 can be placed in the first row, by (a). An enlarged diagram can have at
most 3 rows, in order to correspond to a highest weight forU (3). We find
6 enlarged diagrams as follows:

0 0 1 1
0 2

0 0 1 1
0
2

0 0 1
0 1 2

0 0 1
0 2
1

0 0 1
0 1
2

0 0
0 1
1 2

The highest weights of the corresponding irreducible constituents of the
tensor product are the dominant forms corresponding to the above 6 dia-
grams: 4e1 + 2e2, 4e1 + e2 + e3, 3e1 + 3e2, 3e1 + 2e2 + e3, 3e1 + 2e2 + e3,
and 2e1 + 2e2 + 2e3. The respective multiplicities equal the number of
times that the forms appear in this list. Thus the constituent with highest
weight 3e1 + 2e2 + e3 appears with multiplicity 2, and the four others
appear with multiplicity 1. It would be easy to err by omitting one of
the diagrams in the above computation, but a check of dimensions will
detect an error of this kind if there are no other errors. The givenτµ has
dimension 8, and thus the tensor product has dimension 64. The dimension
of each constituent is 27, 10, 10, and 1 in the case of the representations of
multiplicity 1, and 8 in the case of the representation of multiplicity 2. We
have 27+ 10+ 10+ 1 + 2(8) = 64, and thus the dimensions check. One
final remark is in order. Our computation retained enlarged diagrams only
when they had at most 3 rows. ForU (n) with n ≥ 4, we would encounter
two additional diagrams, namely

0 0
0 1
1
2

and

0 0 1
0
1
2

These correspond to 2e1 + 2e2 + e3 + e4 and 3e1 + e2 + e3 + e4.

7. Littlewood’s Theorems and an Application

We continue our discussion of branching theorems in the context of
compact symmetric spacesU/K . The first two theorems are due to D. E.
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Littlewood and handle branching for the compact symmetric spaces
U (n)/SO(n) andU (2n)/Sp(n), but only under a hypothesis limiting the
depth of the given representation of the unitary group. We state these
theorems without proof, giving examples for each.

The statements of the theorems involve the Littlewood–Richardson coef-
ficientscλ

µν defined in (9.73). In computing these coefficients, we are given
λ, µ, and several possibilities forν; we seek theν’s and the coefficients.
These may be computed by changing the emphasis in the method of the
previous section. Here is an example: Letλ = 3e1+3e2 andµ = 2e1+e2.
The formula forµ tells us the diagram of 0’s in the earlier method of
computation, and the formula forλ tells us the total shape of the diagram.
Let us insert the symbol x for the unknown values in the diagram ofλ.
Then we are to start from

0 0 x
0 x x

Each possibility forν gives us a set of symbols. For example,ν = 2e1 + e2

gives us the set{1, 1, 2}, and we can complete the diagram in just one way
that is allowed by Theorem 9.74, namely to

0 0 1
0 1 2

Thuscλ
µν = 1 for thisν.

The hypothesis on the depth can be dropped at the expense of introducing
something called “Newell’s Modification Rules,” but we shall not pursue
this topic.

Theorem 9.75(Littlewood). Letτλ be an irreducible polynomial rep-
resentation ofU (n) with highest weightλ, and suppose thatλ has depth
≤ [n/2]. Let σν be an irreducible representation ofSO(n) with highest
weightν.

(a) If n is odd,

τλ

∣∣
SO(n)

∼=
∑

µ nonnegative,
µ⊆λ,

µ has even parts

∑
ν nonnegative,

ν⊆λ,
‖µ‖+‖ν‖=‖λ‖

cλ
µνσν.

(b) If n is even ands denotes the Weyl-group element that changes the
last sign, then

τλ

∣∣
SO(n)

∼=
∑

µ nonnegative,
µ⊆λ,

µ has even parts

( ∑
ν nonnegative,

sν=ν
ν⊆λ,

‖µ‖+‖ν‖=‖λ‖

cλ
µνσν +

∑
ν nonnegative,

sν =ν
ν⊆λ,

‖µ‖+‖ν‖=‖λ‖

cλ
µν(σν + σsν)

)
.
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EXAMPLES.
1) With n = 4, let λ = 5e1 + 2e2. We seek the restriction ofτλ from

U (4) to SO(4). We form a list of the nonnegativeµ’s with even parts such
thatµ ⊆ λ, namely

0, 2e1, 4e1, 2e1 + 2e2, 4e1 + 2e2.

Each of these tells us a value for‖ν‖, and we list theν’s that must be
examined for eachµ:

µ = 0, ‖ν‖ = 7, ν = 5e1 + 2e2

µ = 2e1, ‖ν‖ = 5, ν = 5e1 or 4e1 + e2 or 3e1 + 2e2

µ = 4e1, ‖ν‖ = 3, ν = 3e1 or 2e1 + e2

µ = 2e1 + 2e2, ‖ν‖ = 3, ν = 3e1 or 2e1 + e2

µ = 4e1 + 2e2, ‖ν‖ = 1, ν = e1.

Then we do the computation with the 0’s and x’s, seeing how many ways
Theorem 9.74 allows for placing the symbols ofν. For a sample let us do
µ = 4e1 and thenµ = 2e1 + 2e2. First considerµ = 4e1. Theν’s to
examine are 3e1 and 2e1 + e2, and the diagram to complete is

0 0 0 0 x
x x

The respective sets of symbols are{1, 1, 1} and{1, 1, 2}. With the first set
we can complete the diagram with each x= 1, and with the second set we
can put the 2 in the second position on the second line. Thusµ = 4e1 gives
us a contribution of one occurrence of eachσν . Next considerµ = 2e1+2e2.
We are interested in the sameν’s, and the diagram to complete is

0 0 x x x
0 0

We can complete the diagram with the symbols{1, 1, 1} but not with
{1, 1, 2}. Thus this time we get a contribution fromν = 3e1 but not
from 2e1 + 2e2. A similar computation shows for each of the other three
µ’s that the diagram can be completed in one allowable way for eachν.
We now add the contributions from eachν. The theorem tells us also to
includesν when the coefficient ofe2 in ν is not 0. Abbreviatingae1 + be2

as(a, b), we find that the restriction ofτλ from U (4) to SO(4) is

σ5,0 + 2σ3,0 +σ1,0 +σ5,2 +σ5,−2 +σ4,1 +σ4,−1 +σ3,2 +σ3,−2 +σ2,1 +σ2,−1.

For a check we can compute the dimension in two ways, verifying that it
comes to 224 both times.
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2) With n = 3, letλ = ae1 for somea ≥ 0. We seek to restrictτλ from
U (3) to SO(3). The values ofµ to consider are 0, 2e1, 4e1, . . . , 2[a/2]e1.
For eachµ, we are to consider just oneν, namelyλ − µ. The symbols for
ν are{1, . . . , 1}, and the relevant diagram of 0’s and x’s can be completed
in exactly one allowable way. Thus the restriction ofτλ to SO(3) is

σae1 + σ(a−2)e1 + · · · + (σe1 or σ0).

This decomposition has the following interpretation: One realization of
τλ for U (3) is in the space of homogeneous polynomials of degreea
in variablesz̄1, z̄2, z̄3. The restriction toSO(3) breaks into irreducible
representations in a manner described by Problems 9–14 of Chapter IV
and Problem 2 of Chapter V.

Theorem 9.76(Littlewood). Letτλ be an irreducible polynomial rep-
resentation ofU (2n) with highest weightλ, and suppose thatλ has depth
≤ n. Let σν be an irreducible representation ofSp(n) with highest weight
ν. Then

τλ

∣∣
Sp(n)

∼=
∑

µ nonnegative,
µ⊆λ,

µ has an even number of
parts of each magnitude

∑
ν nonnegative,

ν⊆λ,
‖µ‖+‖ν‖=‖λ‖

cλ
µνσν.

EXAMPLE. Forλ = 5e1 + 2e2, we seek the restriction ofτλ from U (4)

to Sp(2). The list ofµ’s in question is

0, e1 + e2, 2e1 + 2e2;

the list includese1 + e2, for instance, becausee1 + e2 has 2 parts of
magnitude 1 and 0 parts of all other magnitudes. Forµ = 0, we are led to
ν = 5e1 + 2e2 and one way of completing the diagram. Forµ = e1 + e2,
we have‖ν‖ = 5, and theν’s to consider are 5e1, 4e1 + e2, and 3e1 + 2e2.
These have the respective sets of symbols{1, 1, 1, 1, 1}, {1, 1, 1, 1, 2}, and
{1, 1, 1, 2, 2}, and the diagram to complete is

0 x x x x
0 x

The diagram can be completed in one allowable way in the second case
and in no allowable way in the other two cases. Thus we get a contribution
to the restriction from 4e1 + e2. Forµ = 2e1 + 2e2, we have‖ν‖ = 3, and
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theν’s to consider are 3e1 and 2e1 + e2. These have the respective sets of
symbols{1, 1, 1} and{1, 1, 2}, and the diagram to complete is

0 0 x x x
0 0

The diagram can be completed in one allowable way in the first case and
in no allowable way in the second case. Thus we get a contribution to the
restriction from 3e1. The conclusion is that the restriction ofτλ to Sp(2) is

σ5e1+2e2 + σ4e1+e2 + σ3e1.

The dimensions of these constituents are 140, 64, and 20, and they add to
224, as they must.

Now let us pull together some of the threads of this chapter. We have
concentrated on branching theorems for compact symmetric spaces because
so many compact homogeneous spaces can be built from symmetric spaces.
The example suggested at the end of §4 isL2(K/(K ∩ M0)) wheneverG
is semisimple,K is the fixed group of a Cartan involution, andM AN
is the Langlands decomposition of a maximal parabolic subgroup. For
example, considerG = SO(p, q)0 with p ≥ q, K beingSO(p)× SO(q).
One parabolic subgroup hasK ∩ M0 = SO(p − q) × diagSO(q). If we
introduceK1 = SO(p−q)×SO(q)×SO(q), thenK/K1 andK1/(K ∩M0)

are compact symmetric spaces. To analyzeL2(K/(K ∩ M0)), we can use
induction in stages, starting from the trivial representation ofK ∩ M0.
We pass toK1, and the result is the sum of 1̂⊗σ ⊗̂σ c over all irreducible
representationsσ of SO(q). The passage fromK1 to K requires under-
standing those representations ofSO(p) that contain 1̂⊗σ when restricted
to SO(p − q) × SO(q). These are addressed in the following theorem,
which reduces matters to the situation studied in Theorem 9.75 ifp ≥ 2q.
Certain maximal parabolic subgroups in other semisimple groups lead to a
similar analysis with groupsU (n) andSp(n), and the theorem below has
analogs for these groups reducing matters to the situation in Theorem 9.74
or 9.76.

Theorem 9.77. Let 1 ≤ n ≤ m, and regardSO(n) and SO(m) as
embedded as block diagonal subgroups ofSO(n + m) in the standard way
with SO(n) in the upper left diagonal block and withSO(m) in the lower
right diagonal block.
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(a) If a1e1+· · ·+a[ 1
2 (n+m)]e[ 1

2 (n+m)] is the highest weight of an irreducible
representation(σ, V ) of SO(n + m), then a necessary and sufficient con-
dition for the subspaceV SO(m) of vectors fixed bySO(m) to be nonzero is
thatan+1 = · · · = a[ 1

2 (n+m)] = 0.
(b) Let λ = a1e1 + · · · + anen be the highest weight of an irreducible

representation(σλ, V ) of SO(n + m) with a nonzero subspaceV SO(m) of
vectors fixed bySO(m), and let(τλ′, V ′) be an irreducible representation
of U (n) with highest weightλ′ = a1e1 + · · ·+ an−1en−1 + |an|en. Then the
representation(σλ

∣∣
SO(n)

, V SO(m)) is equivalent with the restriction toSO(n)

of the representation(τλ′, V ′) of U (n).

EXAMPLE. Consider branching fromSO(10) to SO(4) × SO(6). If σ

is an irreducible representation ofSO(10) with highest weight written as
a1e1 + · · · + a5e5, then (a) says that the restriction ofσ to SO(4) × SO(6)

contains someσ ′⊗̂1 if and only ifa5 = 0. In this case, (b) says that the rep-
resentationsσ ′, with their multiplicities, are determined by restricting from
U (4) to SO(4) the irreducible representation ofU (4) with highest weight
a1e1 + · · · + a4e4. Theorem 9.75 identifies this restriction ifa3 = a4 = 0.
For example, ifλ = 5e1 + 2e2 is the given highest weight forSO(10),
then Example 1 following that theorem identifies the representationsσ ′ of
SO(4), together with their multiplicities, that occur in the restriction ofτλ

from U (4) to SO(4). Then the representationsσ ′⊗̂1 of SO(4) × SO(6),
with the same multiplicities, are the ones in the restriction ofσ from SO(10)
to SO(4) × SO(6) for which the representation on theSO(6) factor is
trivial.

SKETCH OF PROOF OF THEOREM. Conclusion (a) is an easy exercise
starting from Theorem 9.16. Let us consider (b) under the assumptionan ≥
0. WriteK1 = SO(n), K2 = SO(m), andK = K1×K2. We introduce the
noncompact Riemannian dual ofSO(n + m)/K , which is isomorphic to
SO(n, m)0/K . The isomorphismπ1(SO(n+m), 1) ∼= π1(SO(n+m)C, 1)

and the unitary trick allow us to extendσλ holomorphically toSO(n +m)C

and then to restrict to a representation, which we still callσλ, of SO(n, m)0.
Form the usual maximally noncompact Cartan subalgebra of the Lie algebra
so(n, m) of SO(n, m)0 and the usual positive system of roots relative to it
that takes the noncompact parta before the compact part. The restricted-
root system is of type(BC)n or Bn or Dn, depending on the size ofm − n.

In all cases the restricted roots of the formei − ej form a subsystem of
type An−1 in which each restricted root has multiplicity 1. The associated
Lie subalgebra ofso(n, m), with all ofa included, is isomorphic togl(n, R).
Let L ∼= GL(n, R)0 be the corresponding analytic subgroup ofSO(n, m)0.
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Let KL = K ∩ L be the standard copy ofSO(n) insideL. The subgroup
KL is embedded block diagonally asKL = {diag(k, 1, π(k) | k ∈ K1},
whereπ is some mapping. Projection ofKL to the first factor gives an
isomorphismι : KL → K1.

Letv0 be a nonzero highest weight vector ofσλ in the new ordering. The
cyclic span ofv0 underL is denotedV ′, and the restriction ofσλ

∣∣
L

to the
subspaceV ′ is denotedτλ. The representation(τλ, V ′) of L is irreducible.
Let E be the projection ofV ontoV K2 given byE(v) = ∫

K2
σλ(k)v dk. If

we take the isomorphismι : KL → K1 into account, then the linear map
E is equivariant with respect toK1. An argument that uses the formula
K = K2KL and the Iwasawa decomposition inGd shows thatE carries
the subspaceV ′ onto V K2.

The group L and the representation(τλ, V ′) are transferred from
SO(n, m)0 back toSO(n + m), and the result is a strangely embedded
subgroupG ′ of SO(n+m) isomorphic toU (n), together with an irreducible
representation ofG ′ that we still write as(τλ, V ′). The groupKL , being
contained inK , does not move in the passage fromSO(n, m)0 back to
SO(n + m) and may be regarded as a subgroup ofG ′, embedded in the
standard way thatSO(n) is embedded inU (n).

Unwinding the highest weights in question and taking care of any
possible ambiguities in the above construction that might lead to outer
automorphisms ofG ′ ∼= U (n), we find that the highest weights match
those in the statement of the theorem.

To complete the proof, it suffices to show that the mapE of V ′ onto
V K2 is one-one. This is done by proving that dimV ′ = dim V K2. We
limit ourselves to proving this equality for one example that will illustrate
how the proof goes in general. We taken = 2 andm = 4, and we
write highest weights as tuples. Say the given highest weight ofSO(6) is
(2, 1, 0). We don = 2 steps of branching via Theorem 9.16 to determine
the irreducible constituents underSO(m) = SO(4), and we are interested
only in the constituents whereSO(4) acts trivially. Branching fromSO(6)

to SO(5) leads from(2, 1, 0) for SO(6) to (2, 1)+ (2, 0)+ (1, 1)+ (1, 0)

for SO(5). The pieces(2, 1) and(1, 1), not ending in 0, do not contain the
trivial representation ofSO(4), according to conclusion (a) above. For the
other two, branching fromSO(5) to SO(4) gives

(2, 0) �→ (2, 0) + (1, 0) + (0, 0)

(1, 0) �→ (1, 0) + (0, 0).

Thus we obtain one constituent each time as much as possible of the highest
weight becomes 0 at each step, namely twice. So dimV K2 = 2. To compute
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dim V ′, we start with(2, 1, 0) truncated so as to be a highest weight for
U (n) = U (2). That is, we start with(2, 1). We do branching via Theorem
9.14 a step at a time toU (1) and then one more time to arrive at empty
tuples. Specifically we pass from(2, 1) to (2) + (1) and then to( ) + ( ).
TheU (1) representations are all 1-dimensional, and hence the number of
empty tuples equals the dimension of the representation with highest weight
(2, 1). That is, it equals dimV ′. The point is that there is a correspondence
between the steps withSO leading to(0, 0) and the steps withU leading
to ( ). It is given by padding out the tuples forU with a suitable number of
0’s. Thus dimV ′ = dim V K2.

8. Problems

1. ForU (n), let λ = ∑
aj ej be a dominant integral form, defineδ′ = ne1 +

(n − 1)e2 + · · · + 1en, and lett = diag(eiθ1, . . . , eiθn ). Write ξν for the
multiplicative character corresponding to an integral linear formν.
(a) Show from the Weyl character formula that the characterχλ of an irre-

ducible representation with highest weightλ is given by

χλ(t) = ξ−δ′(t)
∑
w∈W

ε(w)ξw(λ+δ′)(t)
/ ∏

k<l

(
1 − e−iθk+iθl

)
.

at every pointt whereξα(t) = 1 for no rootα.
(b) Show that the formula in (a) can be rewritten as

χλ(t) = ξ−δ′(t) det
{
ei(ak+n+1−k)θl

}/ ∏
k<l

(
1 − e−iθk+iθl

)
.

(c) Derive Theorem 9.14 by carrying out the following manipulations with
the determinant in (b): Putθn = 0. Replace the first row by the difference
of the first and second rows, the second row by the difference of the second
and third rows, and so on until the last column is 1 in thenth entry and 0
elsewhere. Reduce the size of the determinant ton −1. Divide the factor(
1 − e−iθl

)
of the product in the denominator into thel th column of the

determinant, 1≤ l ≤ n − 1. Recognize the first row of the determinant
as the sum ofa1 − a2 + 1 natural row vectors of exponentials and expand
the determinant by linearity. Repeat for the second row of each resulting
determinant, using a sum ofa2 − a3 + 1 row vectors. Continue through
the(n − 1)st row, and match the answer with the sum of the characters of
U (n − 1) indicated by Theorem 9.14.

2. In Theorem 9.18, the branching theorem for passing fromSp(n) to Sp(n −1),
prove that the number of integern-tuples(b1, . . . , bn) satisfying (9.19) is equal
to

∏n
i=1(Ai + 1), whereAi is as in the statement of Theorem 9.50 andAi is

assumed to be≥ 0 for all i .
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3. In §4 identify the set	 that arises in Kostant’s Branching Theorem when
passing fromU (2n) to SO(2n).

4. Suppose that a permutationw satisfies the condition of Lemma 9.54 that
every equalitywei = ej implies j ≥ i − 1. Prove thatw is a product
of certain transpositions of consecutive integers, with the pairs decreasing
from left to right. For example, withn = 3, show thatw is of the form(
(1) or (2 3)

) × (
(1) or (1 2)

)
.

5. Theorem 9.75 shows how certain irreducible representations ofU (n) reduce
when restricted toSO(n). Starting from the irreducibility of the action ofU (n)

on each
∧lCn, use Theorem 9.75 to derive the conclusions of Problems 8–10

of Chapter V concerning irreducibility and reducibility of the alternating-
tensor representations ofSO(n).

6. View Sp(n) embedded inU (2n) in the standard way so that its Lie algebra is
sp(n, C) ∩ u(2n). Root vectors are given in Example 3 of §II.1.
(a) Theorem 9.76 shows that the irreducible alternating-tensor representation

of U (6) on
∧3C6 decomposes underSp(3) into exactly two irreducible

pieces, with highest weightse1 + e2 + e3 ande1. Show thate1 ∧ e2 ∧ e3

ande1 ∧ (e2 ∧ e5 + e3 ∧ e6) are respective highest weight vectors.
(b) Fork ≤ n, use Theorem 9.76 to find the highest weights of the irreducible

constituents of
∧kC2n under the action ofSp(n). Find a nonzero highest

weight vector for each constituent.

Problems 7–10 deal with the construction of many elements in the space of an
induced representation. LetH be a closed subgroup of a compact groupG, and
let σ be a unitary representation ofH on a separable Hilbert spaceV .

7. For each continuousf : G → C andv in V , defineI f,v : G → V by

(I f,v(x), v′)V =
∫

H
f (xh)(σ (h)v, v′)V dh for v′ ∈ V .

Prove thatI f,v is continuous and is a member of the space for indG
H σ .

8. Prove that the linear span of all the functionsI f,v in Problem 7 is dense in the
space for indGH σ by showing that the 0 function is the only member of the
space for indGH σ that is orthogonal to all theI f,v.

9. Assuming that the given Hilbert spaceV is not 0, prove that the Hilbert space
for indG

H σ is not 0.

10. Prove that ifσ is irreducible, thenσ lies in the restriction fromG to H of
some irreducible representation ofG.

Problems 11–14 address in two ways the analysis ofL2 of the sphereS4n−1 under
the action ofSp(n). In the first way,Sp(n) acts transitively on the unit sphere
in the spaceHn of n-dimensional column vectors of quaternions, with isotropy
subgroupSp(n −1) at(0, . . . , 0, 1). In the second way, the unit sphere is realized
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asK/M for Sp(n, 1). The connection between the two ways results from an action
of the groupSp(1) on column vectors byright multiplication entry-by-entry by
the group of unit quaternions.

11. Using Frobenius reciprocity and Theorem 9.18, prove thatL2(S4n−1) decom-
poses underSp(n) as a Hilbert-space sum

∑
a≥0,b≥0(b+1)τ(a+b)e1+ae2, where

τλ is an irreducible representation ofSp(n) with highest weightλ.

12. Introduce notation forSp(n, 1) as in the next-to-last paragraph of §4, so that
K ⊃ K1 ⊃ M . The proof of Theorem 7.66 shows thatK/M is the sphere
S4n−1. Using Frobenius reciprocity, induction in stages, and Theorem 9.50,
prove thatL2(S4n−1) decomposes underK = Sp(n) × Sp(1) as a Hilbert-
space sum

∑
a≥0,b≥0 τ(a+b)e1+ae2⊗̂σben+1, whereτλ is an irreducible represen-

tation ofSp(n) with highest weightλ andσµ is an irreducible representation
of Sp(1) with highest weightµ.

13. The subspace ofL2(S4n−1) in Problem 12 of functions invariant under the
unit-quaternion subgroupSp(1) of K may be regarded as theL2 functions
on quaternionic projective space. What is the decomposition of this subspace
under the action ofSp(n)?

14. Similarly regardS2n−1 both asU (n)/U (n − 1) and asK/M for a group
we could callU (n, 1). What are the decompositions ofL2(S2n−1) that are
analogous to those in Problems 11 and 12? In analogy with Problem 13, what
is the decomposition ofL2 of complex projective space under the action of
U (n)?

Problems 15–18 deal with decomposing tensor products into irreducible represen-
tations. LetG be a compact connected Lie group, fix a maximal abelian subspace
of its Lie algebra, and letW be the Weyl group. Ifλ is a dominant integral form
relative to some system of positive roots, letτλ be an irreducible representation of
G with highest weightλ and letχλ be the character of this representation. Denote
the multiplicative character corresponding to a linear formν by ξν .

15. Prove that if all weights ofτλ have multiplicity one, then each irreducible
constituent ofτλ ⊗ τλ′ has multiplicity one.

16. If λ is an integral form and if there existsw0 = 1 in W fixing λ, prove that∑
w∈W ε(w)ξwλ = 0.

17. (Steinberg’s Formula) Let mλ(µ) be the multiplicity of the weightµ in τλ,
and define sgnµ by

sgnµ =


0 if somew = 1 in W fixesµ

ε(w) otherwise, wherew is chosen inW to make
wµ dominant.
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Write the character ofτλ asχλ = ∑
mλ(λ

′′)ξλ′′ , write χλ′ as in the Weyl
Character Formula, and multiply. Withµ∨ denoting the result of applying an
element ofW to µ to obtain something dominant, obtain the formula

χλχλ′ =
∑

λ′′=weight ofτλ

mλ(λ
′′)sgn(λ′′ + λ′ + δ)χ(λ′′+λ′+δ)∨−δ.

18. Let−µ be the lowest weight ofτλ. Deduce from Problem 17 that ifλ′ − µ is
dominant, thenτλ′−µ occurs inτλ ⊗ τλ′ with multiplicity one.

Problems 19–21 use Problem 17 to identify a particular constituent of a tensor
product of irreducible representations, beyond the one in Problem 18. Letλ and
λ′ be dominant integral. Letw be in W , and suppose thatλ′ + wλ is dominant.
The goal is to prove thatτλ′+wλ occurs inτλ ⊗ τλ′ with multiplicity one.

19. Prove thatλ′′ = wλ contributesχλ′+wλ to the right side of the formula in
Problem 17.

20. To see that there is no other contribution ofχλ′+wλ, suppose thatλ′′ contributes.
Then(λ′ + δ +λ′′)∨ − δ = λ′ +wλ. Solve forλ′′, compute its length squared,
and use the assumed dominance to obtain|λ′′|2 ≥ |wλ|2. Show how to
conclude thatλ′′ = wλ.

21. Complete the proof thatτλ′+wλ occurs inτλ ⊗ τλ′ with multiplicity one.

Problems 22–24 deal with the reduction of tensor products into irreducible rep-
resentations, comparing Steinberg’s Formula in Problem 17 with the appropriate
special case of Kostant’s Branching Theorem (Theorem 9.20). LetG be a compact
connected Lie group, fix a maximal abelian subspace of its Lie algebra, letWG be
the Weyl group ofG, fix a positive system�+

G for the roots, letδ be half the sum
of the positive roots, and letτν be an irreducible representation ofG with highest
weightν. LetPwt be the Kostant partition function defined relative to	 = �+

G .

22. Combining Steinberg’s Formula with the formula in Corollary 5.83 for the
multiplicity of a weight, show that the multiplicity ofτµ in τλ ⊗ τλ′ is∑

w∈WG

∑
w′∈WG

ε(w)ε(w′)Pwt(w(λ + δ) − w′(µ + δ) + λ′).

23. Using Kostant’s Branching Theorem for restriction fromG × G to G, show
that the multiplicity ofτµ in τλ ⊗ τλ′ is∑

w∈WG

∑
w′∈WG

ε(w)ε(w′)Pwt(w(λ + δ) + w′(λ′ + δ) − 2δ − µ).

24. Reconcile the formulas obtained in the previous two problems by using the
fact that multiplicities of weights are invariant under the Weyl group.

Problems 25–30 give a combinatorial description, involving no cancellation, for
the multiplicity of a weight in an irreducible representation ofU (n). For this set
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of problems, the diagram of a nonnegative dominant integral form will consist
of boxes, and each such box will get an integer from 1 ton put into it. The
result is aYoung tableau if (a) the integers in each row are increasing but not
necessarily strictly increasing and (b) the integers in each column are strictly
increasing. Ifmj denotes the number of integersj in a Young tableau, the tuple
(m1, . . . , mn) will be called thepattern of the tableau. Letµ = ∑n

j=1 aj ej and

µ′ = ∑n−1
j=1 cj ej be dominant integral forms. We sayµ′ interleavesµ if (9.15)

holds. For 0≤ r ≤ n − 1, abranching systemfor U (n) of level r coming from
a dominant integralλ is a set{λ(k) | 0 ≤ k ≤ r} such thatλ(0) = λ, λ(k) is a
dominant integral form forU (n − k), andλ(k) interleavesλ(k−1) for all k ≥ 1; the
endof the system isλ(r).

25. Letτλ andτλ(r) be irreducible representations ofU (n) andU (n − r), respec-
tively, with highest weightsλ andλ(r). For 0 ≤ r ≤ n − 1, prove that the
number of branching systems forU (n) of level r coming fromλ and having
endλ(r) equals the multiplicity ofτλ(r) in τλ|U (n−r). Conclude that the number
of branching systems of leveln − 1 coming fromλ equals the degree ofτλ.

26. Let(τλ, V ) be an irreducible representation ofU (n) whose highest weightλ
is nonnegative, and let{λ(k)} be a branching system of levelr coming from
λ and ending withλ(r). For 0≤ r ≤ n − 1, prove that there exists a unique
decreasing chain of subspacesVj of V , 0 ≤ j ≤ r , such thatVj is invariant
and irreducible under the rankn subgroupU (n − j) × U (1) × · · · × U (1)

with highest weightλ( j) + ∑n
l=n− j+1

(‖λ(n−l)‖ − ‖λ(n−l+1)‖)el .

27. In Problem 26, prove for 0≤ r ≤ n − 1 that distinct branching systems{λ(k)}
of levelr coming fromλ and ending withλ(r) yield orthogonal subspacesVr .

28. Takingr = n −1 in Problem 27, show that the result is a spanning orthogonal
system of 1-dimensional invariant subspaces under the diagonal subgroup.

29. Letλ be nonnegative dominant integral, let{λ(k)} be a branching system of
level n − 1 for it, and defineλ(n) = ∅. Associate to the system a placement
of integers in the diagram ofλ as follows: put the integerl in a box if that
box is part of the diagram ofλ(n−l) but not part of the diagram ofλ(n−l+1),
1 ≤ l ≤ n. Prove that the result is a Young tableau and that the pattern of the
tableau is(‖λ(n−1)‖ − ‖λ(n)‖, ‖λ(n−2)‖ − ‖λ(n−1)‖, . . . , ‖λ(0)‖ − ‖λ(1)‖).

30. Letλ be nonnegative integral dominant forU (n), and letτλ be an irreducible
representation with highest weightλ. Prove that ifµ = ∑n

j=1 mj ej is an
integral form, then the multiplicity of the weightµ in τλ equals the number
of Young tableaux for the diagram ofλ whose pattern is(m1, . . . , mn).





CHAPTER X

Prehomogeneous Vector Spaces

Abstract. If G is a connected complex Lie group that is the complexification of
a compact Lie groupU , a “prehomogeneous vector space” forG is a complex finite-
dimensional vectorV together with a holomorphic representation ofG on V such thatG
has an open orbit inV . The open orbit is necessarily unique. Easy examples include the
standard representation ofGL(n, C) on Cn , the standard representation ofSp(n, C) on
C2n , the action ofK C onp+ whenG/K is Hermitian, and certain actions obtained from the
standard Vogan diagrams of some of the indefinite orthogonal groups.

The question that is to be studied is the decomposition of the symmetric algebraS(V )

underU . For any prehomogeneous vector space, the symmetric algebraS(V ) embeds in a
naturalU equivariant fashion intoL2(U/Uv), whereUv is the subgroup ofU fixing a point
v in V whoseG orbit is open. This fact gives a first limitation on what representations can
occur inS(V ).

A “nilpotent element”e in a finite-dimensional Lie algebrag is an element for which
ade is nilpotent. Ifg is complex semisimple, the Jacobson–Morozov Theorem says that
such ane, if nonzero, can be embedded in an “sl2 triple” (h, e, f ), spanning a copy of
sl(2, C).

When a complex semisimple Lie algebra is graded as
⊕

gk , adg0 provides a represen-
tation of g0 on g1, and Vinberg’s Theorem says that the result yields a prehomogeneous
vector space. All such gradings arise from parabolic subalgebras ofg. The examples above
of the action ofK C onp

+ and of certain actions obtained from indefinite orthogonal groups
are prehomogeneous vector spaces of this kind.

For the first of these two examples, the action ofK on S(p+) is described by a theorem
of Schmid. In the special case ofSU (m, n), this theorem reduces to a classical theorem
about the action of the product of two unitary groups on the space of polynomials on a
matrix space. For the second of these two examples, the action on the symmetric algebra
can be analyzed by using this classical theorem in combination with Littlewood’s Theorem
about restricting respresentations from unitary groups to orthogonal groups.

In the general case of Vinberg’s Theorem, ifv is suitably chosen in the prehomogeneous
vector spaceV , thenU/(Uv)0 fibers by a succession of three compact symmetric spaces, and
henceL2(U/(Uv)0) can be analyzed by iterating various branching theorems for compact
symmetric spaces. This fact gives a second limitation on what representations can occur in
S(V ).

615
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1. Definitions and Examples

A consequence of Chapter IX is that we are able to use branching
theorems to give a representation-theoretic analysis of theL2 functions
on certain compact quotient spaces that arise in the structure theory of non-
compact groups. The goal of the present chapter is to develop methods for
giving a representation-theoretic analysis of some spaces of holomorphic
functions. The discussion will be necessarily incomplete as the topics in
the chapter remain an active area of ongoing research.

The context will be as follows. LetG be a connected complex Lie group;
usually we shall assume thatG is the complexification of a compact Lie
groupU . A prehomogeneous vector spacefor G is a complex finite-
dimensional vector spaceV together with a holomorphic representation of
G on V such thatG has an open orbit inV . The representation ofG on V
yields a holomorphic representation ofG on each summandSn(V ) of the
symmetric algebraS(V ), and, whenG is the complexification ofU , the
same thing is true of the restriction of the representation fromG to U . We
can lump the representations on theSn(V ) together and think in terms of
a single infinite-dimensional representation ofG or U on S(V ) itself. We
do so even thoughS(V ) is not a Hilbert space; we shall completeS(V )

to a Hilbert space shortly. The question is what can be said about this
infinite-dimensional representation.

Let g be the (complex) Lie algebra ofG, and letϕ be the differential
of the representation ofG on V . By the Inverse Function Theorem, the
condition that the orbit ofG throughv be open inV can be expressed
equivalently as

(i) every member ofV is of the formϕ(X)v with X in g, or
(ii) the subalgebragv of g annihilatingv has dimC V + dimC gv =

dimC g.

EXAMPLES.

1) The standard representation ofG = GL(N , C) on V = CN . The
nonzero vectors form an open orbit. The groupU may be taken to be
U (N ), and the representation ofU on Sn(CN ) is irreducible with highest
weightne1.

2) The standard representation ofG = Sp(N , C) on V = C2N . The

members of the Lie algebrag are of the form
(

A B

C −At

)
with B and C

symmetric. A count of the dimension of the subspace of members ofg

whose first column is 0 shows that (ii) holds forv equal to the first standard
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basis vector, and hence the orbit of thatv is open. The groupU may be
taken to beSp(N ), and the representation ofU on Sn(C2N ) is irreducible
with highest weightne1, as a consequence of Example 1 and Theorem 9.76.

3) The action ofK C on p+ by Ad whenG/K is Hermitian. LetG be
a linear semisimple group, letK be a maximal compact subgroup, and let
G/K be Hermitian in the sense of §VII.9. In the notation of that section, the
complexificationK C of K acts holomorphically on the sump+ of the root
spaces for the noncompact roots that are positive in a good ordering. Let
{γ1, . . . , γs} be a maximal set of strongly orthogonal positive noncompact
roots, and letEγ1, . . . , Eγs be corresponding nonzero root vectors. Let us
use (i) above to see that theK C orbit of e = ∑

k Eγk is open. By way
of preliminaries, we show that ifβ is a compact root, thenβ + γi and
β + γj cannot be roots for two different indicesi and j . If, on the contrary,
both are roots, then the sum ofβ + γi andβ + γj cannot be a root since
[p+, p+] = 0 and the difference cannot be a root sinceγi andγj are strongly
orthogonal. Thus 0= 〈β + γi , β + γj〉 = |β|2 + 〈β, γi〉 + 〈β, γj〉. One
of the inner products on the right side must be negative; say〈β, γi〉 < 0.
Then〈β + γj , γi〉 = 〈β, γi〉 < 0, andβ + γi + γj is a root, in contradiction
to [p+, p+] = 0. We conclude thatβ + γi andβ + γj cannot both be
roots. Now letα be any positive noncompact root. We show that a nonzero
multiple of the root vectorEα lies in ad(k)e, k being the Lie algebra ofK C.
If α = γi , then [Hγi , e] is a nonzero multiple ofEγi . Thus assume thatα
is not someγi . Since [p+, p+] = 0, noα + γk is a root. By maximality
of {γ1, . . . , γs}, someβ = α − γi is a root, necessarily compact. Our
preliminary computation shows that [Eβ, e] is a nonzero multiple ofEα,
and we conclude from (i) that theK C orbit of e is open. The analysis of
S(p+) will be discussed in §4.

4) Action of a certain groupLC on a spaceu ∩ p relative to either of
the groupsG given by SO(2m, 2n)0 or SO(2m, 2n + 1)0 whenm ≤ n.
Form the standard Vogan diagram associated with the Lie algebrag0 of G
as in Figure 6.1 or Appendix C, relative to a compact Cartan subalgebra
h0. There is one simple noncompact root, namelyα = em − em+1. Write
the complexification ofg0 asg = ⊕2

k=−2 gk , wheregk is the sum of the
root spaces for roots whose coefficient ofα is k in an expansion in terms
of simple roots; include the Cartan subalgebrah within g0. This direct
sum decomposition exhibitsg asgraded in the sense that [g j , gk ] ⊆ g j+k .
If l = g0 andu = ∑

k>0 gk , then in particular [l, gk ] ⊆ gk for all k and
l ⊕ u is a maximal parabolic subalgebra ofg. For the complexification
g = k ⊕ p of the usual Cartan decomposition ofg0, we havep = g1 ⊕ g−1,
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and thusu ∩ p = g1 is stable under adl. Now let us pass to a group action.
The centralizer ing of the elementH = He1+···+em is just l, andi H is in
k0. By Corollary 4.51 the centralizer inK of i H is a compact connected
subgroupL of K , and the complexificationLC of L has Lie algebral. The
adjoint representation ofLC on u ∩ p is the holomorphic representation
of interest to us. We show thatLC acts onu ∩ p with an open orbit. For
each noncompact positive rootβ, choose a root vectorEβ normalized as
in §VI.7 so that [Eβ, Eβ ] = H ′

β ; here the bar denotes the conjugation ofg

with respect tog0. Let e be the sum of theEβ ’s for β equal toe1 ± em+1,
e2 ± em+2, . . . , em ± e2m, let f be the sum of the corresponding elements
Eβ , and leth = [e, f ]. We prove that theLC orbit of e is open by showing
that [l, e] contains a basis ofu ∩ p = g1. The strong orthogonality of the
rootsβ we have used makes it so that{h, e, f } spans a copys of sl(2, C)

and so thath is a multiple of the elementH above. By Theorem 1.67,g
is the direct sum of subspaces on whichs acts irreducibly. Sincel is the
centralizer ofh, l is spanned by the weight vectors underh of weight 0 from
the various irreducible subspaces. Theorem 1.66 then shows that [l, e] is
the sum of the weight vectors of weight 2, and this includes all the root
vectors for the noncompact positive roots. Hence theLC orbit of e is open.
A partial analysis ofS(u ∩ p) will be discussed in §4.

Proposition 10.1. If V is a prehomogeneous vector space forG, then
there is just one open orbit, and that orbit is dense.

PROOF. Fix bases overC for the vector spacesV andg, and let� and
ϕ be the representations ofG and g on V . For eachv in V , consider
X �→ ϕ(X)v as a linear transformation fromg into V , and letAv be the
(dim V ) × (dimg) matrix of this map relative to these bases. The entries
of Av are linear functions ofv ∈ V , with values inC. For somev = v0,
we know thatϕ(g)v0 = V sinceV is assumed prehomogeneous. Thus the
rank of Av0 is dimV , and some(dim V ) × (dim V ) minor of Av0 has to be
nonzero. IfF denotes the vector-valued function onV whose value atv is
the tuple of all(dim V ) × (dim V ) minors ofAv, thenF is a vector-valued
polynomial function onV whose value atv0 is not zero. By Lemma 2.14
the set ofv for which F(v) �= 0 is connected, and it is certainly open and
dense. Hence the subset� of v ∈ V for whichϕ(g)v = V is open, dense,
and connected.

If g is in G andϕ(g)v = V , thenϕ(g)�(g)v = �(g)ϕ(Ad(g)−1g)v =
�(g)ϕ(g)v = �(g)V = V , and it follows that� is carried to itself
by �(G). Thus� is the union of disjoint orbits under�(G). For any
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v ∈ �, we haveϕ(g)v = V , and hence the orbit�(G)(v) is open inV .
Consequently� is exhibited as the disjoint union of open orbits, and the
connectivity of� implies that there is just one orbit in�.

Proposition 10.2.LetG be the complexification of a compact connected
groupU , let V be a prehomogeneous vector space forG, and suppose that
theG orbit of v0 is open. IfUv0 denotes the subgroup ofU fixing v0, then
S(V ) embeds in a natural one-oneU equivariant fashion intoL2(U/Uv0).
In particular the multiplicity of any irreducible representation ofU in S(V )

is bounded by the degree of the representation.

REMARK. For example, in the action ofGL(1, C) onC1, the groupU is
U (1). Fix a nonzero memberZ of C1. The action byU (1) is(eiθ )Z = eiθ Z ,
and the subgroupUZ is trivial. The symmetric algebraS(C1) consists of
all polynomial expressionsp(Z), and the action is(eiθ )p(Z) = p(eiθ Z).
The embedding ofS(C1) is into L2 of the circle; ifeiϕ denotes a point on
the circle, the embedding sendsp(Z) into the functioneiϕ �→ p(eiϕ). The
closure of the image is the subspace of members ofL2 that are boundary
values of analytic functions on the unit disc.

PROOF. Let P(V ) be the space of all holomorphic polynomial functions
from V into C, and letPn(V ) be the subspace of those functions that are
homogeneous of degreen. The spacePn(V ) is the vector space dual of
Sn(V ) by Corollary A.24, and the representation ofG or U on Pn(V )

given by g(p(v)) = p(g−1v) is contragredient to the representation on
Sn(V ). For eachp in P(V ), definep̃ : G → C by p̃(g) = p(gv0); this is
holomorphic, being the composition of the functionG ×v0 → V followed
by p. The mapp �→ p̃ is one-one because the only holomorphic function
vanishing on the open setGv0 is the 0 function. Restriction of holomorphic
functions fromG to U is one-one since, in a chart about the identity, the
function onG can be reconstructed from the power series expansion of
the function onU . In this way we obtain an embedding ofP(V ) into
L2(U/Uv0), and this embedding certainly respects the action byU .

To complete the proof, we pass from eachPn(V ) to its contragredient
Sn(V ), and thereby embed eachSn(V ) into the contragredient of a finite-
dimensional invariant subspace ofL2(U/Uv0). Complex conjugation of
functions carries invariant subspaces withinL2 to their contragredients, and
in this wayS(V ) is embedded intoL2(U/Uv0). We may regardL2(U/Uv0)

as a subspace ofL2(U ), and thus the bound on the multiplicities follows
from the Peter–Weyl Theorem (Theorem 4.20).
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2. Jacobson–Morozov Theorem

A membere of a finite-dimensional Lie algebrag overC is said to be
nilpotent if ade is a nilpotent linear transformation. In this section we
develop tools for working with nilpotent elements.

A triple (h, e, f ) of nonzero elements ing is called ansl2 triple if the
elements satisfy the bracket relations of (1.6): [h, e] = 2e, [h, f ] = −2 f ,
[e, f ] = h. In this case the span of the elementsh, e, f is isomorphic with
sl(2, C). Theorem 1.67 shows that the complex-linear representation of
this copy ofsl(2, C) ong by ad is completely reducible, and Theorem 1.66
allows us to conclude that ade is nilpotent ong; consequently the membere
of thesl2 triple(h, e, f ) is a nilpotent element ing. The Jacobson–Morozov
Theorem is a converse to this fact wheng is semisimple.

Theorem 10.3(Jacobson–Morozov). Ife is a nonzero nilpotent element
in a complex semisimple Lie algebrag, thene can be included in ansl2
triple (h, e, f ). More specifically, there exists a nonzeroh in (ade)(g)

such that [h, e] = 2e, and, for any nonzeroh in (ade)(g) with [h, e] = 2e,
there exists a uniquef in g such that(h, e, f ) is ansl2 triple.

The proof will be preceded by a lemma.

Lemma 10.4. If V is a finite-dimensional complex vector space and if
A and B are linear transformations fromV to itself with A nilpotent and
with [ A, [ A, B]] = 0, thenAB is nilpotent.

PROOF. PutC = [ A, B]. Then [A, C ] = 0 by hypothesis, and it follows
for every integern ≥ 0 that

[ A, BCn] = ABCn − BCn A = ABCn − B ACn = [ A, B]Cn = Cn+1.

ConsequentlyCn+1 is exhibited as a commutator, and it follows thatC p has
trace 0 for everyp ≥ 1. Let us see thatC is therefore nilpotent. Arguing
by contradiction, suppose thatC is not nilpotent, so that the numberd
of distinct nonzero roots of the characteristic polynomial ofC is ≥ 1.
Let λ1, . . . , λd be these distinct nonzero roots, and letm1, . . . , md be the
multiplicities. The condition on the trace is that

d∑
q=1

mqλ
p
q = 0
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for every p ≥ 1. If we regard this condition for 1≤ p ≤ d as a homo-
geneous linear system with themq as unknowns, then the 0 solution is the
only solution because the determinant of the coefficient matrix{λp

q }d
p,q=1 is∏d

q=1 λq times a Vandermonde determinant and is therefore nonzero. Thus
we have a contradiction, and we conclude thatC is nilpotent.

Now letλ be any eigenvalue ofAB, and letv �= 0 be an eigenvector for
λ. Since [B, A] A = A[B, A] by hypothesis, we have

[B, An] =
n−1∑
j=0

A j [B, A] An− j−1 =
n−1∑
j=0

[B, A] An−1 = n[B, A] An−1.

The transformationA is assumed nilpotent, and thus there exists an integer
r > 0 such thatAr−1v �= 0 andArv = 0. For thisr ,

λAr−1v = Ar−1 ABv = Ar Bv = B Arv − [B, Ar ]v = 0 − r [B, A] Ar−1v,

and we see that−λ/r is an eigenvalue of [B, A]. Since [B, A] is nilpotent,
we conclude thatλ = 0. ThereforeAB is nilpotent.

PROOF OFTHEOREM 10.3. Let B be the Killing form. If n denotes
the kernel of(ade)2, then everyz ∈ n has 0= (ade)2z = [e, [e, z]] and
therefore 0= ad [e, [e, z]] = [ade, [ade, adz]]. Applying Lemma 10.4
with A = ade andB = adz, we find that(ade)(adz) is nilpotent. Hence
Tr((ade)(adz)) = 0 and

(10.5) B(e, n) = 0.

The invariance ofB implies that

(10.6) B((ade)2x, y) = B(x, (ade)2y)

for all x and y in g. Taking y arbitrary inn and using (10.6), we obtain
B((ade)2g, n) = 0. Therefore

(10.7) (ade)2
g ⊆ n

⊥,

where( · )⊥ is as in §I.7. Takingy arbitrary in((ade)2g)⊥ in (10.6) and
using the nondegeneracy ofB given in Theorem 1.45, we see that

((ade)2
g)⊥ ⊆ ker((ade)2) = n.
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Application of the operation( · )⊥ to both sides and use of (10.7) gives

(10.8) (ade)2
g ⊆ n

⊥ ⊆ ((ade)2
g)⊥⊥.

But Proposition 1.43 and the nondegeneracy ofB combine to show that
V ⊥⊥ = V for every subspaceV of g, and therefore (10.8) yields

(10.9) n
⊥ = (ade)2

g.

From (10.5) and (10.9), it follows thate = (ade)2x for somex ∈ g.
If we put h = −2[e, x ], then h is a nonzero member of(ade)g with
[h, e] = −2[[e, x ], e] = 2[e, [e, x ]] = 2e. This proves the existence ofh.

Next let h be any nonzero member of(ade)g such that [h, e] = 2e.
If k = ker(ade), then the equation(adh)(ade) − (ade)(adh) = 2(ade)
shows that(adh)(k) ⊆ k. Choosez such thath = −[e, z]. For A in
EndC g, defineL(A), R(A), and adA to mean left byA, right by A, and
L(A) − R(A), respectively. Then we have

(ad(ade))(adz) = [ade, adz] = ad [e, z] = −adh

(ad(ade))2(adz) = [ade, −adh] = ad [e, −h] = 2 ade

(ad(ade))3(adz) = [ade, 2 ade] = 0.

Imitating part of the proof of Lemma 5.17, we obtain, for everyn > 0,

(L(ade))n(adz) = (R(ade) + ad(ade))n(adz)

= (R(ade))n(adz) + n(R(ade))n−1(ad(ade))(adz)

+ 1
2n(n − 1)(R(ade))n−2(ad(ade))2(adz) + 0

= (R(ade))n(adz) − n(adh)(ade)n−1

+ n(n − 1)(ade)n−1.

Therefore

n(adh − (n − 1))(ade)n−1 = (adz)(ade)n − (ade)n(adz).

This equation applied tou with v = (ade)n−1u shows that

n(adh − (n − 1))v − (adz)(ade)v is in (ade)n(g).

If v is in k in addition, then(adh)v is in k and(adz)(ade)v = 0, so that

n(adh − (n − 1))v is in k.
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Thus(adh − (n − 1)) carriesk∩ (ade)n−1(g) into k∩ (ade)n(g). For some
N , (ade)N (g) = 0 since ade is nilpotent. It follows that

( N−1∏
p=0

(adh − p)
)
(k) = 0.

Consequently the eigenvalues of adh onk are all≥ 0, and(adh + 2) must
be invertible onk. The element [h, z] + 2z is in k because

[e, [h, z]] + 2[e, z] = −[h, [z, e]] − [z, [e, h]] + 2[e, z]

= [h, h] + 2[z, e] + 2[e, z] = 0.

Thus we can definez′ = (adh + 2)−1([h, z] + 2z) as a member ofk. Then
we have [h, z′] + 2z′ = [h, z] + 2z and hence [h, z′ − z] = −2(z′ − z). In
other words the elementf = z′ − z has [h, f ] = −2 f . Sincez′ is in k, we
have [e, f ] = [e, z′] − [e, z] = h, and f has the required properties.

Finally we are to show thatf is unique. Thus suppose thatf ′ has
[h, f ′] = −2 f ′ and [e, f ′] = h. Theorem 1.67 shows thatg is fully
reducible under the adjoint action of the spans of h, e, f , and we may take
s itself to be one of the invariant subspaces. Writef ′ = ∑

f ′
i according

to this decomposition into invariant subspaces. From−2
∑

f ′
i = −2 f ′ =

[h, f ′] = ∑
[h, f ′

i ], we see that [h, f ′
i ] = −2 f ′

i for all i . Also h =
[e, f ′] = ∑

[e, f ′
i ] shows that [e, f ′

i ] = 0 for all componentsf ′
i other than

the one ins. If any f ′
i outsides is nonzero, then we obtain a contradiction

to Theorem 1.66 since that theorem shows that ade cannot annihilate any
nonzero vector whose eigenvalue under adh is −2. We conclude that
f ′
i = 0 except in the components, and therefore we must havef ′ = f .

Theorem 10.10(Malcev–Kostant). LetG be a complex semisimple
group with Lie algebrag, and let(h0, e0, f0) be ansl2 triple in g. For each
integerk, definegk = {X ∈ g | [h0, X ] = k X}, and letG0 be the analytic
subgroup ofG with Lie algebrag0. Then the set� of all e in g2 such that
ade carriesg0 ontog2

(a) containse0,
(b) is open, dense, and connected ing2,
(c) is a single orbit underG0, and
(d) consists of alle ∈ g2 that can be included in ansl2 triple (h0, e, f ).

PROOF. Let s be the span of{h0, e0, f0}. Theorem 1.67 allows us to
decomposeg into the direct sum of irreducible spacesVi under ads, and
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Theorem 1.66 describes the possibilities for theVi . Since adh0 carries
eachVi into itself, we havegk = ⊕

i (Vi ∩ gk) for all k. From Theorem
1.66,(ade0)(Vi ∩ g0) = Vi ∩ g2, and therefore [e0, g

0] = g2. This proves
part (a).

Part (a) says thatg2 is a prehomogeneous vector space forG0, and (b)
and (c) then follow from Proposition 10.1.

Finally if e ∈ g2 is in �, write e = Ad(g)e0 with g ∈ G0, by (a) and (c).
Thene is included in thesl2 triple (h0, Ad(g)e0, Ad(g) f0). Conversely
the argument that proves (a) shows that anye included in somesl2 triple
(h0, e, f ) lies in�. This proves (d).

Proposition 10.11.If g is a complex reductive Lie algebra, then

(a) any abelian subalgebras of g for which the members of adg s are
diagonable can be extended to a Cartan subalgebra and

(b) the elementh of anysl2 triple in g lies in some Cartan subalgebra.

PROOF. Part (a) follows from Proposition 2.13, and part (b) is the special
case of (a) in whichs = Ch.

Proposition 10.12. Let g be a complex semisimple Lie algebra, leth

be a Cartan subalgebra, and let(h, e, f ) be ansl2 triple such thath lies in
h. Then in a suitable system of positive roots, each simple rootβ hasβ(h)

equal to 0, 1, or 2.

PROOF. Theorems 1.67 and 1.66 show that the eigenvalues of adh are
integers, and henceα(h) is an integer for every rootα. Consequentlyh
lies in the real formh0 of h on which all roots are real, and we can takeh
to be the first member of an orthogonal basis ofh0 that defines a system
of positive roots. Thenα(h) is ≥ 0 for every simple rootα, and we are to
prove thatα(h) cannot be≥ 3.

Using Theorem 1.67, writeg = ⊕
Vi with each Vi invariant and

irreducible under the span of{h, e, f }. Suppose thatα is a root with
α(h) = n ≥ 3. Decompose a nonzero root vectorXα as

∑
Xi with Xi in

Vi . From the equalityn
∑

Xi = α(h)Xα = [h, Xα] = ∑
[h, Xi ] and the

invariance ofVi under adh, we see that [h, Xi ] = nXi wheneverXi �= 0.
Sincen ≥ 1, Theorem 1.66 shows that [f, Xi ] �= 0 for any suchi , and
therefore [f, Xα] �= 0. Writing f as a sum of root vectors and possibly a
member ofh, we see in the same way thatf is a sum of root vectorsX−γ

with γ (h) = 2. Since [f, Xα] �= 0, we must have [X−γ , Xα] �= 0 for some
γ with γ (h) = 2. Thenβ = α − γ is a root withβ(h) = n − 2 > 0,
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andβ must be positive. Sinceγ (h) = 2 > 0, γ is positive as well. Thus
α = β + γ exhibitsα as not being simple.

Corollary 10.13. Let g be a complex reductive Lie algebra, and let
G = Int g. Up to the adjoint action ofG ong, there are only finitely many
elementsh of g that can be the first element of ansl2 triple in g.

PROOF. All sl2 triples lie in [g, g], and thus we may assumeg is semi-
simple. If h is given, Proposition 10.11b produces a Cartan subalgebrah

containingh. With h fixed, Proposition 10.12 shows, for a certain system
of positive roots, that there are at most 3l possibilities forh, wherel is
the rank. Any two Cartan subalgebras are conjugate viaG, according to
Theorem 2.15, and the number of distinct positive systems equals the order
of the Weyl group. The corollary follows.

Proposition 10.14. Let g be a semisimple Lie algebra, and leth be
a Cartan subalgebra. Ifs is a subspace ofh, then the centralizerZg(s)

is the Levi subalgebra of some parabolic subalgebra ofg, and hence it is
reductive.

PROOF. Let 	 be the set of roots, and leth0 be the real form ofh on
which all roots are real. The centralizer ofs containsh, is therefore stable
under adh, and consequently is a subspace of the formh ⊕ ⊕

γ∈
 gγ for
some subset
 of 	, gγ being the root space for the rootγ . If γ is in 
,
thenγ vanishes ons, and conversely. Hence
 = {γ ∈ 	 | γ (s) = 0}.
If bar denotes the conjugation ofh with respect toh0, then eachγ ∈ 
,
being real onh0, vanishes on̄s. Hence eachγ ∈ 
 vanishes ons + s̄,
which we write ast. Sincet is stable under bar, it is the complexification
of the real formt0 = t ∩ h0 of t. Thus
 = {γ ∈ 	 | γ (t0) = 0}. Let
t⊥0 be the orthogonal complement oft0 in h0 relative to the Killing form,
choose an orthogonal basis ofh0 consisting of an orthogonal basis oft0

followed by an orthogonal basis oft⊥0 , and let� be the simple roots for
the corresponding ordering. Define�′ to be the set of members of� that
vanish ont0. If a positive root in
 is expanded in terms of simple roots,
then each of the simple roots with nonzero coefficient must vanish ont0

as a consequence of the choice of ordering; thus each simple root with
nonzero coefficient is in�′. ConsequentlyZg(s) is the Levi subalgebra
of the parabolic subalgebra corresponding to�′ in Proposition 5.90. The
Levi subalgebra is reductive by Corollary 5.94c.
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3. Vinberg’s Theorem

A complex semisimple Lie algebrag is said to begraded if vector
subspacesgk are specified such thatg = ⊕∞

k=−∞ gk and [g j , gk ] ⊆ g j+k

for all integersj andk. In other words,g is to be graded as a vector space
in the sense of (A.35), and the grading is to be consistent with the bracket
structure. Sinceg is by assumption finite dimensional,gk has to be 0 for
all but finitely manyk. The statement of Theorem 10.10 gives an example,
showing how anysl2 triple (h, e, f ) leads to a grading; the indices in the
grading are integers because Theorems 1.67 and 1.66 show that adh acts
diagonably with integer eigenvalues. Examples 3 and 4 of §1 arise from
gradings associated with special parabolic subalgebras ofg; more generally
any parabolic subalgebra ofg leads to gradings as follows.

EXAMPLE. Gradings associated with a parabolic subalgebra. Fix a
Cartan subalgebrah and a choice	+ of a system of positive roots ofg with
respect toh. Let � be the set of simple roots, and letn be the sum of the
root spaces for the members of	+, so thatb = h⊕n is a Borel subalgebra
of g. Proposition 5.90 shows how to associate a parabolic subalgebraq�′

containingb to each subset�′ of simple roots. Fix�′, associate a positive
integermβ to each memberβ of the complementary set� − �′, and letH
be the member ofh such that

β(H) =
{

0 if β is in �′

mβ if β is in � − �′.

Thenα(H) is an integer for every rootα. Define

g
0 = h ⊕

⊕
α∈	,

α(H)=0

gα and g
k =

⊕
α∈	,

α(H)=k

gα for k �= 0.

Theng = ⊕
k gk exhibitsg as graded in such a way thatq�′ = ⊕

k≥0 gk ,
the Levi factor ofq�′ is g0, and the nilpotent radical ofq�′ is

⊕
k>0 gk .

In fact, the next proposition shows that any gradingg = ⊕
k gk of a

complex semisimple Lie algebrag arises as in the above example. First we
prove a lemma.

Lemma 10.15. If g = ⊕
k gk is a graded complex semisimple Lie

algebra, then there existsH in g0 such thatgk = {X ∈ g | [H, X ] = k X}
for all k.
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PROOF. Define a memberD of EndC g to be multiplication byk on gk .
Direct computation shows thatD is a derivation, and Proposition 1.121
produces an elementH in g such thatD(X) = [H, X ] for all X in g. Since
[H, H ] = 0, H is in g0.

Proposition 10.16. If g = ⊕
k gk is a graded complex semisimple Lie

algebra, then there exist a Borel subalgebrab = h ⊕ n, a subset�′ of the
set� of simple roots, and a set{mβ | β ∈ � − �′} of positive integers
such that the grading arises from the parabolic subalgebraq�′ and the set
{mβ} of positive integers.

PROOF. Let H be as in Lemma 10.15. Proposition 10.11a withs = CH
produces a Cartan subalgebrah of g containingH . The membersX of g that
commute withH are exactly those withD(X) = [H, X ] = 0 and hence
are exactly those ing0. In particular,h is contained ing0. The eigenvalues
of adH are integers, and thusH is in the real formh0 of h on which all the
roots are real. ExtendH to an orthogonal basis ofh0, and use this basis to
define positivity of roots. Let� be the set of simple roots, and let�′ be the
subset on whichβ(H) = 0. Forβ in � − �′, definemβ = β(H); since
H comes first in the ordering, the nonzero integermβ has to be positive.
Then the given grading is the one associated to the parabolic subalgebra
q�′ and the set of positive integers{mβ | β ∈ � − �′}.

Corollary 10.17. In any graded complex semisimple Lie algebra
g = ⊕

k gk , the subalgebrag0 is reductive.

PROOF. Combine Proposition 10.16 and Corollary 5.94c.

Lemma 10.18. Let g = ⊕
k gk be a graded complex semisimple Lie

algebra, and suppose thate is a nonzero element ing1. Then there existh
in g0 and f in g−1 such that(h, e, f ) is ansl2 triple.

PROOF. Since(ade) j(gk) ⊆ g j+k , e is nilpotent. Theorem 10.3 produces
elementsh ′ and f ′ in g such that(h ′, e, f ′) is ansl2 triple. Decompose
h ′ and f ′ according to the grading ash ′ = ∑

h ′
k and f ′ = ∑

f ′
k . From

2e = [h ′, e] = ∑
[h ′

k, e], we see that [h ′
0, e] = 2e and [h ′

k, e] = 0 for
k �= 0. From

∑
[e, f ′

k ] = [e, f ′] = h ′ = ∑
h ′

k , we see that [e, f ′
−1] = h ′

0,
hence thath ′

0 is in (ade)(g). A second application of Theorem 10.3 shows
that there existsf ′′ such that(h ′

0, e, f ′′) is ansl2 triple. Writing f ′′ = ∑
f ′′
k ,

we obtain [e, f ′′
−1] = h ′

0 and [h ′
0, f ′′

−1] = −2 f ′′
−1. Therefore(h ′

0, e, f ′′
−1) is

the requiredsl2 triple.
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In any gradingg = ⊕
k gk of the complex semisimple Lie algebrag,

adg0 provides a complex-linear representation ofg0 on eachgk . Let G be
a connected complex Lie group with Lie algebrag, for exampleG = Int g,
and letG0 be the analytic subgroup ofG with Lie algebrag0. Then the
adjoint action ofG on g yields a holomorphic representation ofG0 on
eachgk .

Theorem 10.19(Vinberg). LetG be a complex semisimple Lie group
with a graded Lie algebrag = ⊕

k gk , and letG0 be the analytic subgroup
of G with Lie algebrag0. Then the adjoint action ofG0 on g1 has only
finitely many orbits. Hence one of them must be open.

REMARK. In other words the representation ofG0 on g1 makesg1 into
a prehomogeneous vector space forG0. This kind of prehomogeneous
vector space is said to be ofparabolic type.

PROOF. Once it is proved that there are only finitely many orbits, one of
them must be open as a consequence of (8.18). To prove that there are only
finitely many orbits, we shall associate noncanonically to each elemente
of g1 a member of a certain finite set of data. Then we shall show that two
elements that can be associated to the same member of the finite set are
necessarily in the same orbit ofG0.

Let e be ing1, and extende by Lemma 10.18 to ansl2 triple (h, e, f )

with h in g0 and f in g−1. Write sl2 for the copy ofsl(2, C) spanned by
{h, e, f }. By Lemma 10.15, there exists an elementH in g0 such that, for
every integerk, [H, X ] = k X for all X in gk .

Among all abelian subalgebras of the centralizerZg0(sl2) whose mem-
bersT have adT diagonable, lett be a maximal one. The subalgebra
t̃ = t ⊕ Ch of g0 is abelian. The elementH commutes with every
member of̃t becausẽt ⊆ g0, and hence so doesh−2H . Also [h−2H, e] =
[h, e] − 2[H, e] = 2e − 2e = 0 since adH acts as the identity ong1. Thus
h − 2H centralizese andh. From Theorems 1.67 and 1.66 we know that
any element ofg that centralizese andh automatically centralizessl2. Thus
h − 2H is a member ofZg0(sl2) such that ad(h − 2H) is diagonable and
[h − 2H, X ] = 0 for all X in t. By maximality oft, h − 2H is in t. Let us
write

(10.20) h = 2H + T0 with T0 in t.

By Proposition 10.11a we can extendt̃ to a Cartan subalgebrah of g. From
(10.20) we see that [H, h] = 0, and thereforeh ⊆ g0.
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Let z = Zg(t). By Proposition 10.14,z is a Levi subalgebra ofg, and
the definition oft implies thatsl2 ⊆ z. Let us see that the grading ofg

induces a grading onz, i.e., that the subspaceszk = z∩gk have the property
thatz = ⊕

zk . If X is in z, decomposeX according to the grading ofg as
X = ∑

Xk . For anyT in t, we have 0= [ X, T ] = ∑
[ Xk, T ]. SinceT is

in g0, [Xk, T ] is in gk , and thus [Xk, T ] = 0 for all k. Hence eachXk is in
z, and we conclude thatz is graded.

Sincez is a Levi subalgebra, Proposition 5.94c shows thatz is reductive.
Using Corollary 1.56, writez as the sum of its center and its commutator
ideal, the latter being semisimple:

(10.21) z = Zz ⊕ s with s = [z, z].

We shall identifyZz ast. In fact, we know thath is contained inz, and hence
so is the subalgebrat. Sincez is defined as the centralizer oft, t commutes
with each member ofz. Thereforet ⊆ Zz. In the reverse direction let
X be in Zz. Then [X, h] = 0. Sinceh satisfiesNg(h) = h by definition
of Cartan subalgebra,X must be inh. Therefore adX is diagonable. We
know thatsl2 is contained inz, and therefore [X, sl2] = 0. Consequently
X is in Zg0(sl2), and the maximality oft shows thatX is in t. Thus indeed
Zz = t.

Let us see thats is graded, i.e., that the subspacessk = s ∩ gk have the
property thats = ⊕

sk . The subalgebras is generated by all [z j , zk ], and
such a subspace is contained ing j+k , hence ins j+k . Thus every member of
s lies in

⊕
sk , ands is graded. We can identify eachsk a little better; since

t centralizesz, (10.20) yields

s
k = s ∩ g

k = {X ∈ s | [H, X ] = k X} = {X ∈ s | [h, X ] = 2k X}

for all k.
The subalgebraZz is graded, being completely contained inz0.

Hence (10.21) giveszk = (Zz)
k ⊕sk for all k, and we conclude thatsk = zk

for all k �= 0. Thuse is in z1 = s1 and f is in z−1 = s−1, and we see that
the triple(h, e, f ) lies ins. Let S0 be the analytic subgroup ofG with Lie
algebras0. Sinces is semisimple ands0 = {X ∈ s | [h, X ] = 0}, Theorem
10.10 applies and shows thate lies in the unique open orbit ofS0 in s1.

Let us now exhibit a finite set of data in the above construction. The
grading ofg was fixed throughout, and the other gradings were derived
from it. Starting frome, we worked with the tuple(e, h, t, h, z, s), and
then we locatede in the open orbit ofS0 in s1. If we had started withe′, let
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us write(e′, h ′, t′, h′, z′, s′) for the tuple we would have obtained. Before
comparing our two tuples, we introduce a normalization. The Lie algebra
g0 is reductive, andh andh′ are Cartan subalgebras of it. By Theorem 2.15
we can findg ∈ G0 such that Ad(g)h′ = h. We replace(e′, h ′, t′, h′, z′, s′)
by Ad(g) of the tuple, namely

(e′′, h ′′, t′′, h, z′′, s′′) = (Ad(g)e′, Ad(g)h ′, Ad(g)t′, h, Ad(g)z′, Ad(g)s′),

and then we readily check that if we had started with Ad(g)e′, we could
have arrived at this tuple through our choices. Sincee′ ande′′ are in the
sameG0 orbit, we may comparee with e′′ rather thane with e′. That is our
normalization: we insist on the sameh in every case.

Onceh is fixed,z is the Levi subalgebra of a parabolic subalgebra ofg

containingh, h is an element ofh that is constrained by Proposition 10.12
to lie in a finite set,t is the center ofz, ands is the commutator subalgebra
of z. Our data set consists of all pairs

(Levi subalgebra containingh, elementh in h as in Proposition 10.12).

The number of Borel subalgebras containingh equals the order of a Weyl
group, and the number of parabolic subalgebras containing a given Borel
subalgebra is finite; therefore the number of Levi subalgebras ofg contain-
ing h is finite. Consequently our data set is finite.

What we have seen is that anye, possibly after an initial application of
some member of Ad(G0), leads to a member of this finite set. Suppose
thate ande′′ lead to the same member of the set. Thens = s′′, e lies in the
unique open orbit ofS0 ons1, ande′′ lies in that same orbit. SinceS0 ⊆ G0,
e ande′′ lie in the same orbit underG0. This completes the proof.

Corollary 10.22. Let G be a complex semisimple Lie group with a
graded Lie algebrag = ⊕

j g
j , and letG0 be the analytic subgroup ofG

with Lie algebrag0. Then the adjoint action ofG0 on anygk , with k �= 0,
has only finitely many orbits. Hence one of them must be open.

PROOF. Let H be as in Lemma 10.15, and let� be the automorphism
of g given by� = Ad(exp 2π i H/k). The subalgebras fixed by � is⊕

jk g jk , and thuss is graded withs0 = g0 ands1 = gk . ExtendCH to a
Cartan subalgebrah of g that lies withing0. Thens containsh, and we find
thats = h ⊕ ⊕

γ∈
 gγ , where
 is the set of rootsγ for whichγ (H) is a
multiple of k. The set
 is closed underγ �→ −γ , and that is all that is
needed for the proof of Corollary 5.94cto show thats is reductive with its
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center contained ins0 = g0. Replacings by [s, s] and applying Theorem
10.19, we obtain the corollary.

Examples 3 and 4 in §1 are cases of Theorem 10.19 that contain the
overlay of a real form of the underlying complex group. This additional
structure can be imposed in complete generality. The grading of the com-
plex semisimple Lie algebrag leads, via an elementH as in Lemma 10.15,
to a parabolic subalgebraq = l⊕u. It does not completely specify a Cartan
subalgebra or a system of positive roots, only the 1-dimensional subspace
CH of a Cartan subalgebra and the positivity of the roots that are positive on
H , namely those that contribute tou. Let us therefore extendCH to a Cartan
subalgebra by means of Proposition 10.11a and then introduce a system of
positive roots that takesH first in the ordering. To this much information
we can associate a Dynkin diagram forg. This diagram we make into an
abstract Vogan diagram by imposing zero 2-element orbits and by painting
the simple roots that contribute tou. Theorem 6.88 says that this abstract
Vogan diagram arises from a real formg0 of g and a Cartan involutionθ
of g0. Changing the meaning ofG, let us writeG for the analytic group
corresponding tog0 andGC for its complexification with Lie algebrag. Let
K be the maximal compact subgroup ofG corresponding toθ . Since the
Vogan diagram has zero 2-element orbits, we have rankG = rankK . The
closure of exp(iRH) is a torus inK and its centralizerL is a connected
compact group whose Lie algebra is the real forml0 = g0 ∩ g0 of l = g0.
The complexificationLC of L has Lie algebral. Then Theorem 10.19 says
thatLC acts ong1 with an open orbit. In the definition of prehomogeneous
space in §1, the complex group is thereforeLC, and the vector space is
V = g1. The compact form ofLC, which was calledU in the definition of
prehomogeneous space, is the groupL.

We will be especially interested in the special case in which the parabolic
subalgebra is maximal parabolic. This is the case in which�−�′ consists
of just one root, sayβ. If mβ = k, then the indexing for the grading uses
only the integers inkZ; so we may as well normalize matters by making
mβ = 1. If the complexified Cartan decomposition is written asg = k⊕ p,
thenk = ⊕

j eveng
j andp = ⊕

j oddg
j . Instances of this situation arise in

Examples 3 and 4 in §1. Example 3 covers all cases in which the underlying
group is simple and the unique noncompact simple root occurs just once in
the largest root. The instances ofSO with m ≥ 2 in Example 4 are some
classical cases in which the underlying group is simple and the unique
noncompact simple root occurs twice in the largest root.
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4. Analysis of Symmetric Tensors

Using notation as at the end of §3, let us examine Examples 3 and 4 of
§1 from the point of view of decomposingS(g1) under the adjoint action
of L or LC.

We begin with the instance of Example 3 in whichG = SU (m, n). This
example is discussed at length in §VII.9. The notation will be less cum-
bersome if we work instead withG = U (m, n) andGC = GL(m + n, C).
HereK = U (m)×U (n), andK C = GL(m, C)×GL(n, C). We can write
members ofg = gl(m + n, C) in blocks of sizesm andn as

( ∗ ∗
∗ ∗

)
. In the

complexified Cartan decompositiong = k⊕p, k consists of all the matrices(
∗ 0

0 ∗

)
, andp consists of all the matrices

(
0 ∗
∗ 0

)
. We are interested in the

action ofK or K C on p+, which consists of all the matrices
(

0 ∗
0 0

)
. Then

Ad of a member
(

k1 0

0 k2

)
of K C on thep+ matrix

(
0 x

0 0

)
is thep+ matrix(

0 k1xk−1
2

0 0

)
. Thus we can identifyp+ with the spaceMmn(C) of m-by-n

matrices, andK or K C is acting by(k1, k2)(x) = k1xk−1
2 . On the Lie algebra

level,k = gl(m, C)⊕gl(n, C) is acting onp+ by(X1, X2)(x) = X1x−x X2.
We use the direct sum of the diagonal subalgebras as Cartan subalgebra,
and the positive roots are theei − ej with i < j . We are interested in the
decomposition ofS(Mmn(C)) underK = U (m) × U (n), and the result is
as follows.

Theorem 10.23. Let r = min(m, n). In the action ofU (m) × U (n)

on S(Mmn(C)), the irreducible representations that occur are exactly the
outer tensor productsτm

λ ⊗̂(τ n
λ )c, whereλ is any nonnegative highest weight

of depth≤ r , and the multiplicities are all 1. Hereτm and τ n refer
to irreducible representations ofU (m) andU (n), respectively, and( · )c

indicates contragredient.

REMARK. Let m ≤ n for definiteness, so thatr = m; the argument
for m > n is similar. If λ = (a1, . . . , am), thenτm

λ has highest weight
(a1, . . . , am), and(τ n

λ )c haslowest weight(−a1, . . . , −am, 0, . . . , 0). The
highest weight of(τ n

λ )c is therefore(0, . . . , 0, −am, . . . , −a1).

FIRST PART OF THE ARGUMENT. Let us prove that the indicated ir-
reducible representations actually occur. It is more convenient to work
with the spaceP(Mmn(C)) of polynomials with action(k1, k2)(p)(x) =
p(k−1

1 xk2) than to work with the space of symmetric tensors; we take con-
tragredients, one degree at a time, to get the decomposition ofS(Mmn(C)).
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Let Pd(Mmn(C)) be the subspace of polynomials homogeneous of degree
d. Since the representation ofK C on eachPd(Mmn(C)) is holomorphic,k
acts by

(10.24) ((X1, X2)p)(x) = d
dt

p((expt X1)
−1x(expt X2))|t=0.

We are to show that each((−am, . . . , −a1), (a1, . . . , am, 0, . . . , 0)) occurs
as a highest weight.

For 1 ≤ l ≤ m, let x# = x#(l) be thel-by-l submatrix ofx obtained
by using rowsm − l + 1 throughm and columns 1 throughl, and let
dl(x) = det(x#). Suppose thatk1 andk2 are upper triangular. Letk#

1 be
the lower rightl-by-l block of k1, and letk#

2 be the upper leftl-by-l block
of k2. A little computation shows thatdl(k

−1
1 xk2) = det(k#

1
−1x#k#

2) =
(detk#

1)
−1dl(x)(detk#

2), and it follows thatdl is a nonzero highest weight
vector with weight− ∑m

i=m−l+1 ei + ∑m+l
j=m+1 ej . From formula (10.24)

we see that a product of powers of highest weight vectors is a highest
weight vector and the weights are additive. Ifa1 ≥ · · · ≥ am ≥ 0,
thenda1−a2

1 da2−a3
2 · · · dam−1−am

m−1 dam
m is a highest weight vector with the required

highest weight.

SECOND PART OF THE ARGUMENT. We give a heuristic proof that the
multiplicities are 1 and that the only highest weights are the ones mentioned;
the heuristic proof can be made rigorous without difficulty, but we will omit
here the steps needed for that purpose.

There is one rigorous part. The linear functionsx �→ xi j on p+ with
i ≤ m < j form a basis forP1(Mmn(C)), and (10.24) shows that such a
function is a weight vector with weight−ei +ej . Since linear combinations
of products of such functions yield all polynomials, we can conclude that
the only weights are sums of the expressions−ei + ej . That is, all the
weights are of the form((b1, . . . , bm), (c1, . . . , cn)) with all bi ≤ 0 and all
cj ≥ 0. In particular, this is true of the highest weight of any irreducible
constituent.

For the heuristic part, we use the choiceγj = ej − em+ j for 1 ≤ j ≤ m
in Example 3 of §1. Thene = ∑m

j=1 Ej,m+ j is a member ofp+ in the
unique open orbit underK C. If we write (m + n)-by-(m + n) matrices

in block form with blocks of sizesm, m, andn − m, thene =
(

0 1 0

0 0 0

0 0 0

)
,

where 1 is them-by-m identity matrix. The members ofK C are anything

invertible of the form

(
z 0 0

0 a b

0 c d

)
. Let (K C)e be the subgroup ofK C fixing
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e; direct computation shows that(K C)e consists of all invertible matrices(
a 0 0

0 a 0

0 c d

)
. We can identifyK C/(K C)e with the open subset Ad(K C)e of

p+. We are interested in identifying the action ofK C on the restric-
tions of the holomorphic polynomials to this set, and we only make the
space of functions bigger if we considerall holomorphic functions on
K C/(K C)e. The result is something like an induced representation except
that only holomorphic functions are allowed. We introduce the notation
“holo-ind” for this ill-defined construction, which we might call “holomor-
phic induction.” We seek to understand holo-indK C

(K C)e
1. If we write(K C)int

for the intermediate group consisting of all invertible matrices

(
z 0 0

0 a 0

0 c d

)
,

then the formal computation, which we explain in a moment, is

holo-indK C

(K C)e
1 = holo-indK C

(K C)int

(
holo-ind(K C)int

(K C)e
1
)

= holo-indK C

(K C)int

(⊕
λ

(τm
λ )c⊗̂τm

λ ⊗̂1
)

= ⊕
λ

(τm
λ )c⊗̂(

holo-indK C

(K C)int
(τm

λ ⊗̂1)
)

= ⊕
λ

(τm
λ )c⊗̂τ n

λ .

The symbol
⊕

here admits an interpretation as an orthogonal sum of
Hilbert spaces, but let us not belabor the point. What deserves attention
is the formal reasoning behind each line: The first line is holomorphic
induction in stages, and the second line is the usual result for induction
when a groupH is embedded diagonally inH × H . The embedding here
is of thea as the diagonal subgroup of pairs(z, a); the inner representation
does not depend on the variablesc andd. The parameterλ varies over all
highest weights of depth≤ m. The third line uses commutativity of

⊕
and holomorphic induction, and again the innermost representation does
not depend on the variablesc andd. The fourth line is the crux of the matter
and follows from the Borel–Weil Theorem, which is discussed briefly in
the Historical Notes. The highest weightλ of τm

λ has to be nonnegative, as
we saw above, and we obtain the desired upper bound for the multiplicities.

Let us state without proof a generalization of Theorem 10.24 that handles
all instances of Example 3 of §1.

Theorem 10.25(Schmid). IfG/K is Hermitian and if a good ordering
is used to define positivity of roots, introduce{γ1, . . . , γs} as follows: γ1
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is the largest positive noncompact root, and, inductively,γj is the largest
positive noncompact strongly orthogonal to all ofγ1, . . . , γj−1. Then the
highest weights of the representations ofK C that occur inS(p+) are exactly
all expressions

∑s
j=1 ajγj with all aj ∈ Z and witha1 ≥ · · · ≥ as ≥ 0.

Moreover, all these representations occur inS(p+) with multiplicity 1.

Lemma 7.143 shows thats in Theorem 10.25 is the real rank ofG. For
this s, the theorem says that ans-parameter family of representations of
K C handles the analysis ofS(p+).

Now let us turn to Example 4 in §1. The two classes of groups behave
similarly, and we concentrate onG = SO(2m, 2n)0. A look at the roots
shows thatl0 = R ⊕ su(m) ⊕ so(2n), and one readily checks thatL ∼=
U (m) × SO(2n). The noncompact positive roots, namely allei ± ej with
i ≤ m < j , are the weights occurring inu ∩ p. The variousei ’s are
the weights of the standard representation ofU (m), and the±ej ’s are the
weights of the standard representation ofSO(2n). As a result we can check
thatu ∩ p ∼= Mm,2n(C) and that the action ofL on P(u ∩ p) corresponds to
the action onP(Mm,2n(C)) by U (m) on the left andSO(2n) on the right.
Hence the action ofL onS(u∩p) corresponds to the action onS(Mm,2n(C))

byU (m) on the left andSO(2n) on the right. This is the natural restriction
of the action ofU (m) × U (2n) on S(Mm,2n(C)), which is addressed in
Theorem 10.23. According to that theorem, the irreducible constituents are
all τm

λ ⊗̂(τ 2n
λ )c for λ nonnegative of depth≤ m, and the multiplicities are

all 1. Sincem ≤ n, the restriction ofτ 2n
λ to SO(2n) is given by Littlewood’s

result stated as Theorem 9.75; from the theorem we see that only the first
m entries of then-tuple highest weight of an irreducible constituent can be
nonzero. Moreover, the resulting reducible representation ofSO(2n) is its
own contragredient, and hence the restriction of(τ 2n

λ )c is the same as the
restriction ofτ 2n

λ . This much argument proves Theorem 10.26 below for
SO(2m, 2n)0, and a similar argument handlesSO(2m, 2n + 1)0.

Theorem 10.26 (Greenleaf). ForG equal to either of the groups
SO(2m, 2n)0 or SO(2m, 2n + 1)0 with m ≤ n, every highest weight
of L in the adjoint action onS(u ∩ p) is in the span ofe1, . . . , e2m.

Thus the number of parameters of irreducible representations ofL ap-
pearing inS(u ∩ p) is bounded above by the real rank 2m of G. (The
multiplicities may be greater than 1, however.) Of course, the number of
parameters for all the irreducible representations ofL is the (complex) rank



636 X. Prehomogeneous Vector Spaces

m + n of G, and hence only very special representations ofL can occur in
S(u ∩ p) whenm is much less thann.

Theorem 9.75 is explicit enough so that one can say more about the
decomposition. The groupsSO(2, 2n)0 andSO(2, 2n + 1)0 are handled
by Theorem 10.25. Here is a precise result aboutSO(4, 2n)0. To avoid
becoming too cumbersome, the statement takes liberties with the notion
of representation, allowing a countable sum of irreducible representations,
with no topology, to be considered as a representation.

Theorem 10.27(Gross–Wallach). ForSO(4, 2n)0 with n ≥ 2, the
1-dimensional representationτ of L with highest weight 2e1 + 2e2 occurs
in S4(u ∩ p) and has the property that the adjoint representation ofL on
S(u ∩ p) decomposes as the tensor product of 1⊕ τ ⊕ τ 2 ⊕ τ 3 ⊕ · · ·
with a multiplicity-free representationσ whose irreducible constituents
have highest weights described as follows: Let(a, b, k, d) be any integer
4-tuple satisfying

a ≥ b ≥ 0, 0 ≤ k ≤ [a/2], max(0, b − 2k) ≤ d ≤ min(b, a − 2k).

Then the corresponding highest weight forn ≥ 3 isae1 + be2 + ce3 + de4,
wherec = a + b − 2k − d. Forn = 2, the same parameters are to be used,
but the 4-tuple yields two highest weightsae1 + be2 + ce3 ± de4 if d �= 0.

PROOF. As we observed before the statement of Theorem 10.26, we
are to decompose, for each integer pair(a, b) with a ≥ b ≥ 0, the
representation ofU (2)×U (2n) with highest weightae1 +be2 +ae3 +be4

under the subgroupU (2)×SO(2n). We use Theorem 9.75 for this purpose.
The expressionµ in that theorem takes values of the form 2ke3 +2le4 with
k ≥ l ≥ 0, 2k ≤ a, and 2l ≤ b. The contributions fromµ = 2ke3 will be
part ofσ , and the other contributions will havek ≥ l ≥ 1. Writing σ both
for the representation and for the space on which it acts and comparing the
analysis that is to be done for(k, l) with that for(k − 1, l − 1), we see that
Sm(u ∩ p) ∼= (σ ∩ Sm(u ∩ p)) ⊕ (τ ⊗ Sm−4(u ∩ p)) for m ≥ 4. The tensor
product relation follows, and we are left with analyzingσ .

With a andb fixed, we now want to work withλ = ae3 + be4 andµ =
2ke3, where 0≤ k ≤ [a/2]. Consider the possibilities for an expression
ν = ce3+de4 that is to contribute a Littlewood–Richardson coefficientcλ

µν ;
ν is at least to havec ≥ d ≥ 0, c ≤ a, andd ≤ b. The diagram that arises
in the statement of Theorem 9.74 has two rows. The first row consists of 2k
0’s followed bya−2k x’s, and the second row hasb x’s. The number of x’s
must matchc+d, and thusc+d = a +b−2k. The pattern ofν consists of
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c 1’s andd 2’s, and only 1’s can be used for the x’s in the first row because
of (a) and (c) in Theorem 9.74. Also the substitution of 1’s and 2’s for the
x’s in the second row must result in 1’s followed by 2’s because of (a) in
that theorem. This fact already means that the diagram can be completed
in at most one way, and we see as a result thatσ is multiplicity free. The
count of 1’s and 2’s is that we must havec − (a − 2k) 1’s andd 2’s in
the second row. Condition (b) in the theorem says that no column in the
completed diagram can have a 1 above a 1; this means that the number of
1’s in the second row, which isc − (a − 2k), must be≤ 2k. This condition
simplifies toc ≤ a and is already satisfied. Finally condition (c) in the
theorem says that the number of 2’s in the appropriate listing, when all 2’s
have been listed, must not exceed the number of 1’s to that point, and this
means thatd ≤ a − 2k. The complete list of constraints is therefore

c + d = a + b − 2k, 0 ≤ c ≤ a, 0 ≤ d ≤ b, c ≥ a − 2k, d ≤ a − 2k.

Definec by c = a + b − 2k − d. The conditionc ≥ a − 2k is equivalent
with d ≤ b, andc ≥ a − 2k forcesc ≥ 0. Thus the condition 0≤ d ≤
min(b, a − 2k) incorporates all the inequalities exceptc ≤ a. From the
definition ofc, this is equivalent withd ≥ b − 2k. The theorem follows.

Apart from Examples 3 and 4 in §1, what can be said in some generality?
We give just one result of this kind. It allows the induced representation in
Proposition 10.2 to be analyzed in stages using three compact symmetric
spaces.

Proposition 10.28.Suppose that the grading of the complex semisimple
g is built from a maximal parabolic subalgebra, and suppose that(h, e, f )

is ansl2 triple withh ∈ l, e ∈ g1, and f ∈ g−1 such that̄h = −h andē = f ,
where bar is the conjugation ofg with respect to the real formg0. Define
c = Ad(exp1

4π i(e + f )). This is an element of Intg of order dividing 8.
Then the set ofX ∈ l0 with [X, e] = 0 equals the subalgebra ofl0 fixed
by c.

SKETCH OF PROOF. If X ∈ l0 has [X, e] = 0, then [X, f ] = [ X, ē] = 0
andc(X) = X . Conversely ifX is in l andc(X) = X , let H be as in
Lemma 10.15. The Lie algebras = span{H, h, e, f } is reductive with
centerC(H − 1

2h). Decomposeg into irreduciblesVi under ads, and write
X = ∑

Xi accordingly. Then [H, Xi ] = 0 andc(Xi) = Xi for all i . Also
ad(H − 1

2h) is scalar on eachVi , and henceXi is a weight vector for adh.
An easy check shows thatc cannot fix a nonzero weight vector inVi unless
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dim Vi = 1; in this case, [e, Xi ] = 0. Summing oni gives [e, X ] = 0. The
result follows.

5. Problems

1. LetG beSO(n, C) with the nonzero scalar matrices adjoined. Prove that the
standardn-dimensional representation ofG yields a prehomogeneous vector
space forG.

2. Prove that the usual representation ofGL(2n, C)on
∧2C2n makes

∧2C2n into
a prehomogeneous vector space forGL(2n, C). Prove that the corresponding
statement is false for

∧3Cn if n is large enough.

3. Fix a complex semisimple groupG. Prove that, up to isomorphism, there can
be only finitely many representations ofG that yield prehomogeneous vector
spaces.

4. Let g be a complex reductive Lie algebra, and letG = Int g. Starting from
Corollary 10.13, prove that, up to the adjoint action ofG, there are only finitely
many nilpotent elements ing.

5. Let the gradingg = ⊕
k gk of the complex semisimple Lie algebra be associ-

ated to a maximal parabolic subalgebra, and suppose thatg1 �= 0. Prove that
the representation ofg0 ong1 is irreducible.

6. State and prove a converse result to Problem 5.

Problems 7–9 develop and apply a sufficient condition for recognizing the open
orbit in a prehomogeneous vector space of parabolic type.

7. Letg = ⊕
k gk be a graded complex semisimple Lie algebra, letG = Int g,

and letG0 be the analytic subgroup ofG with Lie algebrag0. Suppose that
e �= 0 is in g1, and suppose thate can be included in ansl2 triple (h, e, f )

such thath is a multiple of the elementH given in Lemma 10.15. Prove that
theG0 orbit of e is open ing1.

8. For the groupSp(2, 2), let the simple roots be as in (2.50), and takee2 − e3

to be the only simple root that is noncompact. In the notation at the end of
§3,u ∩ p is then spanned by root vectorsEα for α equal toe1 ± e3, e1 ± e4,
e2 ± e3, ande2 ± e4. Prove for all nonzero constantsa andb that the orbit
underLC of e = aEe1+e3 + bEe2−e3 is open inu ∩ p.

9. In the notation of Example 4 of §1 and the end of §3, the vector spaceu ∩ p

was shown in §1 to be prehomogeneous for the subgroupLC of SO(2m, 2n)0

when m ≤ n, but Vinberg’s Theorem says thatu ∩ p is prehomogeneous
without this restriction. By mixing the definitions in Example 4 of §1 and in
Problem 8 and by using Problem 7, obtain an explicit formula for an element
e in the open orbit under the weaker restrictionm ≤ 2n.



APPENDIX A

Tensors, Filtrations, and Gradings

Abstract. If E is a vector space, the tensor algebraT (E) of E is the direct sum over
n ≥ 0 of then-fold tensor product ofE with itself. This is an associative algebra with a
universal mapping property relative to any linear mapping ofE into an associative algebra
A with identity: the linear map extends to an algebra homomorphism ofT (E) into A
carrying 1 into 1. Also any linear map ofE into T (E) extends to a derivation ofT (E).

The symmetric algebraS(E) is a quotient ofT (E) with the following universal mapping
property: any linear mapping ofE into a commutative associative algebraA with identity
extends to an algebra homomorphism ofS(E) into A carrying 1 into 1. The symmetric
algebra is commutative.

Similarly the exterior algebra
∧

(E) is a quotient ofT (E) with this universal mapping
property: any linear mappingl of E into an associative algebraA with identity such that
l(v)2 = 0 for all v ∈ E extends to an algebra homomorphism of

∧
(E) into A carrying 1

into 1.
The tensor algebra, the symmetric algebra, and the exterior algebra are all examples of

graded associative algebras. A more general notion than a graded algebra is that of a filtered
algebra. A filtered associative algebra has an associated graded algebra. The notions of
gradings and filtrations make sense in the context of vector spaces, and a linear map between
filtered vector spaces that respects the filtration induces an associated graded map between
the associated graded vector spaces. If the associated graded map is an isomorphism, then
the original map is an isomorphism.

A ring with identity is left Noetherian if its left ideals satisfy the ascending chain
condition. If a filtered algebra is given and if the associated graded algebra is left Noetherian,
then the filtered algebra itself is left Noetherian.

1. Tensor Algebra

Just as polynomial rings are often used in the construction of more
general commutative rings, so tensor algebras are often used in the con-
struction of more general rings that may not be commutative. In this
section we construct the tensor algebra of a vector space as a direct sum
of iterated tensor products of the vector space with itself, and we establish
its properties. We shall proceed with care, in order to provide a complete
proof of the associativity of the multiplication.

639
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Fix a fieldk. Let E andF be vector spaces over the fieldk. A tensor
product V of E andF is a pair(V, ι) consisting of a vector spaceV overk
together with a bilinear mapι : E × F → V, with the following universal
mapping property: Wheneverb is a bilinear mapping ofE ×F into a vector
spaceU overk, then there exists a unique linear mappingB of V into U
such that the diagram

V (= tensor product)

ι B(A.1)

E × F −−−−−−−−−−−−→
b

U

commutes. We callB the linear extensionof b to the tensor product.
It is well known that a tensor product ofE andF exists and is unique up

to canonical isomorphism, and we shall not repeat the proof. One feature
of the proof is that it gives an explicit construction of a vector space that
has the required property.

A tensor product ofE and F is denotedE ⊗k F , and the associated
bilinear mapι is written (e, f ) �→ e ⊗ f . The elementse ⊗ f generate
E ⊗k F , as a consequence of a second feature of the proof of existence of
a tensor product.

There is a canonical isomorphism

(A.2) E ⊗k F ∼= F ⊗k E

given by taking the linear extension of(e, f ) �→ f ⊗e as the map from left
to right. The linear extension of( f, e) �→ e ⊗ f gives a two-sided inverse.

Another canonical isomorphism of interest is

(A.3) E ⊗k k ∼= E .

Here the map from left to right is the linear extension of(e, c) �→ ce,
while the map from right to left ise �→ e ⊗ 1. In view of (A.2) we have
k ⊗k E ∼= E also.

Tensor product distributes over direct sums, even infinite direct sums:

(A.4) E ⊗k
( ⊕

α

Fα

) ∼=
⊕

α

(E ⊗k Fα).

The map from left to right is the linear extension of the bilinear map
(e,

∑
fα) �→ ∑

(e ⊗ fα). To define the inverse, we have only to define it
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on eachE ⊗k Fα, where it is the linear extension of(e, fα) �→ e⊗ (iα( fα));
hereiα : Fα → ⊕

Fβ is the injection corresponding toα. It follows from
(A.3) and (A.4) that if{xi} is a basis ofE and{yj} is a basis ofF , then
{xi ⊗ yj} is a basis ofE ⊗k F . Consequently

(A.5) dim(E ⊗k F) = (dim E)(dim F).

Let Homk(E, F) be the vector space ofk linear maps fromE into F .
One special case isE = k, and we have

(A.6) Homk(k, F) ∼= F.

The map from left to right sendsϕ into ϕ(1), while the map from right to
left sendsf intoϕ with ϕ(c) = c f . Another special case of interest occurs
whenF = k. Then Hom(E, k) = E∗ is just the vector spacedual of E .

We can use⊗k to construct new linear mappings. LetE1, F1, E2 and
F2 be vector spaces, Suppose thatL1 is in Homk(E1, F1) and L2 is in
Homk(E2, F2). Then we can define

(A.7) L1 ⊗ L2 in Homk(E1 ⊗k E2, F1 ⊗k F2)

as follows: The map(e1, e2) �→ L1(e1) ⊗ L2(e2) is bilinear fromE1 × E2

into F1 ⊗k F2, and we letL1 ⊗ L2 be its linear extension toE1 ⊗k E2. The
uniqueness in the universal mapping property allows us to conclude that

(A.8) (L1 ⊗ L2)(M1 ⊗ M2) = L1M1 ⊗ L2M2

when the domains and ranges match in the obvious way.
Let A, B, andC be vector spaces overk. A triple tensor product V =

A⊗k B⊗kC is a vector space overk with a trilinear mapι : A×B×C → V
having the following universal mapping property: Whenevert is a trilinear
mapping ofA × B × C into a vector spaceU overk, then there exists a
linear mappingT of V into U such that the diagram

V (= triple tensor product)

ι T(A.9)

A × B × C −−−−−−−−−−−−→
t

U

commutes. It is clear that there is at most one triple tensor product up to
canonical isomorphism, and one can give an explicit construction just as
for ordinary tensor productsE ⊗k F . We shall use triple tensor products
to establish an associativity formula for ordinary tensor products.
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Proposition A.10.

(a) (A ⊗k B) ⊗k C andA ⊗k (B ⊗k C) are triple tensor products.
(b) There exists a unique isomorphism� from left to right in

(A.11) (A ⊗k B) ⊗k C ∼= A ⊗k (B ⊗k C)

such that�((a ⊗ b) ⊗ c) = a ⊗ (b ⊗ c) for all a ∈ A, b ∈ B, andc ∈ C .

PROOF.
(a) Consider(A ⊗k B) ⊗k C . Let t : A × B × C → U be trilinear.

For c ∈ C , definetc : A × B → U by tc(a, b) = t (a, b, c). Thentc is
bilinear and hence extends to a linearTc : A⊗k B → U . Sincet is trilinear,
tc1+c2 = tc1 + tc2 andtxc = xtc for scalarx ; thus uniqueness of the linear
extension forcesTc1+c2 = Tc1 + Tc2 andTxc = xTc. Consequently

t ′ : (A ⊗k B) × C → U

given by t ′(d, c) = Tc(d) is bilinear and hence extends to a linear
T : (A ⊗k B) ⊗k C → U . ThisT proves existence of the linear extension
of the givent . Uniqueness is trivial, since the elements(a⊗b)⊗c generate
(A ⊗k B) ⊗k C . So(A ⊗k B) ⊗k C is a triple tensor product. In a similar
fashion,A ⊗k (B ⊗k C) is a triple tensor product.

(b) In (A.9) takeV = (A ⊗k B) ⊗k C , U = A ⊗k (B ⊗k C), and
t (a, b, c) = a ⊗ (b ⊗ c). We have just seen in (a) thatV is a triple
tensor product withι(a, b, c) = (a ⊗ b) ⊗ c. Thus there exists a linear
T : V → U with T ι(a, b, c) = t (a, b, c). This equation means that
T ((a ⊗ b) ⊗ c) = a ⊗ (b ⊗ c). Interchanging the roles of(A ⊗k B) ⊗k C
and A ⊗k (B ⊗k C), we obtain a two-sided inverse forT . ThusT will
serve as� in (b), and existence is proved. Uniqueness is trivial, since the
elements(a ⊗ b) ⊗ c generate(A ⊗k B) ⊗k C .

When this proposition is used, it is often necessary to know that the
isomorphism� is compatible with mapsA → A′, B → B ′, andC → C ′.
This property is callednaturality in the variablesA, B, andC , and we
make it precise in the next proposition.

Proposition A.12. Let A, B, C , A′, B ′, andC ′ be vector spaces overk,
and letL A : A → A′, L B : B → B ′, andLC : C → C ′ be linear maps.
Then the isomorphism� of Proposition A.10b is natural in the sense that
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the diagram

(A ⊗k B) ⊗k C
�−−−→ A ⊗k (B ⊗k C)

(L A⊗L B )⊗LC

� �L A⊗(L B⊗LC )

(A′ ⊗k B ′) ⊗k C ′ �−−−→ A′ ⊗k (B ′ ⊗k C ′)

commutes.

PROOF. We have

((L A ⊗ (L B ⊗ LC)) ◦ �)((a ⊗ b) ⊗ c)

= (L A ⊗ (L B ⊗ LC))(a ⊗ (b ⊗ c))

= L Aa ⊗ (L B ⊗ LC)(b ⊗ c)

= �((L Aa ⊗ L Bb) ⊗ LCc)

= �((L A ⊗ L B)(a ⊗ b) ⊗ LCc)

= (� ◦ ((L A ⊗ L B) ⊗ LC))((a ⊗ b) ⊗ c),

and the proposition follows.

There is no difficulty in generalizing matters ton-fold tensor products
by induction. Ann-fold tensor product is to be universal forn-multilinear
maps. It is clearly unique up to canonical isomorphism. A direct construc-
tion is possible. Another such tensor product is the(n − 1)-fold tensor
product of the firstn − 1 spaces, tensored with thenth space. Proposition
A.10b allows us to regroup parentheses (inductively) in any fashion we
choose, and iterated application of Proposition A.12 shows that we get a
well defined notion of the tensor product ofn linear maps.

Fix a vector spaceE overk, and letT n(E) be then-fold tensor product
of E with itself. In the casen = 0, we letT 0(E) be the fieldk. Define,
initially as a vector space,T (E) to be the direct sum

(A.13) T (E) =
∞⊕

n=0

T n(E)

The elements that lie in one or anotherT n(E) are calledhomogeneous.
We define a bilinear multiplication on homogeneous elements

T m(E) × T n(E) → T m+n(E)
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to be the restriction of the above canonical isomorphism

T m(E) ⊗k T n(E) → T m+n(E).

This multiplication is associative because the restriction of the isomorphism

T l(E) ⊗k (T m(E) ⊗k T n(E)) → (T l(E) ⊗k T m(E)) ⊗k T n(E)

to T l(E) × (T m(E) × T n(E)) factors through the map

T l(E) × (T m(E) × T n(E)) → (T l(E) × T m(E)) × T n(E)

given by(r, (s, t)) �→ ((r, s), t). ThusT (E) becomes an associative alge-
bra with identity and is known as thetensor algebraof E . The algebra
T (E) has the universal mapping properties given in the following two
propositions.

Proposition A.14. T (E) has the following universal mapping property:
Let ι be the map that embedsE asT 1(E) ⊆ T (E). If l : E → A is any
linear map ofE into an associative algebra with identity, then there exists a
unique associative algebra homomorphismL : T (E) → A with L(1) = 1
such that the diagram

T (E)

ι L(A.15)

E −−−−−−−−−−−−→
l

A

commutes.

PROOF. Uniqueness is clear, sinceE and 1 generateT (E) as an algebra.
For existence we defineL (n) on T n(E) to be the linear extension of the
n-multilinear map

(v1, v2, . . . , vn) �→ l(v1)l(v2) · · · l(vn),

and we letL = ⊕
L (n) in obvious notation. Letu1 ⊗· · ·⊗um be inT m(E)

andv1 ⊗ · · · ⊗ vn be inT n(E). Then we have

L (m)(u1 ⊗ · · · ⊗ um) = l(u1) · · · l(um)

L (n)(v1 ⊗ · · · ⊗ vn) = l(v1) · · · l(vn)

L (m+n)(u1 ⊗ · · · ⊗ um ⊗ v1 ⊗ · · · ⊗ vn) = l(u1) · · · l(um)l(v1) · · · l(vn).

Hence

L (m)(u1⊗· · ·⊗um)L (n)(v1⊗· · ·⊗vn) = L (m+n)(u1⊗· · ·⊗um⊗v1⊗· · ·⊗vn).

Taking linear combinations, we see thatL is a homomorphism.
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A derivation D : A → A of an associative algebra with identity is a
linear mapping such thatD(uv) = (Du)v + u(Dv) for all u andv in A.
A derivation automatically satisfiesD(1) = 0.

Proposition A.16. T (E) has the following universal mapping property:
Let ι be the map that embedsE asT 1(E) ⊆ T (E). If d : E → T (E)

is any linear map ofE into T (E), then there exists a unique derivation
D : T (E) → T (E) such that the diagram

T (E)

ι D(A.17)

E −−−−−−−−−−−−→
d

T (E)

commutes.

PROOF. Uniqueness is clear, sinceE and 1 generateT (E) as an algebra.
For existence we defineD(n) on T n(E) to be the linear extension of the
n-multilinear map

(v1, v2, . . . , vn) �→
(dv1)⊗v2⊗· · ·⊗vn +v1⊗(dv2)⊗v3⊗· · ·⊗vn +v1⊗· · ·⊗vn−1⊗(dvn),

and we letD = ⊕
D(n) in obvious notation. Then we argue in the same

way as in the proof of Proposition A.14 thatD is the required derivation
of T (E).

2. Symmetric Algebra

We continue to allowk to be an arbitrary field. LetE be a vector space
over k, and letT (E) be the tensor algebra. We begin by defining the
symmetric algebraS(E). The elements ofS(E) are to be all the symmetric
tensors, and so we want to forceu ⊗ v = v ⊗ u. Thus we define the
symmetric algebraby

(A.18a) S(E) = T (E)/I,

where

(A.18b) I =
( two-sided ideal generated by all

u ⊗ v − v ⊗ u with u and v

in T 1(E)

)
.
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ThenS(E) is an associative algebra with identity.
Since the generators ofI are homogeneous elements (all inT 2(E)), it

is clear that the idealI satisfies

I =
∞⊕

n=0

(I ∩ T n(E)).

An ideal with this property is said to behomogeneous. SinceI is homo-
geneous,

S(E) =
∞⊕

n=0

T n(E)/(I ∩ T n(E)).

We write Sn(E) for thenth summand on the right side, so that

(A.19) S(E) =
∞⊕

n=0

Sn(E).

Since I ∩ T 1(E) = 0, the map ofE into first-order elementsS1(E) is
one-one onto. The product operation inS(E) is written without a product
sign, the image inSn(E) of v1 ⊗· · ·⊗ vn in T n(E) being denotedv1 · · · vn.
If a is in Sm(E) andb is in Sn(E), thenab is in Sm+n(E). MoreoverSn(E)

is generated by elementsv1 · · · vn with all vj in S1(E) ∼= E , sinceT n(E) is
generated by corresponding elementsv1 ⊗· · ·⊗ vn. The defining relations
for S(E) makevivj = vjvi for vi andvj in S1(E), and it follows thatS(E)

is commutative.

Proposition A.20.

(a) Sn(E) has the following universal mapping property: Letι be the
map ι(v1, . . . , vn) = v1 · · · vn of E × · · · × E into Sn(E). If l is any
symmetricn-multilinear map ofE × · · · × E into a vector spaceU , then
there exists a unique linear mapL : Sn(E) → U such that the diagram

Sn(E)

ι L

E × · · · × E −−−−−−−−−−−−→
l

U

commutes.
(b) S(E) has the following universal mapping property: Letι be the

map that embedsE asS1(E) ⊆ S(E). If l is any linear map ofE into a
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commutative associative algebraA with identity, then there exists a unique
algebra homomorphismL : S(E) → A with L(1) = 1 such that the
diagram

S(E)

ι L

E −−−−−−−−−−−−→
l

A

commutes.

PROOF. In both cases uniqueness is trivial. For existence we use the
universal mapping properties ofT n(E) andT (E) to producẽL on T n(E)

or T (E). If we can show that̃L annihilates the appropriate subspace so
as to descend toSn(E) or S(E), then the resulting map can be taken as
L, and we are done. For (a) we havẽL : T n(E) → U , and we are to
show that̃L(T n(E) ∩ I ) = 0, whereI is generated by allu ⊗ v − v ⊗ u
with u and v in T 1(E). A member ofT n(E) ∩ I is thus of the form∑

ai ⊗ (ui ⊗ vi − vi ⊗ ui) ⊗ bi with each term inT n(E). Each term here
is a sum of pure tensors

(A.21)
x1⊗· · ·⊗xr ⊗ui ⊗vi ⊗ y1⊗· · ·⊗ ys −x1⊗· · ·⊗xr ⊗vi ⊗ui ⊗ y1⊗· · ·⊗ ys

with r + 2 + s = n. Sincel by assumption takes equal values on

x1 × · · · × xr × ui × vi × y1 × · · · × ys

x1 × · · · × xr × vi × ui × y1 × · · · × ys,and

L̃ vanishes on (A.21), and it follows that̃L(T n(E) ∩ I ) = 0.
For (b) we are to show that̃L : T (E) → A vanishes onI . Since ker̃L

is an ideal, it is enough to check thatL̃ vanishes on the generators ofI .
But L̃(u ⊗ v − v ⊗ u) = l(u)l(v) − l(v)l(u) = 0 by the commutativity of
A, and thusL(I ) = 0.

Corollary A.22. If E and F are vector spaces overk, then the vector
space Homk(Sn(E), F) is canonically isomorphic (via restriction to pure
tensors) to the vector space ofF valued symmetricn-multilinear functions
on E × · · · × E .

PROOF. Restriction is linear and one-one. It is onto by Proposition
A.20a.
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Next we shall identify a basis forSn(E) as a vector space. The union of
such bases asn varies will then be a basis ofS(E). Let {ui}i∈A be a basis
of E . A simple ordering on the index setA is a partial ordering in which
every pair of elements is comparable.

Proposition A.23. Let E be a vector space overk, let {ui}i∈A be a basis
of E , and suppose that a simple ordering has been imposed on the index
set A. Then the set of all monomialsu j1

i1
· · · u jk

ik
with i1 < · · · < ik and∑

m jm = n is a basis ofSn(E).

REMARK. In particular if E is finite dimensional with ordered basis
u1, . . . , uN , then the monomialsu j1

1 · · · u jN

N of total degreen form a basis
of Sn(E).

PROOF. SinceS(E) is commutative and since monomials spanT n(E),
the indicated set spansSn(E). Let us see independence. The map∑

ci ui �→ ∑
ci Xi of E into the polynomial algebrak[{Xi}i∈A] is linear into

a commutative algebra with identity. Its extension via Proposition A.20b
maps our spanning set forSn(E) to distinct monomials ink[{Xi}i∈A], which
are necessarily linearly independent. Hence our spanning set is a basis.

The proof of Proposition A.23 may suggest thatS(E) is just polyno-
mials in disguise, but this suggestion is misleading, even ifE is finite
dimensional. The isomorphism withk[{Xi}i∈A] in the proof depended on
choosing a basis ofE . The canonical isomorphism is betweenS(E∗) and
polynomials onE . Part (b) of the corollary below goes in the direction of
establishing such an isomorphism.

Corollary A.24. Let E be a finite-dimensional vector space overk of
dimensionN . Then

(a) dimSn(E) =
(

n + N − 1
N − 1

)
for 0 ≤ n < ∞,

(b) Sn(E∗) is canonically isomorphic toSn(E)∗ by

( f1 · · · fn)(w1, . . . , wn) =
∑
τ∈Sn

n∏
j=1

f j(wτ( j))),

whereSn is the symmetric group onn letters.

PROOF.
(a) A basis has been described in Proposition A.23. To see its cardinality,

we recognize that picking outN − 1 objects fromn + N − 1 to label as
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dividers is a way of assigning exponents to theuj ’s in an ordered basis;

thus the cardinality of the indicated basis is

(
n + N − 1

N − 1

)
.

(b) Let f1, . . . , fn be in E∗, and define

l f1,..., fn(w1, . . . , wn) =
∑
τ∈Sn

n∏
j=1

f j(wτ( j))).

Then l f1,..., fn is symmetricn-multilinear from E × · · · × E into k and
extends by Proposition A.20a to a linearL f1,..., fn : Sn(E) → k. Thus
l( f1, . . . , fn) = L f1,..., fn defines a symmetricn-multilinear map of
E∗ × · · · × E∗ into Sn(E∗). Its linear extensionL mapsSn(E∗) into
Sn(E)∗.

To complete the proof, we shall show thatL carries basis to basis. Let
u1, . . . , uN be an ordered basis ofE , and letu∗

1, . . . , u∗
N be the dual basis.

Part (a) shows that the elements(u∗
1)

j1 · · · (u∗
N ) jN with

∑
m jm = n form a

basis ofSn(E∗) and that the elements(u1)
k1 · · · (uN )kN with

∑
m km = n

form a basis ofSn(E). We show thatL of the basis ofSn(E∗) is the dual
basis of the basis ofSn(E), except for nonzero scalar factors. Thus let
f1, . . . , f j1 all beu∗

1, let f j1+1, . . . , f j1+ j2 all beu∗
2, and so on. Similarly let

w1, . . . , wk1 all beu1, let wk1+1, . . . , wk1+k2 all beu2, and so on. Then

L((u∗
1)

j1 · · · (u∗
N ) jN )((u1)

k1 · · · (uN )kN ) = L( f1 · · · fn)(w1 · · · wn)

= l( f1, . . . , fn)(w1 · · · wn)

=
∑
τ∈Sn

n∏
i=1

fi(wτ(i))).

For givenτ , the product on the right side is 0 unless, for each indexi , an
inequality jm−1 + 1 ≤ i ≤ jm implies thatkm−1 + 1 ≤ τ(i) ≤ km. In
this case the product is 1; so the right side counts the number of suchτ ’s.
For givenτ , getting product nonzero forceskm = jm for all m. And when
km = jm for all m, the choiceτ = 1 does lead to product 1. Hence the
members ofL of the basis are nonzero multiples of the members of the
dual basis, as asserted.

Now let us suppose thatkhas characteristic 0. We define ann-multilinear
function fromE × · · · × E into T n(E) by

(v1, . . . , vn) �→ 1

n!

∑
τ∈Sn

vτ(1) ⊗ · · · ⊗ vτ(n),
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and letσ : T n(E) → T n(E) be its linear extension. We callσ the
symmetrizeroperator. The image ofσ is denoted̃Sn(E), and the members
of this subspace are calledsymmetrizedtensors.

Corollary A.25. Let k have characteristic 0, and letE be a vector space
overk. Then the symmetrizer operatorσ satisfiesσ 2 = σ . The kernel of
σ is exactlyT n(E) ∩ I , and therefore

T n(E) = S̃n(E) ⊕ (T n(E) ∩ I ).

REMARK. In view of this corollary, the quotient mapT n(E) → Sn(E)

carriesS̃n(E) one-one ontoSn(E). Thus S̃n(E) can be viewed as a copy
of Sn(E) embedded as a direct summand ofT n(E).

PROOF. We have

σ 2(v1 ⊗ · · · ⊗ vn) = 1

(n!)2

∑
ρ,τ∈Sn

vρτ(1) ⊗ · · · ⊗ vρτ(n)

= 1

(n!)2

∑
ρ∈Sn

∑
ω∈Sn ,
(ω=ρτ)

vω(1) ⊗ · · · ⊗ vω(n)

= 1

n!

∑
ρ∈Sn

σ(v1 ⊗ · · · ⊗ vn)

= σ(v1 ⊗ · · · ⊗ vn).

Henceσ 2 = σ . ConsequentlyT n(E) is the direct sum of imageσ and
kerσ . We thus are left with identifying kerσ asT n(E) ∩ I .

The subspaceT n(E) ∩ I is spanned by elements

x1 ⊗· · ·⊗ xr ⊗u ⊗v ⊗ y1 ⊗· · ·⊗ ys − x1 ⊗· · ·⊗ xr ⊗v ⊗u ⊗ y1 ⊗· · ·⊗ ys

with r +2+ s = n, and it is clear thatσ vanishes on such elements. Hence
T n(E)∩ I ⊆ kerσ . Suppose that the inclusion is strict, say witht in kerσ
but t not in T n(E) ∩ I . Let q be the quotient mapT n(E) → Sn(E). The
kernel ofq is T n(E) ∩ I , and thusq(t) �= 0. From Proposition A.23 it is
clear thatq carries̃Sn(E) = imageσ ontoSn(E). Thus chooset ′ ∈ S̃n(E)

with q(t ′) = q(t). Thent ′ − t is in kerq = T n(E) ∩ I ⊆ ker σ . Since
σ(t) = 0, we see thatσ(t ′) = 0. Consequentlyt ′ is in kerσ ∩ imageσ = 0,
and we obtaint ′ = 0 andq(t) = q(t ′) = 0, contradiction.
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3. Exterior Algebra

We turn to a discussion of the exterior algebra. Letk be an arbitrary
field, and letE be a vector space overk. The construction, results, and
proofs for the exterior algebra

∧
(E) are similar to those for the symmetric

algebraS(E). The elements of
∧

(E) are to be all the alternating tensors
(= skew-symmetric ifk has characteristic�= 2), and so we want to force
v ⊗ v = 0. Thus we define theexterior algebra by

(A.26a)
∧

(E) = T (E)/I ′,

where

(A.26b) I ′ =
(

two-sided ideal generated by all
v ⊗ v with v in T 1(E)

)
.

Then
∧

(E) is an associative algebra with identity.
It is clear thatI ′ is homogeneous:I ′ = ⊕∞

n=0 (I ′ ∩ T n(E)). Thus we
can write ∧

(E) = ⊕∞
n=0 T n(E)/(I ′ ∩ T n(E)).

We write
∧n

(E) for thenth summand on the right side, so that

(A.27)
∧

(E) = ⊕∞
n=0

∧n
(E).

Since I ′ ∩ T 1(E) = 0, the map ofE into first-order elements
∧1

(E) is
one-one onto. The product operation in

∧
(E) is denoted∧ rather than⊗,

the image in
∧n

(E) of v1 ⊗ · · · vn in T n(E) being denotedv1 ∧ · · · ∧ vn.
If a is in

∧m
(E) andb is in

∧n
(E), thena ∧ b is in

∧m+n
(E). Moreover∧n

(E) is generated by elementsv1 ∧ · · · ∧ vn with all vj in
∧1

(E) ∼= E ,
sinceT n(E) is generated by corresponding elementsv1 ⊗ · · · ⊗ vn. The
defining relations for

∧
(E) makevi ∧vj = −vj ∧vi for vi andvj in

∧1
(E),

and it follows that

(A.28) a ∧ b = (−1)mnb ∧ a if a ∈ ∧m
(E) andb ∈ ∧n

(E).

Proposition A.29.

(a)
∧n

(E) has the following universal mapping property: Letι be the
mapι(v1, . . . , vn) = v1 ∧ · · · ∧ vn of E × · · · × E into

∧n
(E). If l is any

alternatingn-multilinear map ofE × · · · × E into a vector spaceU , then
there exists a unique linear mapL :

∧n
(E) → U such that the diagram
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∧n
(E)

ι L

E × · · · × E −−−−−−−−−−−−→
l

U

commutes.
(b)

∧
(E) has the following universal mapping property: Letι be the

map that embedsE as
∧1

(E) ⊆ ∧
(E). If l is any linear map ofE into

an associative algebraA with identity such thatl(v)2 = 0 for all v ∈ E ,
then there exists a unique algebra homomorphismL :

∧
(E) → A with

L(1) = 1 such that the diagram∧
(E)

ι L

E −−−−−−−−−−−−→
l

A

commutes.

PROOF. The proof is completely analogous to the proof of Proposition
A.20.

Corollary A.30. If E and F are vector spaces overk, then the vector
space Homk(

∧n
(E), F) is canonically isomorphic (via restriction to pure

tensors) to the vector space ofF valued alternatingn-multilinear functions
on E × · · · × E .

PROOF. Restriction is linear and one-one. It is onto by Proposition
A.29a.

Next we shall identify a basis for
∧n

(E) as a vector space. The union
of such bases asn varies will then be a basis of

∧
(E).

Proposition A.31. Let E be a vector space overk, let {ui}i∈A be a basis
of E , and suppose that a simple ordering has been imposed on the index
setA. Then the set of all monomialsui1 ∧ · · · ∧ uin with i1 < · · · < in is a
basis of

∧n
(E).

PROOF. Since multiplication in
∧

(E) satisfies (A.28) and since mono-
mials spanT n(E), the indicated set spans

∧n
(E). Let us see independence.
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For i ∈ A, let u∗
i be the member ofE∗ with u∗

i (uj) equal to 1 forj = i and
equal to 0 forj �= i . Fix r1 < · · · < rn, and define

l(w1, . . . , wn) = det{u∗
ri
(wj)} for w1, . . . , wn in E .

Thenl is alternatingn-multilinear fromE × · · ·× E into k and extends by
Proposition A.29a toL :

∧n
(E) → k. If k1 < · · · < kn, then

L(uk1 ∧ · · · ∧ ukn) = l(uk1, . . . , ukn) = det{u∗
ri
(ukj )},

and the right side is 0 unlessr1 = k1, . . . , rn = kn, in which case it is 1.
This proves that theur1 ∧ · · · ∧ urn are linearly independent in

∧n
(E).

Corollary A.32. Let E be a finite-dimensional vector space overk of
dimensionN . Then

(a) dim
∧n

(E) =
(

N
n

)
for 0 ≤ n ≤ N and= 0 for n > N ,

(b)
∧n

(E∗) is canonically isomorphic to
∧n

(E)∗ by

( f1 ∧ · · · ∧ fn)(w1, . . . , wn) = det{ fi(wj)}.

PROOF. Part (a) is an immediate consequence of Proposition A.31, and
(b) is proved in the same way as Corollary A.24b, using Proposition A.29a
as a tool.

Now let us suppose thatkhas characteristic 0. We define ann-multilinear
function fromE × · · · × E into T n(E) by

(v1, . . . , vn) �→ 1

n!

∑
τ∈Sn

(sgnτ)vτ(1) ⊗ · · · ⊗ vτ(n),

and letσ ′ : T n(E) → T n(E) be its linear extension. We callσ ′ the
antisymmetrizer operator. The image ofσ ′ is denoted

∧̃n
(E), and the

members of this subspace are calledantisymmetrized tensors.

Corollary A.33. Let k have characteristic 0, and letE be a vector space
over k. Then the antisymmetrizer operatorσ ′ satisfiesσ ′2 = σ ′. The
kernel ofσ ′ is exactlyT n(E) ∩ I ′, and therefore

T n(E) = ∧̃n
(E) ⊕ (T n(E) ∩ I ′).

REMARK. In view of this corollary, the quotient mapT n(E) → ∧n
(E)

carries
∧̃n

(E) one-one onto
∧n

(E). Thus
∧̃n

(E) can be viewed as a copy
of

∧n
(E) embedded as a direct summand ofT n(E).
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PROOF. We have

σ ′2(v1 ⊗ · · · ⊗ vn) = 1

(n!)2

∑
ρ,τ∈Sn

(sgnρτ)vρτ(1) ⊗ · · · ⊗ vρτ(n)

= 1

(n!)2

∑
ρ∈Sn

∑
ω∈Sn ,
(ω=ρτ)

(sgnω)vω(1) ⊗ · · · ⊗ vω(n)

= 1

n!

∑
ρ∈Sn

σ ′(v1 ⊗ · · · ⊗ vn)

= σ ′(v1 ⊗ · · · ⊗ vn).

Henceσ ′2 = σ ′. ConsequentlyT n(E) is the direct sum of imageσ ′ and
kerσ ′. We thus are left with identifying kerσ ′ asT n(E) ∩ I ′.

The subspaceT n(E) ∩ I ′ is spanned by elements

x1 ⊗ · · · ⊗ xr ⊗ v ⊗ v ⊗ y1 ⊗ · · · ⊗ ys

with r +2+s = n, and it is clear thatσ ′ vanishes on such elements. Hence
T n(E)∩ I ′ ⊆ kerσ ′. Suppose that the inclusion is strict, say witht in kerσ ′

but t not in T n(E) ∩ I ′. Let q be the quotient mapT n(E) → ∧n
(E). The

kernel ofq is T n(E) ∩ I ′, and thusq(t) �= 0. From Proposition A.31
it is clear thatq carries

∧̃n
(E) = imageσ ′ onto

∧n
(E). Thus choose

t ′ ∈ ∧̃n
(E) with q(t ′) = q(t). Thent ′ − t is in kerq = T n(E) ∩ I ′ ⊆

ker σ ′. Sinceσ ′(t) = 0, we see thatσ ′(t ′) = 0. Consequentlyt ′ is in
kerσ ′ ∩ imageσ ′ = 0, and we obtaint ′ = 0 andq(t) = q(t ′) = 0,
contradiction.

4. Filtrations and Gradings

Let k be any field. A vector spaceV overk will be said to befiltered if
there is a specified increasing sequence of subspaces

(A.34) V0 ⊆ V1 ⊆ V2 ⊆ · · ·
with unionV . In this case we putV−1 = 0 by convention. We shall say that
V is graded if there is a specified sequence of subspacesV 0, V 1, V 2, . . .

such that

(A.35) V =
∞⊕

n=0

V n.
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WhenV is graded, there is a natural filtration ofV given by

(A.36) Vn =
n⊕

k=0

V k .

WhenE is a vector space, the tensor algebraV = T (E) is graded as a
vector space, and the same thing is true of the symmetric algebraS(E) and
the exterior algebra

∧
(E). In each case thenth subspace of the grading

consists of the subspace of tensors that are homogeneous of degreen.
WhenV is a filtered vector space as in (A.34), theassociated graded

vector spaceis

(A.37) grV =
∞⊕

n=0

Vn/Vn−1.

In the case thatV is graded and its filtration is the natural one given
in (A.36), grV recovers the given grading onV, i.e., grV is canonically
isomorphic withV in a way that preserves the grading.

Let V and V ′ be two filtered vector spaces, and letϕ be a linear
map between them such thatϕ(Vn) ⊆ V ′

n for all n. Since the restriction
of ϕ to Vn carriesVn−1 into V ′

n−1, this restriction induces a linear map
grn ϕ : (Vn/Vn−1) → (V ′

n/V ′
n−1). The direct sum of these linear maps is

then a linear map

(A.38) grϕ : gr V → gr V ′

called theassociated graded mapfor ϕ.

Proposition A.39. Let V andV ′ be two filtered vector spaces, and let
ϕ be a linear map between them such thatϕ(Vn) ⊆ V ′

n for all n. If gr ϕ is
an isomorphism, thenϕ is an isomorphism.

PROOF. It is enough to prove thatϕ|Vn : Vn → V ′
n is an isomorphism for

everyn. We establish this property by induction onn, the trivial case for
the induction beingn = −1. Suppose that

(A.40) ϕ|Vn−1 : Vn−1 → V ′
n−1 is an isomorphism.

By assumption

(A.41) grn ϕ : (Vn/Vn−1) → (V ′
n/V ′

n−1) is an isomorphism.

If v is in ker(ϕ|Vn), then(grn ϕ)(v+Vn−1) = 0+V ′
n−1, and (A.41) shows

thatv is in Vn−1. By (A.40),v = 0. Thusϕ|Vn is one-one. Next suppose that
v′ is in V ′

n. By (A.41) there existsvn in Vn such that(grn ϕ)(vn + Vn−1) =
v′ + V ′

n−1. Write ϕ(vn) = v′ + v′
n−1 with v′

n−1 in V ′
n−1. By (A.40) there

existsvn−1 in Vn−1 with ϕ(vn−1) = v′
n−1. Thenϕ(vn − vn−1) = v′, and thus

ϕ|Vn is onto. This completes the induction.
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Now let A be an associative algebra overk with identity. If A has a
filtration A0, A1, . . . of vector subspaces with 1∈ A0 such thatAm An ⊆
Am+n for all m andn, then we say thatA is afiltered associative algebra.
Similarly if A is graded asA = ⊕∞

n=0 An in such a way thatAm An ⊆ Am+n

for all m andn, then we say thatA is agraded associative algebra.

Proposition A.42. If A is a filtered associative algebra with identity,
then the graded vector space grA acquires a multiplication in a natural way
making it into a graded associative algebra with identity.

PROOF. We define a product

(Am/Am−1) × (An/An−1) → Am+n/Am+n−1

(am + Am−1)(an + An−1) = aman + Am+n−1.by

This is well defined sinceam An−1, Am−1an, andAm−1 An−1 are all contained
in Am+n−1. It is clear that this multiplication is distributive and associative
as far as it is defined. We extend the definition of multiplication to all of
gr A by taking sums of products of homogeneous elements, and the result
is an associative algebra. The identity is the element 1+ A−1 of A0/A−1.

5. Left Noetherian Rings

The first part of this section works with an arbitrary ringA with identity.
All left A modules are understood to beunital in the sense that 1 acts as 1.
Later in the section we specialize to the case thatA is an associative algebra
with identity over a fieldk.

Let M be a left A module. We say thatM satisfies theascending
chain condition as a leftA module if wheneverM1 ⊆ M2 ⊆ · · · is an
infinite ascending sequence of leftA submodules ofM , then there exists
an integern such thatMi = Mn for i ≥ n. We say thatM satisfies the
maximum condition as a leftA module if every nonempty collection of
left A submodules ofM has a maximal element under inclusion.

Proposition A.43. The left A moduleM satisfies the ascending chain
condition if and only if it satisfies the maximum condition, if and only if
every leftA submodule ofM is finitely generated.
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PROOF. If M satisfies the ascending chain condition, we argue by
contradiction thatM satisfies the maximum condition. Let a nonempty
collection {Mα} of left A submodules be given for which the maximum
condition fails. LetM1 be anyMα. SinceM1 is not maximal, chooseM2 as
anMα properly containingM1. SinceM2 is not maximal, chooseM3 as an
Mα properly containingM2. Continuing in this way results in a properly
ascending infinite chain, in contradiction to the hypothesis thatM satisfies
the ascending chain condition.

If M satisfies the maximum condition andN is a left A submodule,
define a leftA submoduleNF = ∑

m∈F Am of N for every finite subsetF
of N . The maximum condition yields anF0 with NF ⊆ NF0 for all F , and
we must haveNF0 = N . ThenF0 generatesN .

If every left A submodule ofM is finitely generated and if an ascending
chain M1 ⊆ M2 ⊆ · · · is given, let{mα} be a finite set of generators for⋃∞

j=1 Mj . Then allmα are in someMn, and it follows thatMi = Mn for
i ≥ n.

We say that the ringA is left Noetherian if A, as a leftA module,
satisfies the ascending chain condition, i.e., if the left ideals ofA satisfy
the ascending chain condition.

Proposition A.44. The ringA is left Noetherian if and only if every left
ideal is finitely generated.

PROOF. This follows from Proposition A.43.

Theorem A.45(Hilbert Basis Theorem). IfA is a commutative Noether-
ian ring with identity, then the polynomial ringA[ X ] in one indeterminate
is Noetherian.

REFERENCE. Zariski–Samuel [1958], p. 201.

EXAMPLES. Any field k is Noetherian, having only the two ideals 0 and
k. Iterated application of Theorem A.45 shows that any polynomial ring
k[ X1, . . . , Xn] is Noetherian. IfE is ann-dimensional vector space over
k, thenS(E) is noncanonically isomorphic as a ring tok[ X1, . . . , Xn] as a
consequence of Corollary A.24b, andS(E) is therefore Noetherian.

Now let A be a filtered associative algebra overk, in the sense of the
previous section, and let grA be the corresponding graded associative
algebra. Leta be an element ofA, and suppose thata is in An but not
An−1. The member̄a = a + An−1 of An ⊆ gr A is called theleading term
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of a. In the case of the 0 element ofA, we define the leading term to be
the 0 element of grA.

Lemma A.46. Let A be a filtered associative algebra, and let grA be
the corresponding graded associative algebra. IfI is a left ideal inA, then
the setĪ of finite sums of leading terms of members ofI is a left ideal of
gr A that is homogeneous in the sense thatĪ = ⊕∞

n=0( Ī ∩ An).

PROOF. Every leading term other than 0 lies in someAn, and therefore
Ī is homogeneous. Let̄x be homogeneous in grA, and letȳ be a leading
term in Ī , arising from somey ∈ I . We are to prove that̄x ȳ is in Ī . From
the definition of grA, x̄ has to be the leading term of somex ∈ A. Then
xy is in I , andxy is in Ī . From the rule for multiplication in grA and the
requirement thatAm An ⊆ Am+n in A, eitherx̄ ȳ = xy or x̄ ȳ = 0. In either
case,x̄ ȳ is in Ī .

Proposition A.47. Let A be a filtered associative algebra, and let grA
be the corresponding graded associative algebra. If grA is left Noetherian,
thenA is left Noetherian.

PROOF. By Proposition A.44 every left ideal of grA is finitely generated,
and we are to prove thatA has the same property. SupposeI is a left ideal
in A, and formĪ . By Lemma A.46,Ī is a homogeneous left ideal, and thus
it has finitely many generators̄a1, . . . , ār . Without loss of generality we
may assume that eachāj is homogeneous and is the leading term of some
aj in I .

The claim is thata1, . . . , ar is a finite set of generators forI . We prove by
induction onn that each elementa whose leading term̄a has degreen can
be written asa = ∑r

i=1 ci ai with ci in A, and then the claim follows. The
claim is trivial forn = 0. Thus assume the claim for elements with leading
term of degree< n. Let a be given with leading term̄a = ∑r

i=1 c̄i āi ,
c̄i ∈ gr A. Equating homogeneous parts, we may assume that eachc̄i is
homogeneous and that eachc̄i āi is homogeneous of degreen. Thenc̄i is
the leading term for someci , and the leading term of

∑r
i=1 ci ai is ā. Hence

a − ∑r
i=1 ci ai is in An−1 and by inductive hypothesis is in the left ideal

generated by theai . Hencea is in the left ideal generated by theai . This
completes the induction and the proof of the proposition.



APPENDIX B

Lie’s Third Theorem

Abstract. A finite-dimensional real Lie algebra is the semidirect product of a semi-
simple subalgebra and the solvable radical, according to the Levi decomposition. As
a consequence of this theorem and the correspondence between semidirect products of
Lie algebras and semidirect products of simply connected analytic groups, every finite-
dimensional real Lie algebra is the Lie algebra of an analytic group. This is Lie’s Third
Theorem.

Ado’s Theorem says that every finite-dimensional real Lie algebra admits a one-one
finite-dimensional representation on a complex vector space. This result sharpens Lie’s
Third Theorem, saying that every real Lie algebra is the Lie algebra of an analytic group of
matrices.

The Campbell–Baker–Hausdorff Formula expresses the multiplication rule near the
identity in an analytic group in terms of the linear operations and bracket multiplication
within the Lie algebra. Thus it tells constructively how to pass from a finite-dimensional real
Lie algebra to the multiplication rule for the corresponding analytic group in a neighborhood
of the identity.

1. Levi Decomposition

Chapter I omits several important theorems about general finite-
dimensional Lie algebras overR related to the realization of Lie groups, and
those results appear in this appendix. They were omitted from Chapter I
partly because in this treatment they use a result about semisimple Lie
algebras that was not proved until Chapter V. One of the results in this
appendix uses also some material from Chapter III.

Lemma B.1. Let ϕ be anR linear representation of the real semisim-
ple Lie algebrag on a finite-dimensional real vector spaceV . Then V
is completely reducible in the sense that there exist invariant subspaces
U1, . . . , Ur of V such thatV = U1 ⊕ · · · ⊕ Ur and such that the restriction
of the representation to eachUi is irreducible.

PROOF. It is enough to prove that any invariant subspaceU of V has
an invariant complementW . By Theorem 5.29, there exists an invariant

659
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complex subspaceW ′ of V C such thatV C = U C ⊕ W ′. Let P be theR
linear projection ofV C on V alongi V, and put

W = P(W ′ ∩ (V ⊕ iU )).

SinceP commutes withϕ(g), we see thatϕ(g)(W ) ⊆ W . To complete the
proof, we show thatV = U ⊕ W .

Let a be inU ∩ W . Thena + ib is in W ′ ∩ (V ⊕ iU ) for someb ∈ V .
The elementb must be inU , and we know thata is in U . Hencea + ib is
in U C. But thena + ib is in U C ∩ W ′ = 0, anda = 0. HenceU ∩ W = 0.

Next let v ∈ V be given. SinceV C = U C + W ′, we can writev =
(a + ib) + (x + iy) with a ∈ U , b ∈ U , and x + iy ∈ W ′. Sincev

is in V, y = −b. Thereforex + iy is in V ⊕ iU , as well asW ′. Since
P(x + iy) = x , x is in W . Thenv = a + x with a ∈ U andx ∈ W , and
V = U + W .

Theorem B.2 (Levi decomposition). Ifg is a finite-dimensional Lie
algebra overR, then there exists a semisimple subalgebras of g such that
g is the semidirect productg = s ⊕π (radg) for a suitable homomorphism
π : s → DerR(radg).

PROOF. Let r = radg. We begin with two preliminary reductions. The
first reduction will enable us to assume that there is no nonzero ideala of g

properly contained inr. In fact, an argument by induction on the dimension
would handle such a situation: Proposition 1.11 shows that the radical of
g/a is r/a. Hence induction givesg/a = s/a ⊕ r/a with s/a semisimple.
Sinces/a is semisimple,a = rads. Then induction givess = s′ ⊕a with s′

semisimple. Consequentlyg = s′⊕r, ands′ is the required complementary
subalgebra.

As a consequence,r is abelian. In fact, otherwise Proposition 1.7 shows
that [r, r] is an ideal ing, necessarily nonzero and properly contained inr.
So the first reduction eliminates this case.

The second reduction will enable us to assume that [g, r] = r. In fact,
[g, r] is an ideal ofg contained inr. The first reduction shows that we may
assume it is 0 orr. If [g, r] = 0, then the real representation ad ofg on
g descends to a real representation ofg/r on g. Sinceg/r is semisimple,
Lemma B.1 shows that the action is completely reducible. Thusr, which
is an invariant subspace ing, has an invariant complement, and we may
take this complement ass.

As a consequence,

(B.3) r ∩ Zg = 0.
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In fact r ∩ Zg is an ideal ofg. It is properly contained inr since
r ∩ Zg = r implies that [g, r] = 0, in contradiction with the second
reduction. Therefore the first reduction implies (B.3).

With the reductions in place, we imitate some of the proof of Theorem
5.29. That is, we put

V = {γ ∈ Endg | γ (g) ⊆ r andγ |r is scalar}

and define a representationσ of g on Endg by

σ(X)γ = (adX)γ − γ (adX) for γ ∈ Endg andX ∈ g.

The subspaceV is an invariant subspace underσ , and

U = {γ ∈ V | γ = 0 onr}

is an invariant subspace of codimension 1 inV such thatσ(X)(V ) ⊆ U
for X ∈ g. Let

T = {adY | Y ∈ r}.
This is a subspace ofU sincer is an abelian Lie subalgebra. IfX is in g

andγ = adY is in T , thenσ(X)γ = ad [X, Y ] with [ X, Y ] ∈ r. HenceT
is an invariant subspace underσ .

FromV ⊇ U ⊇ T , we can form the quotient representationsV/T and
V/U . The natural map ofV/T ontoV/U respects theg actions, and the
g action ofV/U is 0 sinceσ(X)(V ) ⊆ U for X ∈ g. If X is in r andγ is
in V, then

σ(X)γ = (adX)γ − γ (adX) = −γ (adX)

since imageγ ⊆ r andr is abelian. Sinceγ is a scalarλ(γ ) on r, we can
rewrite this formula as

(B.4) σ(X)γ = ad(−λ(γ )X).

Equation (B.4) exhibitsσ(X)γ as inT . Thusσ |r mapsV into T , andσ

descends to representations ofg/r on V/T andV/U . The natural map of
V/T ontoV/U respects theseg/r actions.

Since dimV/U = 1, the kernel ofV/T → V/U is a g/r invariant
subspace ofV/T of codimension 1, necessarily of the formW/T with
W ⊆ V . Sinceg/r is semisimple, Lemma B.1 allows us to write

(B.5) V/T = W/T ⊕ (Rγ0 + T )/T
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for a 1-dimensional invariant subspace(Rγ0 + T )/T . The directness of
this sum means thatγ0 is not inU . Soγ0 is not 0 onr. Normalizing, we
may assume thatγ0 acts by the scalar−1 onr. In view of (B.4), we have

(B.6) σ(X)γ0 = adX for X ∈ r.

Since(Rγ0 + T )/T is invariant in (B.5), we haveσ(X)γ0 ∈ T for each
X ∈ g. Thus we can writeσ(X)γ0 = adϕ(X) for someϕ(X) ∈ r.
The elementϕ(X) is unique by (B.3), and thereforeϕ is a linear function
ϕ : g → r. By (B.6), ϕ is a projection. If we puts = kerϕ, then we
haveg = s ⊕ r as vector spaces, and we have only to show thats is a Lie
subalgebra. The subspaces = kerϕ is the set of allX such thatσ(X)γ0 =
0. This is the set of allX such that(adX)γ0 = γ0(adX). Actually if γ is
any element of Endg, then the set ofX ∈ g such that(adX)γ = γ (adX)

is always a Lie subalgebra. Hences is a Lie subalgebra, and the proof is
complete.

2. Lie’s Third Theorem

Lie’s Third Theorem, which Lie proved as a result about vector fields
and local Lie groups, has come to refer to the following improved theorem
due to Cartan.

Theorem B.7. Every finite-dimensional Lie algebra overR is isomor-
phic to the Lie algebra of an analytic group.

PROOF. Let g be given, and writeg = s ⊕π r as in Theorem B.2, with
s semisimple andr solvable. Corollary 1.126 shows that there is a simply
connected Lie groupR with Lie algebra isomorphic tor. The group Ints is
an analytic group with Lie algebra ads isomorphic tos sinces has center
0. Let S be the universal covering group of Ints. By Theorem 1.125 there
exists a unique actionτ of S on R by automorphisms such thatd τ̄ = π ,
andG = S ×τ R is a simply connected analytic group with Lie algebra
isomorphic tog = s ⊕π r.

3. Ado’s Theorem

Roughly speaking, Ado’s Theorem is the assertion that every Lie algebra
overR has a one-one representation on some finite-dimensional complex
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vector space. This theorem can be regarded as sharpening Lie’s Third
Theorem: Each real Lie algebra is not merely the Lie algebra of an analytic
group; it is the Lie algebra of an analytic group of complex matrices.

Throughout this section,g will denote a finite-dimensional Lie algebra
overR, andU (gC) will be the universal enveloping algebra of its complex-
ification.

Theorem B.8 (Ado’s Theorem). Letg be a finite-dimensional Lie
algebra overR, let radg be its radical, and letn be its unique largest
nilpotent ideal given as in Corollary 1.41. Then there exists a one-one
finite-dimensional representationϕ of g on a complex vector space such
thatϕ(Y ) is nilpotent for everyY in n. If g is complex, thenϕ can be taken
to be complex linear.

The proof of the theorem will be preceded by two lemmas. The second
lemma is the heart of the matter, using the left Noetherian property of
universal enveloping algebras (Proposition 3.27) to prove that a certain
natural representation is finite dimensional.

The last statement of the theorem is something that we shall dispose
of now. Proving this extension of the theorem amounts to going over
the entire argument to see that, in every case, real vector spaces and Lie
algebras can be replaced by complex vector spaces and Lie algebras and
that Lie algebras that get complexified wheng is real do not need to be
complexified wheng is complex. In Theorem B.2 the representation ad is
complex linear, and no new analog of Lemma B.1 is needed; Theorem 5.29
is enough by itself. In the proof of Theorem B.2 and the argument that is
about to come, wheng is complex, so is radg and so is the unique largest
nilpotent ideal. In Lemmas B.9 and B.12,U (gC) andT (gC) are simply to
be replaced byU (g) andT (g), and DerR g and EndR g are to be replaced
by DerC g and EndC g. The details are all routine, and we omit them.

As in Appendix A, aderivation D : A → A of an associative algebra
A with identity is a linear mapping such thatD(uv) = (Du)v +u(Dv) for
all u andv in A. A derivation automatically hasD(1) = 0.

Lemma B.9. Any derivationd of a real Lie algebrag extends uniquely
to a derivatioñd of U (gC) to itself.

PROOF. Uniqueness is clear since monomials spanU (gC) and since the
assumptions determinẽd on monomials.

For existence we use Proposition A.16 to construct a derivationD of
T (gC) extendingd. To getD to descend to a derivatioñd of U (gC), we
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need to see thatD carries

(B.10) ker(T (gC) → U (gC))

to itself, i.e., that

(B.11) D(u(X ⊗ Y − Y ⊗ X − [ X, Y ])v) is in (B.10)

for all monomialsu andv in T (gC) and for allX andY in g. The derivation
D acts on one factor of a product at a time. If it acts in a factor ofu or
v, then the factor(X ⊗ Y − Y ⊗ X − [ X, Y ]) is left alone byD, and the
corresponding term of (B.11) is in (B.10). Next suppose it acts on the
middle factor, leavingu andv alone. Sinced is a derivation ofg, we have

D(X ⊗ Y − Y ⊗ X − [ X, Y ])

= (d X ⊗ Y + X ⊗ dY ) − (dY ⊗ X + Y ⊗ d X)

− ([d X, Y ] + [ X, dY ])

= (d X ⊗ Y − Y ⊗ d X − [d X, Y ])

+ (X ⊗ dY − dY ⊗ X − [ X, dY ]).

The right side is the sum of two members of (B.10), and thus the remaining
terms of (B.11) are in (B.10). ThusD descends to give a definition of̃d
onU (gC).

Lemma B.12. Let g be a real solvable Lie subalgebra ofgl(N , C), let
d be the Lie subalgebra DerR g of EndR g, and letπ be the natural action
of d on g. Suppose that all members of the largest nilpotent idealn of g

are nilpotent matrices. Then there exists a one-one representationϕ of the
semidirect productd ⊕π g such thatϕ(d + Y ) is nilpotent wheneverY is
in n and the memberd of d is nilpotent as a member of EndR g.

PROOF. LetG be the complex associative algebra of matrices generated
by g and 1. By Proposition 3.3 the inclusion ofg into G extends to an
associative algebra homomorphismρ : U (gC) → G sending 1 into 1. Let
I be the kernel ofρ. SinceG is finite dimensional,I is a two-sided ideal
of finite codimension inU (gC).

Using Lemma B.9, we extend each derivationd of g to a derivatioñd
of U (gC). LetD be the complex associative algebra of linear mappings of
U (gC) into itself generated by 1 and all the extensionsd̃.
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Let I0 ⊆ I be the subset of allu ∈ I such thatDu is in I for all
D ∈ D. We prove thatI0 is an ideal inU (gC). It is certainly a vector
subspace. To see that it is a left ideal, leta be in U (gC), let u be in I0,
and letD = d̃1 · · · d̃k be a monomial inD. When we applyD to au, we
obtain a sum of 2k terms; each term is of the form(D1a)(D2u), with D1

equal to the product of a subset of thẽdj and D2 equal to the product of
the complementary subset. Sinceu is in I0, eachD2u is in I , and hence
(D1a)(D2u) is in I . ConsequentlyD(au) is in I for all D ∈ D, andu is
in I0. ThusI0 is a left ideal, and a similar argument shows that it is a right
ideal.

Recall that the members ofg are N -by-N matrices. We are going to
obtain the space of the desired representationϕ asU (gC)/I0. The finite
dimensionality of this space will follow from Corollary 3.28 (a consequence
of the left Noetherian property ofU (gC)) once we prove that

(B.13) I N ⊆ I0 ⊆ I.

By Lie’s Theorem (Corollary 1.29) we may regard theN -by-N matrices
in g as upper triangular. By assumption the matrices inn are nilpotent.
Since the latter matrices are simultaneously upper triangular and nilpotent,
we see thatY1 · · · YN is the 0 matrix for anyY1, . . . , YN in n. Lifting this
result back viaρ to a statement aboutU (gC), we conclude that

(B.14) Y1 · · · YN is in I

whenever allYj lie in n ⊆ U (gC).
Let J be the two-sided ideal inU (gC) generated by the members ofn.

Toward proving (B.13), we first show that (B.14) implies

(B.15) J N ⊆ I.

Let us begin by showing that inductively ons that ifY is inn andX1, . . . , Xs

are ing, then

(B.16) X1 · · · XsY is in nU (gC).

This is trivial for s = 0. If s is ≥ 1 and if (B.16) holds fors − 1, then

X1 · · · XsY = X1 · · · Xs−1Y Xs + X1 · · · Xs−1[ Xs, Y ].

Since [Xs, Y ] is in n, the inductive hypothesis shows that both terms on
the right side are innU (gC). Thus (B.16) follows fors. Consequently we
obtain

(B.17) U (gC)n ⊆ nU (gC).
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From (B.17) it follows that(u1Y1u ′
1)(u2Y2u ′

2) is a sum of terms of the form
u1Y1Y ′

2u ′′
2. Thus we can argue inductively onr that

(B.18) (u1Y1u ′
1)(u2Y2u ′

2) · · · (ur Yr u ′
r)

is a sum of terms of the formu1Y1Y ′
2 · · · Y ′

r u ′′
r . Forr = N , the latter terms

are in I by (B.14). Every member ofJ N is a sum of terms (B.18) with
r = N , and thus (B.15) follows.

From Proposition 1.40 we know thatd(X) is in n for any d ∈ d and
X ∈ g. If d̃ denotes the extension ofd to U (gC), then it follows from the
derivation property of̃d that

(B.19) d̃(U (gC)) ⊆ J.

From another application of the derivation property, we obtaind̃(J N ) ⊆
J N . Taking products of such derivations and using (B.15), we see that
D(J N ) ⊆ J N ⊆ I for all D ∈ D. Therefore

(B.20) J N ⊆ I0.

Now we can finish the proof of (B.13), showing thatI N ⊆ I0. Certainly
I N ⊆ I . Let u1, . . . , uN be in I , and let D be a monomial inD. By
the derivation property,D(u1 · · · uN ) is a linear combination of terms
(D1u1) · · · (DN uN ) with Dj a monomial inD. If some Dj has degree
0, thenDj uj is in I , and the corresponding term(D1u1) · · · (DN uN ) is in I
sinceI is a two-sided ideal. If allDj have degree> 0, then (B.19) shows
that all Dj uj are inJ . The corresponding term(D1u1) · · · (DN uN ) is then
in J N and is inI by (B.15). Thus all terms ofD(u1 · · · uN ) are in I , and
u1 · · · uN is in I0. This proves (B.13).

As was mentioned earlier, it follows from Corollary 3.28 thatG∗ =
U (gC)/I0 is finite dimensional. Letu �→ u∗ be the quotient map. ThenG∗

is a unitalU (gC) module, and we obtain a representationϕ of g on it by
the definition

(B.21a) ϕ(X)(u∗) = (Xu)∗.

SinceI0 is stable underD, eachd in d induces a derivationϕ(d) of G∗ given
by

(B.21b) ϕ(d)u∗ = (d̃u)∗.
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Formula (B.21b) defines a representation ofd = DerR g onG∗ because the
uniqueness in Lemma B.9 implies that

˜[d1, d2] = d̃1d̃2 − d̃2d̃1.

Proposition 1.22 observes thatd ⊕π g becomes a semidirect-product Lie
algebra, andϕ, as defined in (B.21), is a representation ofd ⊕π g because

[ϕ(d), ϕ(X)]u∗ = ϕ(d)ϕ(X)u∗ − ϕ(X)ϕ(d)u∗

= ϕ(d)(Xu)∗ − ϕ(X)(d̃u)∗

= (d̃(Xu))∗ − (Xd̃u)∗

= ((d̃ X)u + Xd̃u)∗ − (Xd̃u)∗

= ϕ(d X)u∗

= ϕ([d, X ])u∗.

Now let us show thatϕ is one-one as a representation ofd ⊕π g. If
ϕ(d + X) = 0, then

0 = ϕ(d + X)1∗ = (d̃1)∗ + (X1)∗ = X ∗.

ThenX is in I0 ⊆ I , andX = 0 as a member ofg. Soϕ(d) = 0. EveryX ′

in g therefore has

0 = ϕ(d)(X ′)∗ = (d̃ X ′)∗ = (d X ′)∗.

Henced X ′ is in I0 ⊆ I , andd X ′ = 0 as a member ofg. Sod is the 0
derivation. We conclude thatϕ is one-one.

To complete the proof, we show thatϕ(d + Y ) is nilpotent wheneverY
is in n andd is nilpotent as a member of EndR g. To begin with,ϕ(Y ) is
nilpotent because (B.14) gives

(ϕ(Y ))N u∗ = (Y N u)∗ = 0

for everyu. Next, let us see thatϕ(d) is nilpotent. In fact, letGn = Un(g
C),

so thatG∗
n is the subspaceUn(g

C)+I0 ofG∗. If d p = 0, we show by induction
on n ≥ 1 thatd̃np(Gn) = 0. It is enough to handle monomials inGn. For
n = 1,G1 is justC + gC, and we havẽd p(1) = 0 andd̃ p X = d p X = 0 for
X in gC. For generaln, suppose that̃d (n−1)p(Gn−1) = 0. Any monomial of
Gn is of the formXu with X ∈ gC andu ∈ Gn−1. Powers of a derivation
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satisfy the Leibniz rule, and thereforẽdnp(Xu) = ∑np
k=0

(np
k

)
(d̃k X)(d̃np−ku).

The factord̃k X is 0 for k ≥ p, and the factor̃dnp−ku is 0 for k ≤ p;
thusd̃np(Xu) = 0, and we have proved that̃dnp(Gn) = 0. Then we have
ϕ(d)np(G∗

n) = (d̃npGn)
∗ = 0. SinceG∗ is finite dimensional and

⋃G∗
n = G∗,

ϕ(d)np(G∗) = 0 for n large enough. Henceϕ(d) is nilpotent.
Now that we knowϕ(d) andϕ(Y ) to be nilpotent, let us form the solvable

Lie subalgebraRd ⊕π n of d ⊕π g. It is a Lie subalgebra sinced(g) ⊆ n,
and it is solvable sinceRd is abelian. By Lie’s Theorem (Corollary 1.29),
we may choose a basis ofG∗ such that the matrix of every member of
ϕ(Rd + n) is upper triangular. Sinceϕ(d) andϕ(Y ) are nilpotent, their
matrices are strictly upper triangular and hence the sum of the matrices is
strictly upper triangular. Consequentlyϕ(d + Y ) is nilpotent.

PROOF OFTHEOREM B.8. We begin with the special case in whichg is
solvable, so thatg = radg ⊇ n. We proceed by induction on dimg. If

dimg = 1, theng ∼= R, andϕ1(t) =
(

0 t

0 0

)
is the required representation.

Suppose thatg is solvable with dimg = n > 1, that the theorem has
been proved for solvable Lie algebras of dimension< n, and thatn is the
largest nilpotent ideal ing. By Proposition 1.23,g contains an elementary
sequence—a sequence of subalgebras going from 0 tog one dimension at
a time such that each is an ideal in the next. Moreover, the last members of
this sequence can be taken to be any subspaces between [g, g] andg that
go up one dimension at a time. Proposition 1.39 shows that [g, g] ⊆ n, and
we may thus taken to be one of the members of the elementary sequence.

Let h be the member of the elementary sequence of codimension 1 in
g, let nh be its largest nilpotent ideal, and letX be a member ofg not
in h. By inductive hypothesis we can find a one-one finite-dimensional
representationϕ0 of h such thatϕ0(Y ) is nilpotent for allY ∈ nh. There
are now two cases.

Case 1: adX = 0. Then adX is nilpotent andX lies in n. Our
construction forcesn = g. Henceh is nilpotent andg must be the direct
sum ofRX andh. Let us write members ofg as pairs(t, Y ) with t ∈ R
andY ∈ h. Thenϕ(t, Y ) = ϕ1(t) ⊕ ϕ0(Y ) is the required representation.

Case 2: adX �= 0. We apply Lemma B.12 to the solvable Lie algebra
ϕ0(h). Let d = DerR h. The lemma gives us a one-one finite-dimensional
representationϕ of the semidirect productd ⊕ h such thatϕ(d + Y ) is
nilpotent for allY ∈ nh and all nilpotentd ∈ d. We restrict this to the
Lie subalgebraR(adX) ⊕ h, which is isomorphic withg. We consider
separately the subcases thatg is nilpotent andg is not nilpotent.
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Subcase 2a: g is nilpotent. Then the member adX of d is nilpotent
by (1.31), and thus every member ofϕ(R(adX) ⊕ h) is nilpotent. Soϕ,
interpreted as a representation ofg, is the required representation.

Subcase 2b: g is not nilpotent. Thenn is a nilpotent ideal ofh and we
must haven ⊆ nh. Again ϕ, interpreted as a representation ofg, is the
required representation: SinceX is not inn, adX is not nilpotent, and no
nonzero derivation inR(adX) is nilpotent. We know that every member
of ϕ(nh) is nilpotent, and thus every member ofϕ(n) is nilpotent.

This completes the induction, and the theorem has now been proved for
g solvable.

Now we consider the general case in whichg does not need to be
solvable. Let radg be the largest solvable ideal ofg, and letn be the
largest nilpotent ideal. By the special case we can find a one-one finite-
dimensional representationψ of radg such that every member ofψ(n) is
nilpotent. Letd = DerR(radg). We apply Lemma B.12 to the solvable Lie
algebraψ(radg), obtaining a one-one finite-dimensional representationϕ1

of d⊕ψ(radg) such thatϕ1(d +ψ(Y )) is nilpotent wheneverY is in n and
d is a nilpotent member ofd.

We apply the Levi decomposition of Theorem B.2 to writeg as a semidi-
rect products ⊕ radg with s semisimple. ForS ∈ s andX ∈ radg, define
ϕ2(S + X) = adS as a representation ofg on sC. Then we put

ϕ(S + X) = ϕ1(adS + ψ(X)) ⊕ ϕ2(S + X)

as a representation ofg on the direct sum of the spaces forϕ1 andϕ2.
If ϕ(S + X) = 0, thenϕ2(S + X) = 0 and adS = 0. Sinces is

semisimple,S = 0. Thereforeϕ(X) = 0 andϕ1(ψ(X)) = 0. Sinceψ

if one-one on radg andϕ1 is one-one onψ(radg), we obtainX = 0. We
conclude thatϕ is one-one.

Finally if Y is in n, thenϕ1(ψ(Y )) is nilpotent by construction, and
ϕ2(Y ) is 0 sinceY has nos term. Thereforeϕ(Y ) is nilpotent for everyY
in n.

4. Campbell–Baker–Hausdorff Formula

The theorem to be proved in this section is the following.

Theorem B.22 (Campbell–Baker–Hausdorff Formula). LetG be an
analytic group with Lie algebrag. Then for allA andB sufficiently close
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to 0 ing, expA expB = expC , where

(B.23) C = A + B + H2 + · · · + Hn + · · ·
is a convergent series in whichH2 = 1

2[ A, B] and Hn is a finite linear
combination of expressions(adX1) · · · (adXn−1)Xn with eachX j equal to
eitherA or B. The particular linear combinations that occur may be taken
to be independent ofG, as well as ofA andB.

A way of getting at the formula explicitly comes by thinking ofG as
GL(N , C) and using the formula from complex-variable theory

z = logez = log(1 + (ez − 1)) =
∞∑

k=1

(−1)k+1 1

k

( ∞∑
n=1

1

n!
zn

)k

,

valid for |z| < log 2 since|ez − 1| ≤ e|z| − 1. Because the sum of a
convergent power series determines its coefficients, an identity of this
kind forces identities on the coefficients; for example, the sum of the
contributions from the right side to the coefficient ofz is 1, the sum of
the contributions from the right side to the coefficient ofz2 is 0, etc. Hence
the identity has to be correct in a ring of formal power series. Then we can
substitute a matrixC , and we still have an identity if we have convergence.
Thus we obtain

C =
∞∑

k=1

(−1)k+1 1

k
(eC − 1)k

(B.24)

=
∞∑

k=1

(−1)k+1 1

k
(eAeB − 1)k

=
∞∑

k=1

(−1)k+1 1

k

(( ∞∑
m=0

1

m!
Am

)( ∞∑
n=0

1

n!
Bn

)
− 1

)k

=
∞∑

k=1

(−1)k+1 1

k

(
(A + B) + 1

2!
(A2 + 2AB + B2)

+ 1

3!
(A3 + 3A2B + 3AB2 + B3) + · · ·

)k

,

and Hn will have to be the sum of the terms on the right side that are
homogeneous of degreen, rewritten in terms of brackets. For example, the
quadratic term is

1
2!(A2 + 2AB + B2) − 1

2(A + B)2 = 1
2(2AB − AB − B A) = 1

2[ A, B],
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as stated in the theorem. Similar computation shows that

H3 = 1
12[ A, [ A, B]] + 1

12[B, [B, A]] and H4 = − 1
24[ A, [B, [ A, B]]] .

These formulas are valid as long asA and B are matrices that are not
too large: The first line of (B.24) is valid if‖C‖ < log 2. The entire
computation is valid if also‖A‖ + ‖B‖ < log 2 since

‖eAeB − 1‖ ≤ ‖eA − 1‖‖eB‖ + ‖eB − 1‖
≤ (e‖A‖ − 1)e‖B‖ + (e‖B‖ − 1)

= e‖A‖+‖B‖ − 1.

This calculation indicates two important difficulties in the proof of The-
orem B.22. First, although the final formula (B.23) makes sense for any
G, the intermediate formula (B.24) and its terms likeA2B do not make
sense in general. We were able to use such expressions by using the matrix
product operation within the associative algebraAN of all N -by-N complex
matrices. Thus (B.24) is a formula that may help withGL(N , C), but it
has no meaning for generalG. To bypass this difficulty, we shall use Ado’s
Theorem, Theorem B.8. We formalize matters as in the first reduction
below.

A second important difficulty is that it is not obvious even inGL(N , C)

that the homogeneous terms of (B.24) can be rewritten as linear combina-
tions of iterated brackets. Handling this step requires a number of additional
ideas, and we return to this matter shortly.

FIRST REDUCTION. In order to prove Theorem B.22, it is enough to
prove, within the associative algebra of allN -by-N complex matrices, that
the sum of the terms of

∞∑
k=1

(−1)k+1 1

k

(
(A + B) + 1

2!
(A2 + 2AB + B2)

+ 1

3!
(A3 + 3A2B + 3AB2 + B3) + · · ·

)k

that are homogeneous of degreen, for n ≥ 2, is a linear combination
of expressions(adX1) · · · (adXn−1)Xn with eachX j equal toA or B, the
particular combination being independent ofN .
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PROOF OF FIRST REDUCTION. The hypothesis is enough to imply the
theorem forGL(N , C). In fact, choose an open neighborhoodU about
C = 0 in gl(N , C) where the exponential map is a diffeomorphism, then
choose neighborhoods ofA = 0 andB = 0 such thateAeB lies in expU ,
and then cut down the neighborhoods ofA = 0 andB = 0 further so that
the computation (B.24) is valid. The hypothesis then allows us to rewrite
the homogeneous terms of (B.24) as iterated brackets, and the theorem
follows.

Let G be a general analytic group, and use Theorem B.8 to embed
its Lie algebrag in somegl(N , C). Let G1 be the analytic subgroup of
GL(N , C) with Lie algebrag, so thatG andG1 are locally isomorphic and
it is enough to prove the theorem forG1. Choose an open neighborhoodU1

aboutC = 0 in g where exp :g → G1 is a diffeomorphism, then choose
open neighborhoods ofA = 0 and B = 0 in g such that expA expB
lies in expU1, and then, by continuity of the inclusionsg ⊆ gl(N , C)

andG1 ⊆ GL(N , C), cut down these neighborhoods so that they lie in
the neighborhoods constructed forGL(N , C) in the previous paragraph.
The partial sums in (B.23) lie ing, and they converge ingl(N , C). Thus
they converge ing. Since the exponential maps forG1 andGL(N , C) are
continuous and are consistent with each other, formula (B.23) inGL(N , C)

implies validity of (B.23) inG1.

Let A and B denote distinct elements of some set, and define a
2-dimensional complex vector space byV = CA ⊕ CB. Let T (V ) be
the corresponding tensor algebra. We shall omit the tensor signs in writing
out products inT (V ). Foru in V andv in T (V ), define(adu)v and [u, v] to
meanuv−vu. By Proposition A.14, the linear map ad ofV into EndC T (V )

extends to an algebra homomorphism ad ofT (V ) into EndC T (V ) sending
1 to 1. For this extension, ad(u1u2)v is (adu1)(adu2)v, notu1u2v −vu1u2.

SECOND REDUCTION. In order to prove Theorem B.22, it is enough to
prove, within the tensor algebraT (V ), that the sum of the terms of the
formal sum

(B.25)

∞∑
k=1

(−1)k+1 1

k

(
(A + B) + 1

2!
(A2 + 2AB + B2)

+ 1

3!
(A3 + 3A2B + 3AB2 + B3) + · · ·

)k

that are homogeneous of degreen, for n ≥ 2, is a finite linear combination
of expressions(adX1) · · · (adXn−1)Xn with eachX j equal toA or B.
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PROOF OF SECOND REDUCTION. Let AN be the associative algebra of
all N -by-N complex matrices, and letA and B be given inAN . The
linear mapping ofV into AN that sends the abstract elementsA and B
into the matrices with the same names extends to an associative algebra
homomorphism ofT (V ) into AN . If the asserted expansion in terms of
brackets inT (V ) is valid, then it is valid inAN as well, and the first
reduction shows that Theorem B.22 follows.

Now we come to the proof that the expression in (B.25) may be written
as asserted in the second reduction. We isolate three steps as lemmas and
then proceed with the proof.

Lemma B.26.For anyX in T (V ) and form ≥ 1,

X Bm−1 + B X Bm−2 + · · · + Bm−1X

=
(

m

1

)
X Bm−1 +

(
m

2

)
((adB)X)Bm−2

+
(

m

3

)
((adB)2X)Bm−3+ · · · +

(
m

m

)
(adB)m−1X.

PROOF. If X is a polynomialP(B) in B, then the identity reduces to
m P(B)Bm−1 = m P(B)Bm−1, and there is nothing to prove. Thus we may
assume thatX is not such a polynomial.

Write L(B) andR(B) for the operators onT (V ) of left and right mul-
tiplication by B. These commute, andL(B) = R(B) + adB shows that
R(B) and adB commute. Therefore the binomial theorem may be used to
compute powers ofR(B) + adB, and we obtain

(adB)(L(B)m−1 + L(B)m−2R(B) + · · · + R(B)m−1)

= (L(B) − R(B))(L(B)m−1 + L(B)m−2R(B) + · · · + R(B)m−1)

= L(B)m − R(B)m

= (R(B) + adB)m − R(B)m

=
(

m

1

)
R(B)m−1(adB) +

(
m

2

)
R(B)m−2(adB)2 + · · · +

(
m

m

)
(adB)m

= (adB)
((

m

1

)
R(B)m−1+

(
m

2

)
R(B)m−2(adB)+· · ·+

(
m

m

)
(adB)m−1

)
.

We apply both sides of this identity toX . If H denotes the difference of
the left and right sides in the statement of the lemma, what we have just
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showed is that(adB)H = 0. A look atH shows thatH is of the form

c0Bm−1X + c1Bm−2X B + · · · + cm−1X Bm−1,

and adB of this is

c0Bm X + (c1 − c0)Bm−1X B + · · · + (cm−1 − cm−2)B X Bm−1 − cm−1X Bm .

To obtain the conclusionH = 0, which proves the lemma, it is therefore
enough to show that the elementsBm X, Bm−1X B, . . . , X Bm are linearly
independent inT (V ).

SinceX is not a polynomial inB, we can writeX = (c + P A + Q B)Bk

with k ≥ 0, c ∈ C, P ∈ T (V ), Q ∈ T (V ), andP �= 0. Assume a linear
relation amongBm X, Bm−1X B, . . . , X Bm, and substitute forX in it. The
resulting monomials withA as close as possible to the right end force
all coefficients in the linear relation to be 0, and the linear independence
follows. This proves the lemma.

It will be handy to express the above lemma in a slightly different
language. ForX in T (V ), let dX be the linear map ofV into T (V ) given
by

dX(a A + bB) = bX,

and extenddX to a derivationDX of T (V ) by means of Proposition A.16.
If P(z) = a0 + a1z + a2z2 + · · · + aM zM is any ordinary polynomial,

we defineP(B) = a0 + a1B + a2B2 + · · · + aM B M . The derivatives
P ′(z), P ′′(z), . . . are polynomials as well, and thus it is meaningful to
speak ofP ′(B), P ′′(B), . . . .

Lemma B.27. If P(z) = a0 + a1z + a2z2 + · · · + aM zM is a polynomial
of degreeM , then

DX(P(B)) = X
P ′(B)

1!
+ ((adB)X)

P ′′(B)

2!

+ ((adB)2X)
P ′′′(B)

3!
+ · · · + ((adB)M−1X)

P (M)(B)

M !
.

PROOF. The special case of this result whenP(z) = zm is exactly
Lemma B.26. In fact,DX(P(B)) is the left side of the expression in that
lemma, and the right side here is the right side of the expression in that
lemma. Thus Lemma B.27 follows by taking linear combinations.



4. Campbell–Baker–Hausdorff Formula 675

Let T ≤M(V ) = ⊕M
n=0 T n(V ) and T >M(V ) = ⊕∞

n=M+1 T n(V ). The
spaceT >M(V ) is a two-sided ideal inT (V ), butT ≤M(V ) is just a subspace.
We haveT (V ) = T ≤M(V ) ⊕ T >M(V ) as vector spaces. BecauseT >M(V )

is an ideal, the projectionπM of T (V ) on T ≤M(V ) alongT >M(V ) satisfies

(B.28) πM(uv) = πM((πMu)(πMv)) = πM(u(πMv))

for all u andv in T (V ).
Again let X be a member ofT (V ). From now on, we assumeX has

no constant term. SinceX has no constant term, the derivationDX carries
T n(V ) to T >n−1(V ) for all n. Then it follows that

(B.29) πM DX = πM DXπM .

Since T ≤M(V ) is finite dimensional, the exponential of a member of
EndC(T ≤M(V )) is well defined. Forz in C, we apply this observation
to zπM DXπM . We shall work with

(B.30) πM exp(zπM DXπM) = exp(zπM DXπM)πM .

Put

(B.31) C(z) = CM(z) = πM exp(zπM DXπM)(B).

For eachz ∈ C, this is a member ofT (V ) without constant term. For
z = 0, we haveC(0) = B for all M > 0.

Lemma B.32.For any integerk ≥ 0,

πM(C(z)k) = πM exp(zπM DXπM)(Bk).

PROOF. Without loss of generality we may assumek ≥ 1. Then

dC(t)

dt
= d

dt
πM exp(tπM DXπM)(B)

= πM
d

dt
exp(tπM DXπM)(B) sinceπM is linear

= (πM DXπM) exp(tπM DXπM)(B) by Proposition 0.11d

= (πM DX)C(t),
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and hence

d

dt
πM(C(t)k) = πM

( d

dt
C(t)k

)
= πM

(dC(t)

dt
C(t)k−1 + C(t)

dC(t)

dt
C(t)k−2 + · · · + C(t)k−1 dC(t)

dt

)
= πM((πM DX C(t))C(t)k−1 + C(t)(πM DX C(t))C(t)k−2

+ · · · + C(t)k−1(πM DX C(t)))

= πM((DX C(t))C(t)k−1 + C(t)(DX C(t))C(t)k−2

+ · · · + C(t)k−1(DX C(t))) by (B.28) and (B.29)

= (πM DX)(C(t)k).

Therefore, using (B.29), we find( d

dt

)m

πM(C(t)k) = (πM DX)m(C(t)k).

Sincez �→ πM(C(z)k) is analytic,

πM(C(z)k) = πM

∞∑
m=0

zm

m!

( d

dt

)m

πM(C(t)k)

∣∣∣
t=0

= πM

∞∑
m=0

zm

m!
(πM DX)m(C(0)k)

= πM

∞∑
m=0

zm

m!
(πM DXπM)m(C(0)k) by (B.29)

= πM exp(zπM DXπM)(C(0)k),

and the lemma follows.

PROOF OFTHEOREM B.22. According to the statement of the second
reduction, what needs proof is that, in the formal expression (B.25), the
sum of the terms homogeneous of each particular degree greater than 1 is
a finite linear combination of iterated brackets involvingA andB. Let M
be an odd integer greater than the degree of homogeneity to be addressed.
Let X be an element inT (V ) without constant term;X will be specified
shortly.
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DefineEM(z) = 1+ z + z2/2! +· · ·+ zM/M ! to be theM th partial sum
of the power series forez. Then EM(B) is in T ≤M(V ). The derivatives
of this particular polynomial have the property thatπM−k(E (k)

M (B)) =
πM−k(EM(B)) for 0 ≤ k ≤ M . If Yk is in T >k−1(V ), then it follows
that

πM(Yk E (k)

M (B)) = πM(Yk EM(B)).

Applying Lemma B.27 withP = EM and takingYk = (adB)k−1X for
1 ≤ k ≤ M , we obtain

πM(DX(EM(B)))

= πM

((
X + (adB)X

2!
+ (adB)2X

3!
+ · · · + (adB)M−1X

M !

)
EM(B)

)
= πM

(
πM

((
1 + (adB)

2!
+ (adB)2

3!
+ · · · + (adB)M−1

M !

)
(X)

)
(EM(B))

)
by (B.28).

From complex-variable theory we have

z

ez − 1
=

(
1 + z

2!
+ z2

3!
+ · · ·

)−1

= 1 − z

2
+ b1

2!
z2 + b2

4!
z4 + · · · ,

whereb1 = 1
6, b2 = − 1

30, . . . are Bernoulli numbers apart from signs.
Remembering thatM is odd, we can finally defineX :

X =
(
1− adB

2
+ b1

2!
(adB)2+ b2

4!
(adB)4+· · ·+ b(M−1)/2

(M − 1)!
(adB)M−1

)
A.

The elementX is in T ≤M(V ). Substituting forX in the expression

πM

((
1 + (adB)

2!
+ (adB)2

3!
+ · · · + (adB)M−1

M !

)
(X)

)
above, we find that

(B.33) πM(DX(EM(B))) = πM(AEM(B)).

We shall now prove by induction form ≥ 1 that

(B.34) (πM DXπM)m(EM(B)) = πM(Am EM(B)).
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The result form = 1 is just (B.33). Assuming the result form − 1, we use
(B.28), (B.29), and (B.33) repeatedly to write

(πM DXπM)m(EM(B)) = (πM DXπM)(πM DXπM)m−1(EM(B))

= (πM DXπM)(πM(Am−1EM(B)))

= πM DXπM(Am−1EM(B))

= πM DX(Am−1EM(B))

= πM(Am−1DX(EM(B))) sinceDX(A) = 0

= πM(Am−1πM DX(EM(B)))

= πM(Am−1πM(AEM(B)))

= πM(Am EM(B)).

This completes the induction and proves (B.34).
Next we shall prove that

(B.35) πM DXπM is nilpotent on T ≤M(V ).

To do so, we shall exhibit a basis ofT ≤M(V ) with respect to which the
matrix ofπM DXπM is strictly lower triangular. The basis begins with

1, B, A, B2, B A, AB, A2,

and it continues with bases ofT 3(V ), T 4(V ), and so on. The basis of
T m(V ) begins withBm, then contains all monomials inA and B with 1
factor A andm −1 factorsB, then contains all monomials inA andB with
2 factorsA andm−2 factorsB, and so on. Take a member of this basis, say
a monomial inT m(V ) with k factors ofA andm −k factors ofB. When we
applyπM DXπM , the right-handπM changes nothing, and theDX acts on
the monomial as a derivation. SinceDX A = 0, we getm − k terms, each
obtained by replacing one instance ofB by X . The definition ofX shows
that X is the sum ofA and higher-order terms. When we substitute forX ,
the A gives us a monomial inT m(V ) with one moreA and one lessB, and
the higher-order terms give us members ofT >m(V ). Application of the
final πM merely throws away some of the terms. The surviving terms are
linear combinations of members of the basis farther along than our initial
monomial, and (B.35) follows.

Because of (B.35), we may assume that(πM DXπM)M ′ = 0, whereM ′

is ≥ M . Multiplying (B.34) by 1/m! and summing up toM ′, we obtain

(B.36) πM exp(πM DXπM)(EM(B)) = πM(EM(A)EM(B)).
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Meanwhile if we multiply the formula of Lemma B.32 by 1/k! and sum
for 0 ≤ k ≤ M , we have

(B.37) πM(EM(C(z))) = πM exp(zπM DXπM)(EM(B)).

PutC = C(1). For z = 1, equations (B.36) and (B.37) together give

(B.38) πM(EM(C)) = πM(EM(A)EM(B)).

We can recoverC from this formula by using the power series for log(1−z)
in the same way as in the first line of (B.24), and we see from (B.38) that
C is the member ofT (V ) whose expression in terms of brackets we seek.

To obtain a formula forC , we use (B.31) withz = 1 to write

C = πM exp(πM DXπM)(B)

= πM

(
1 + (πM DXπM) + (πM DXπM)2

2!
+ · · · + (πM DXπM)M ′

M ′!

)
(B)

= B +
(
1 + (πM DXπM)

2!
+ · · · + (πM DXπM)M ′−1

M ′!

)
(πM DXπM)(B)

= B +
(
1 + (πM DXπM)

2!
+ · · · + (πM DXπM)M ′−1

M ′!

)
(X)

= B +
(
1 + (πM DXπM)

2!
+ · · · + (πM DXπM)M ′−1

M ′!

)
×

(
1 − (adB)

2
+ b1

2!
(adB)2+ · · · + b(M−1)/2

(M − 1)!
(adB)M−1

)
(A)

= A + B +
(
1 + (πM DXπM)

2!
+ · · · + (πM DXπM)M ′−1

M ′!

)
×

(
− (adB)

2
+ b1

2!
(adB)2+ · · · + b(M−1)/2

(M − 1)!
(adB)M−1

)
(A),

the last step holding sinceDX(A) = 0. The right side is the sum ofA + B,
a linear combination of various bracket terms(adB)m(A) with m ≥ 1, and
terms(πM DXπM)k((adB)m(A)) with k ≥ 1 andm ≥ 1.

To complete the proof, we are to show that each of the terms

(B.39) (πM DXπM)k((adB)m(A))

with k ≥ 1 andm ≥ 1 is a linear combination of iterated brackets. It is
enough to prove that if

(B.40) (adX1)(adX2) · · · (adXn−1)Xn, with eachX j equal toA or B,
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is given, then(πM DXπM) of it is a linear combination of other terms of the
same general form as (B.40) with variousn’s.

Let us prove inductively onk that ad((adB)k A) is a linear combination
of terms

(B.41) (adB) j(adA)(adB)k− j , 0 ≤ j ≤ k.

This is trivial for k = 0. If it is true fork − 1, then

ad((adB)k A) = ad((adB)((adB)k−1 A))

= ad(B((adB)k−1 A) − ((adB)k−1 A)B)

= (adB)(ad((adB)k−1 A)) − (ad((adB)k−1 A))(adB),

and substitution of the result fork − 1 yields the result fork.
Since X is a linear combination of terms(adB)k A, we see from the

above conclusion that adX is a linear combination of terms (B.41).
Next we observe the formula

(B.42) DX((adu)v) = (ad(DX u))v + (adu)(DXv).

DX((adu)v) = DX(uv − vu)

In fact,

= (DX u)v + u(DXv) − (DXv)u − v(DX u)

= (ad(DX u))v + (adu)(DXv).

Now suppose that (B.40) is given. In applyingπM DXπM , we may
disregard the occurrences ofπM at the ends. Formula (B.42) allows us
to compute the effect ofDX on (B.40). We get the sum ofn terms. In the
firstn−1 terms the factor(adX j) gets replaced by(adX) if X j = B or by 0
if X j = A; we have seen that(adX) is a linear combination of terms (B.41),
and thus substitution in thesen − 1 terms give terms of the same general
form as (B.40). In the last term that we obtain by applyingDX to (B.40),
the factorXn gets replaced byX if Xn = B or by 0 if Xn = A; sinceX
is a linear combination of terms(adB)k A, substitution yields terms of the
same general form as (B.40). This proves that application of(πM DXπM)

to (B.40) yields terms of the same general form. The theorem follows.

Using the same notationV = CA ⊕ CB as in the last part of the proof
of Theorem B.22, we can derive an explicit formula for how (B.25) may
be expressed as the sum ofA + B and explicit iterated brackets. Being an
associative algebra,T (V ) is also a Lie algebra under the bracket operation
[u, v] = uv − vu. Let L(V ) be the Lie subalgebra ofT (V ) generated by
the elements ofV . This consists of linear combinations of iterated brackets
of elements ofV .
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Proposition B.43.The unique linear mapp : T (V ) → T (V ) such that
p(1) = 0, p(v) = v for v in V , and

p(v1 · · · vn) = n−1(adv1) · · · (advn−1)vn

whenevern > 1 andv1, . . . , vn are all inV has the property of being a
projection ofT (V ) onto L(V ).

REMARKS. Since we know from Theorem B.22 that the sum of all terms
in (B.25) with a given homogeneity is inL(V ), we can apply the mapp to
such a sum to get an expression in terms of iterated brackets. For example,
consider the cubic terms. Many terms, likeAB2 and(A + B)3, map to 0
underp. For the totality of cubic terms,

p( 1
6(A3 + 3A2B + 3AB2 + B3) − 1

2(
1
2(A2 + 2AB + B2)(A + B))

− 1
2((A + B) 1

2(A2 + 2AB + B2)) + 1
3((A + B)3))

= 1
3{ 1

2(adA)2B − 1
4((adA)2B + 2(adA)(adB)A + (adB)2 A)

− 1
4(2(adA)2B + 2(adB)(adA)B)}

= 1
12((adA)2B + (adB)2 A).

PROOF. The mapp is unique since the monomials inV generateT (V ).
For existence, we readily definep on eachT n(V ) by means of the universal
mapping property ofn-fold tensor products. It is clear thatp carriesT (V )

into L(V ). To complete the proof, we show thatp is the identity onL(V ).
Recall that ad has been extended fromV to T (V ) as a homomorphism,

so that ad(AB)A, for example, is(adA)(adB)A = 2AB A − A2B − B A2,
not (AB)A − A(AB). However, we shall prove that

(B.44) (adx)u = xu − ux for x ∈ L(V ).

It is enough, for eachn, to consider elementsx that aren-fold iterated
brackets of members ofV , and we proceed inductively onn. For degree
n = 1, (B.44) is the definition. Assuming (B.44) for degree< n, we
suppose thatx and y are iterated brackets of members ofV and that the
sum of their degrees isn. Then

(ad [x, y])u = ad(xy − yx)u

= (adx ady − ady adx)u

= x(yu − uy) − (yu − uy)x − y(xu − ux) + (xu − ux)y

= [x, y]u − u[x, y],
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and the induction is complete.
To prove thatp is the identity onL(V ), we introduce an auxiliary

mappingp∗ : T (V ) → L(V ) defined in the same way asp except that the
coefficientn−1 is dropped in the definition onv1 · · · vn. The mapp∗ has
the property that

(B.45) p∗(uv) = (adu)p∗(v)

for all u andv in T (V ) as long asv has no constant term. In fact, it is enough
to consider the case of monomials, sayu = u1 · · · um andv = v1 · · · vn

with n ≥ 1. Then

p∗(uv) = (adu1) · · · (adum)(adv1) · · · (advn−1)vn

= (adu)(adv1) · · · (advn−1)vn

= (adu)p∗(v),

and (B.45) is proved.
Next let us see that

(B.46) p∗ restricted toL(V ) is a derivation ofL(V ).

In fact, if x andy are inL(V ), (B.44) and (B.45) yield

p∗[x, y] = p∗(xy − yx) = (adx)p∗(y) − (ady)p∗(x)

= [x, p∗(y)] − [y, p∗(x)] = [x, p∗(y)] + [ p∗(x), y],

and (B.46) is proved.
Using (B.46), we prove inductively on the degree of the bracket that if

x ∈ L(V ) is an iterated bracket involvingn elements ofV , then p∗(x) =
nx . This is true by definition ofp∗ for n = 1. Suppose it is true for all
degrees less thann. Let x andy be members ofL(V ) given asd-fold and
(n − d)-fold iterated brackets of members ofV . Then

p∗[x, y] = [x, p∗y] + [ p∗x, y] = (n − d)[x, y] + d[x, y] = n[x, y],

and the induction goes through. Thusp∗ acts onL(V ) as asserted, andp
acts onL(V ) as the identity. Thusp is indeed a projection ofT (V ) onto
L(V ).



APPENDIX C

Data for Simple Lie Algebras

Abstract. This appendix contains information about irreducible root systems, simple
Lie algebras overC andR, and Lie groups whose Lie algebras are simple, noncompact,
and noncomplex. The first two sections deal with the root systems themselves and the
corresponding complex simple Lie algebras. The last two sections deal with the simple
real Lie algebras that are noncompact and noncomplex and with their corresponding Lie
groups.

1. Classical Irreducible Reduced Root Systems

This section collects information about the classical irreducible reduced
root systems, those of typesAn for n ≥ 1, Bn for n ≥ 2, Cn for n ≥ 3, and
Dn for n ≥ 4.

The first three items describe the underlying vector spaceV, the root
system� as a subset ofV, and the usual complex semisimple Lie algebra
g associated with�. All this information appears also in (2.43). In each
case the root system is a subspace of someRk = { ∑k

i=1 ai ei

}
. Here{ei}

is the standard orthonormal basis, and theai ’s are real.
The next four items give the number|�| of roots, the dimension dimg

of the Lie algebrag, the order|W | of the Weyl group of�, and the
determinant det(Ai j) of the Cartan matrix. All this information appears
also in Problems 15 and 28 for Chapter II.

The next two items give the customary choice of positive system�+

and the associated set� of simple roots. This information appears also in
(2.50), and the corresponding Dynkin diagrams appear in Figure 2.3 and
again in Figure 2.4.

The last three items give, relative to the listed positive system�+, the
fundamental weights�1, . . . �n, the largest root, and the half sumδ of the
positive roots. The fundamental weights�j are defined by the condition
2〈�j , αi〉/|αi |2 = δi j if � is regarded as the ordered set{α1, . . . , αn}.
Their significance is explained in Problems 28–33 for Chapter V. The�i

are expressed as members ofV . The largest root is listed in two formats:
(a) as a tuple like(11· · · 1) that indicates the expansion in terms of the
simple rootsα1, . . . , αn and (b) as a member ofV .

683
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An

V = {v ∈ Rn+1 | 〈v, e1 + · · · + en+1〉 = 0}
� = {ei − ej | i �= j}
g = sl(n + 1, C)

|�| = n(n + 1)
dimg = n(n + 2)
|W | = (n + 1)!
det(Ai j) = n + 1

�+ = {ei − ej | i < j}
� = {e1 − e2, e2 − e3, . . . , en − en+1}
Fundamental weights:

�i = e1 + · · · + ei projected toV
= e1 + · · · + ei − i

n+1(e1 + · · · + en+1)

Largest root= (11· · · 1) = e1 − en+1

δ = ( n
2)e1 + ( n−2

2 )e2 + · · · + (− n
2)en+1

Bn

V = Rn

� = {±ei ± ej | i < j} ∪ {±ei}
g = so(2n + 1, C)

|�| = 2n2

dimg = n(2n + 1)
|W | = n!2n

det(Ai j) = 2

�+ = {ei ± ej | i < j} ∪ {ei}
� = {e1 − e2, e2 − e3, . . . , en−1 − en, en}
Fundamental weights:

�i = e1 + · · · + ei for i < n
�n = 1

2(e1 + · · · + en)

Largest root= (122· · · 2) = e1 + e2

δ = (n − 1
2)e1 + (n − 3

2)e2 + · · · + 1
2en
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Cn

V = Rn

� = {±ei ± ej | i < j} ∪ {±2ei}
g = sp(n, C)

|�| = 2n2

dimg = n(2n + 1)
|W | = n!2n

det(Ai j) = 2

�+ = {ei ± ej | i < j} ∪ {2ei}
� = {e1 − e2, e2 − e3, . . . , en−1 − en, 2en}
Fundamental weights:

�i = e1 + · · · + ei

Largest root= (22· · · 21) = 2e1

δ = ne1 + (n − 1)e2 + · · · + 1en

Dn

V = Rn

� = {±ei ± ej | i < j}
g = so(2n, C)

|�| = 2n(n − 1)
dimg = n(2n − 1)
|W | = n!2n−1

det(Ai j) = 4

�+ = {ei ± ej | i < j}
� = {e1 − e2, e2 − e3, . . . , en−1 − en, en−1 + en}
Fundamental weights:

�i = e1 + · · · + ei for i ≤ n − 2
�n−1 = 1

2(e1 + · · · + en−1 − en)

�n = 1
2(e1 + · · · + en−1 + en)

Largest root= (122· · · 211) = e1 + e2

δ = (n − 1)e1 + (n − 2)e2 + · · · + 1en−1



686 C. Data for Simple Lie Algebras

2. Exceptional Irreducible Reduced Root Systems

This section collects information about the exceptional irreducible re-
duced root systems, those of typesE6, E7, E8, F4, andG2.

The first two items describe the underlying vector spaceV and the root
system� as a subset ofV . All this information appears also in Proposition
2.87 and in the last diagram of Figure 2.2. In each case the root system is a
subspace of someRk = { ∑k

i=1 ai ei

}
. Here{ei} is the standard orthonormal

basis, and theai ’s are real.
The next four items give the number|�| of roots, the dimension dimg

of a Lie algebrag with � as root system, the order|W | of the Weyl group of
�, and the determinant det(Ai j) of the Cartan matrix. All this information
appears also in Problems 16 and 29–34 for Chapter II.

The next three items give the customary choice of positive system�+,
the associated set� of simple roots, and the numbering of the simple roots
in the Dynkin diagram. This information about� appears also in (2.85b)
and (2.86b), and the corresponding Dynkin diagrams appear in Figure 2.4.

The last three items give, relative to the listed positive system�+, the
fundamental weights�1, . . . �n, the positive roots with a coefficient≥ 2,
and the half sumδ of the positive roots. The fundamental weights�j

are defined by the condition 2〈�j , αi〉/|αi |2 = δi j if � is regarded as the
ordered set{α1, . . . , αn}. Their significance is explained in Problems 28–33
for Chapter V. Let the fundamental weights be expressed in terms of the
simple roots as�j = ∑

i Ci jαi . Taking the inner product of both sides
with 2|αk|−2αk , we see that the matrix(Ci j) is the inverse of the Cartan
matrix (Ai j). Alternatively taking the inner product of both sides with�i ,
we see thatCi j is a positive multiple of〈�j , �i〉, which is> 0 by Lemma
6.97. The formsωi that appear in §VI.10 are related to the fundamental
weights�i by�i = 1

2|αi |2ωi . The positive roots with a coefficient≥ 2 are
listed in a format that indicates the expansion in terms of the simple roots
α1, . . . , αn. The last root in the list is the largest root.

The displays of the last two sets of items have been merged in the case
of G2.
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E6

V = {v ∈ R8 | 〈v, e6 − e7〉 = 〈v, e7 + e8〉 = 0)}
� = {±ei ± ej | i < j ≤ 5} ∪ {

1
2

∑8
i=1 (−1)n(i)ei ∈ V

∣∣ ∑8
i=1 n(i) even

}
|�| = 72
dimg = 78
|W | = 27 · 34 · 5
det(Ai j) = 3

�+ = {ei ± ej | i > j}
∪ {

1
2(e8 − e7 − e6 + ∑5

i=1 (−1)n(i)ei)
∣∣ ∑5

i=1 n(i) even
}

� = {α1, α2, α3, α4, α5, α6}
= { 1

2(e8 − e7 − e6 − e5 − e4 − e3 − e2 + e1),
e2 + e1, e2 − e1, e3 − e2, e4 − e3, e5 − e4}

Numbering of simple roots in Dynkin diagram=
( 2

65431

)
Fundamental weights in terms of simple roots:

�1 = 1
3(4α1 + 3α2 + 5α3 + 6α4 + 4α5 + 2α6)

�2 = 1α1 + 2α2 + 2α3 + 3α4 + 2α5 + 1α6

�3 = 1
3(5α1 + 6α2 + 10α3 + 12α4 + 8α5 + 4α6)

�4 = 2α1 + 3α2 + 4α3 + 6α4 + 4α5 + 2α6

�5 = 1
3(4α1 + 6α2 + 8α3 + 12α4 + 10α5 + 5α6)

�6 = 1
3(2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6)

Positive roots having a coefficient≥ 2:( 1
01210

)
,
( 1

11210

)
,
( 1

01211

)
,
( 1

12210

)
,
( 1

11211

)
,
( 1

01221

)
,( 1

12211

)
,
( 1

11221

)
,
( 1

12221

)
,
( 1

12321

)
,
( 2

12321

)
δ = e2 + 2e3 + 3e4 + 4e5 − 4e6 − 4e7 + 4e8
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E7

V = {v ∈ R8 | 〈v, e7 + e8〉 = 0}
� = {±ei ± ej | i < j ≤ 6} ∪ {±(e7 − e8)}

∪ {
1
2

∑8
i=1 (−1)n(i)ei ∈ V

∣∣ ∑8
i=1 n(i) even

}
|�| = 126
dimg = 133
|W | = 210 · 34 · 5 · 7
det(Ai j) = 2

�+ = {ei ± ej | i > j} ∪ {e8 − e7}
∪ {

1
2(e8 − e7 + ∑6

i=1 (−1)n(i)ei)
∣∣ ∑6

i=1 n(i) odd
}

� = {α1, α2, α3, α4, α5, α6, α7}
= { 1

2(e8 − e7 − e6 − e5 − e4 − e3 − e2 + e1),
e2 + e1, e2 − e1, e3 − e2, e4 − e3, e5 − e4, e6 − e5}

Numbering of simple roots in Dynkin diagram=
( 2

765431

)
Fundamental weights in terms of simple roots:

�1 = 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + 1α7

�2 = 1
2(4α1 + 7α2 + 8α3 + 12α4 + 9α5 + 6α6 + 3α7)

�3 = 3α1 + 4α2 + 6α3 + 8α4 + 6α5 + 4α6 + 2α7

�4 = 4α1 + 6α2 + 8α3 + 12α4 + 9α5 + 6α6 + 3α7

�5 = 1
2(6α1 + 9α2 + 12α3 + 18α4 + 15α5 + 10α6 + 5α7)

�6 = 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 2α7

�7 = 1
2(2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7)

Positive roots having a coefficient≥ 2 and involvingα7:( 1
111210

)
,
( 1

111211

)
,
( 1

112210

)
,
( 1

111221

)
,
( 1

112211

)
,( 1

122210

)
,
( 1

112221

)
,
( 1

122211

)
,
( 1

122221

)
,
( 1

112321

)
,( 1

122321

)
,
( 2

112321

)
,
( 1

123321

)
,
( 2

122321

)
,
( 2

123321

)
,( 2

123421

)
,
( 2

123431

)
,
( 2

123432

)
δ = 1

2(2e2 + 4e3 + 6e4 + 8e5 + 10e6 − 17e7 + 17e8)
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E8

V = R8

� = {±ei ± ej | i < j}
∪ {

1
2

∑8
i=1 (−1)n(i)ei

∣∣ ∑8
i=1 n(i) even

}
|�| = 240
dimg = 248
|W | = 214 · 35 · 52 · 7
det(Ai j) = 1

�+ = {ei ± ej | i > j}
∪ {

1
2(e8 + ∑7

i=1 (−1)n(i)ei)
∣∣ ∑7

i=1 n(i) even
}

� = {α1, α2, α3, α4, α5, α6, α7, α8}
= { 1

2(e8 − e7 − e6 − e5 − e4 − e3 − e2 + e1),
e2 + e1, e2 − e1, e3 − e2, e4 − e3, e5 − e4, e6 − e5, e7 − e6}

Numbering of simple roots in Dynkin diagram=
( 2

8765431

)
Fundamental weights in terms of simple roots:

�1 = 4α1 + 5α2 + 7α3 + 10α4 + 8α5 + 6α6 + 4α7 + 2α8

�2 = 5α1 + 8α2 + 10α3 + 15α4 + 12α5 + 9α6 + 6α7 + 3α8

�3 = 7α1 + 10α2 + 14α3 + 20α4 + 16α5 + 12α6 + 8α7 + 4α8

�4 = 10α1 + 15α2 + 20α3 + 30α4 + 24α5 + 18α6 + 12α7 + 6α8

�5 = 8α1 + 12α2 + 16α3 + 24α4 + 20α5 + 15α6 + 10α7 + 5α8

�6 = 6α1 + 9α2 + 12α3 + 18α4 + 15α5 + 12α6 + 8α7 + 4α8

�7 = 4α1 + 6α2 + 8α3 + 12α4 + 10α5 + 8α6 + 6α7 + 3α8

�8 = 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8

Positive roots having a coefficient≥ 2 and involvingα8:( 1
1111210

)
,
( 1

1112210

)
,
( 1

1111211

)
,
( 1

1122210

)
,
( 1

1111221

)
,( 1

1112211

)
,
( 1

1112221

)
,
( 1

1122211

)
,
( 1

1222210

)
,
( 1

1112321

)
,( 1

1122221

)
,
( 1

1222211

)
,
( 2

1112321

)
,
( 1

1122321

)
,
( 1

1222221

)
,( 2

1122321

)
,
( 1

1123321

)
,
( 1

1222321

)
,
( 2

1123321

)
,
( 2

1222321

)
,( 1

1223321

)
,
( 2

1123421

)
,
( 2

1223321

)
,
( 1

1233321

)
,
( 2

1123431

)
,( 2

1223421

)
,
( 2

1233321

)
,
( 2

1123432

)
,
( 2

1223431

)
,
( 2

1233421

)
,
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1223432

)
,
( 2

1233431

)
,
( 2

1234421

)
,
( 2

1233432

)
,
( 2

1234431

)
,( 2

1234531

)
,
( 2

1234432

)
,
( 3

1234531

)
,
( 2

1234532

)
,
( 3

1234532

)
,( 2

1234542

)
,
( 3

1234542

)
,
( 3

1234642

)
,
( 3

1235642

)
,
( 3

1245642

)
,( 3

1345642

)
,
( 3

2345642

)
δ = e2 + 2e3 + 3e4 + 4e5 + 5e6 + 6e7 + 23e8
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F4

V = R4

� = {±ei ± ej | i < j} ∪ {±ei} ∪ { 1
2(±e1 ± e2 ± e3 ± e4)}

|�| = 48
dimg = 52
|W | = 27 · 32

det(Ai j) = 1

�+ = {ei ± ej | i < j} ∪ {ei} ∪ { 1
2(e1 ± e2 ± e3 ± e4)}

� = {α1, α2, α3, α4}
= { 1

2(e1 − e2 − e3 − e4), e4, e3 − e4, e2 − e3}
Numbering of simple roots in Dynkin diagram= (1234)

Fundamental weights in terms of simple roots:
�1 = 2α1 + 3α2 + 2α3 + 1α4

�2 = 3α1 + 6α2 + 4α3 + 2α4

�3 = 4α1 + 8α2 + 6α3 + 3α4

�4 = 2α1 + 4α2 + 3α3 + 2α4

Positive roots having a coefficient≥ 2:
(0210), (0211), (1210), (0221), (1211), (2210), (1221),
(2211), (1321), (2221), (2321), (2421), (2431), (2432)

δ = 1
2(11e1 + 5e2 + 3e3 + e4)
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G2

V = {v ∈ R3 | 〈v, e1 + e2 + e3〉 = 0}
� = {±(e1 − e2), ±(e2 − e3), ±(e1 − e3)}

∪ {±(2e1 − e2 − e3), ±(2e2 − e1 − e3), ±(2e3 − e1 − e2)}

|�| = 12
dimg = 14
|W | = 22 · 3
det(Ai j) = 1

� = {α1, α2}
= {e1 − e2, −2e1 + e2 + e3}

Numbering of simple roots in Dynkin diagram= (12)
�+ = {(10), (01), (11), (21), (31), (32)}
Fundamental weights in terms of simple roots:

�1 = 2α1 + 1α2

�2 = 3α1 + 2α2

δ = 5α1 + 3α2
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3. Classical Noncompact Simple Real Lie Algebras

This section shows for the classical noncompact noncomplex simple real
Lie algebras how the methods of §§VI.10–11 reveal the structure of each
of these examples.

The first three items, following the name of a Lie algebrag0, describe
a standard Vogan diagram ofg0, the fixed subalgebrak0 of a Cartan in-
volution, and the simple roots fork0. In §VI.10 eachg0 has at most two
standard Vogan diagrams, and one of them is selected and described here.
References to roots use the notation of §1 of this appendix. If the Dynkin
diagram has a double line or a triple point, then the double line or triple
point is regarded as near the right end.

The simple roots ofk0 are obtained as follows. When the automorphism
in the Vogan diagram is nontrivial, the remarks before Lemma 7.127 show
that k0 is semisimple. The simple roots fork0 then include the compact
imaginary simple roots and the average of the members of each 2-element
orbit of simple roots. If the Vogan diagram has no painted imaginary root,
there is no other simple root fork0. Otherwise there is one other simple root
for k0, obtained by taking a minimal complex root containing the painted
imaginary root in its expansion and averaging it over its 2-element orbit
under the automorphism. When the automorphism is trivial, the remarks
near the end of §VII.9 show that either dimc0 = 1, in which case the
simple roots fork0 are the compact simple roots forg0, or else dimc0 = 0,
in which case the simple roots fork0 are the compact imaginary simple
roots forg0 and one other compact imaginary root. In the latter case this
other compact imaginary root is the unique smallest root containing the
noncompact simple root twice in its expansion.

The next two items give the real rank and a list of roots to use in Cayley
transforms to pass from a maximally compact Cartan subalgebra to a max-
imally noncompact Cartan subalgebra. The list of roots is obtained by an
algorithm described in §VI.11. In every case the members of the list are
strongly orthogonal noncompact imaginary roots. When the automorphism
in the Vogan diagram is nontrivial, the noncompactness of the roots is not
necessarily obvious but may be verified with the aid of Proposition 6.104.
The real rank ofg0 is the sum of the number of 2-element orbits among the
simple roots, plus the number of roots in the Cayley transform list. The
Cayley transform list is empty if and only ifg0 has just one conjugacy class
of Cartan subalgebras.

The next three items identify the system of restricted roots, the real-
rank-one subalgebras associated to each restricted root, and the subalgebra
mp,0. Leth0 = t0 ⊕a0 be the given maximally compact Cartan subalgebra.
The information in the previous items has made it possible to identify
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the Cayley transform ofap,0 as a subspace ofit0 ⊕ a0. The restriction
of the roots to this subspace therefore identifies the restricted roots. By
(6.109) the multiplicities of the restricted roots determine the real-rank-one
subalgebras associated by §VII.6 to each restricted rootλ for which 1

2λ is
not a restricted root. The computation of these subalgebras is simplified
by the fact that any two restricted roots of the same length are conjugate by
the Weyl group of the restricted roots; the associated subalgebras are then
conjugate. The roots ofg0 orthogonal to all roots in the Cayley transform
list and to the−1 eigenspace of the automorphism are the roots ofmp,0;
such roots therefore determine the semisimple part ofmp,0. The dimension
of the center ofmp,0 can then be deduced by comparing rankg0, dimap,0,
and rank [mp,0, mp,0].

The next three items refer to the customary analytic groupG with Lie
algebrag0. The groupG is listed together with the customary maximal
compact subgroupK and the number of components ofMp. For results
about the structure ofMp, see §§VII.5–6.

An item of “special features” notes ifG/K is Hermitian or ifg0 is a
split or quasisplit real form or ifg0 has just one conjugacy class of Cartan
subalgebras. For each complex simple Lie algebra of rank≥ 2, there is a
unique real form such thatG/K has a kind of quaternionic structure (see
the Historical Notes); the subalgebrak0 always has a summandsu(2) for
this case. Under the item of special features, a notation appears ifG/K is
quaternionic.

Finally an item of “further information” points to some places in the
book where thisg0 or G has been discussed as an example.

Vogan diagrams of the Lie algebras in this section are indicated in Figure
6.1. A table of real ranks and restricted-root systems appears as (6.107).
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ssslll(n, R), n odd≥ 3

Vogan diagram:
An−1, nontrivial automorphism,
no imaginary simple roots

k0 = so(n)
Simple roots fork0:

1
2(e 1

2 (n−1) − e 1
2 (n+3)) and

all 1
2(ei − ei+1 + en−i − en+1−i) for 1 ≤ i ≤ 1

2(n − 3)

Real rank= n − 1
Cayley transform list:

all ei − en+1−i for 1 ≤ i ≤ 1
2(n − 1)

� = An−1

Real-rank-one subalgebras:
sl(2, R) for all restricted roots

mp,0 = 0

G = SL(n, R)
K = SO(n)
|Mp| = 2n−1

Special feature:
g0 is a split real form

Further information:
Forh0, compare with Example 2 in §VI.8.
For Mp, see Example 1 in §VI.5.
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ssslll(n, R), n even≥ 2

Vogan diagram:
An−1, nontrivial automorphism (ifn > 2),
unique imaginary simple roote 1

2 n − e 1
2 n+1 painted

k0 = so(n)
Simple roots fork0:

1
2(e 1

2 (n−2) + e 1
2 n − e 1

2 (n+2) − e 1
2 (n+4)) and

all 1
2(ei − ei+1 + en−i − en+1−i) for 1 ≤ i ≤ 1

2(n − 2)

Real rank= n − 1
Cayley transform list:

all ei − en+1−i for 1 ≤ i ≤ 1
2n

� = An−1

Real-rank-one subalgebras:
sl(2, R) for all restricted roots

mp,0 = 0

G = SL(n, R)
K = SO(n)
|Mp| = 2n−1

Special features:
G/K is Hermitian whenn = 2,
g0 is a split real form for alln

Further information:
Forh0, see Example 2 in §VI.8.
For Mp, see Example 1 in §VI.5.
For Cartan subalgebras see Problem 13 for Chapter VI.



3. Classical Noncompact Simple Real Lie Algebras 697

ssslll(n, H), n ≥ 2

Vogan diagram:
A2n−1, nontrivial automorphism,
unique imaginary simple rooten − en+1 unpainted

k0 = sp(n)
Simple roots fork0:

en − en+1 and
all 1

2(ei − ei+1 + e2n−i − e2n+1−i) for 1 ≤ i ≤ n − 1

Real rank= n − 1
Cayley transform list: empty

� = An−1

Real-rank-one subalgebras:
so(5, 1) for all restricted roots

mp,0
∼= su(2)n,

simple roots equal to
all ei − e2n+1−i for 1 ≤ i ≤ n

G = SL(n, H)
K = Sp(n)
|Mp/(Mp)0| = 1

Special feature:
g0 has one conjugacy class of Cartan subalgebras

Further information:
For Mp, see Example 1 in §VI.5.
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sssuuu(p, q), 1 ≤ p ≤ q

Vogan diagram:
Ap+q−1, trivial automorphism,
pth simple rootep − ep+1 painted

k0 = s(u(p) ⊕ u(q))
Simple roots fork0: compact simple roots only

Real rank= p
Cayley transform list:

all ei − e2p+1−i for 1 ≤ i ≤ p

� =
{

(BC)p if p < q
Cp if p = q

}
Real-rank-one subalgebras:

sl(2, C) for all restricted roots± fi ± f j

su(q − p + 1, 1) for all ±{ fi , 2 fi}
mp,0 =

{ Rp ⊕ su(q − p) if p < q
Rp−1 if p = q

}
,

simple roots by Cayley transform from
all e2p+i − e2p+i+1 for 1 ≤ i ≤ q − p − 1

G = SU (p, q)
K = S(U (p) × U (q))

|Mp/(Mp)0| =
{ 1 if p < q

2 if p = q

}
Special features:

G/K is Hermitian,
G/K is quaternionic whenp = 2 or q = 2,
g0 is a quasisplit real form whenq = p or q = p + 1

Further information:
Forh0, see Example 1 in §VI.8.
For Mp, see Example 2 in §VI.5.
For the Hermitian structure see the example in §VII.9.
For restricted roots see the example with (6.106) and also Problem 37

for Chapter VII.



3. Classical Noncompact Simple Real Lie Algebras 699

sssooo(2p, 2q + 1), 1 ≤ p ≤ q

Vogan diagram:
Bp+q , trivial automorphism,
pth simple rootep − ep+1 painted

k0 = so(2p) ⊕ so(2q + 1)
Simple roots fork0: compact simple roots and{

ep−1 + ep when p > 1
no other whenp = 1

}
Real rank= 2p
Cayley transform list:

all ei ± e2p+1−i for 1 ≤ i ≤ p

� = B2p

Real-rank-one subalgebras:
sl(2, R) for all long restricted roots
so(2q − 2p + 2, 1) for all short restricted roots

mp,0 = so(2q − 2p + 1),
simple roots whenp < q by Cayley transform from
ep+q and alle2p+i − e2p+i+1 for 1 ≤ i ≤ q − p − 1

G = SO(2p, 2q + 1)0

K = SO(2p) × SO(2q + 1)
|Mp/(Mp)0| = 22p−1

Special features:
G/K is Hermitian whenp = 1,
G/K is quaternionic whenp = 2,
g0 is a split real form whenp = q

Further information:
For Mp, see Example 3 in §VI.5.
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sssooo(2p, 2q + 1), p > q ≥ 0

Vogan diagram:
Bp+q , trivial automorphism,
pth simple rootep − ep+1 painted

k0 = so(2p) ⊕ so(2q + 1)
Simple roots fork0: compact simple roots and{

ep−1 + ep when p > 1
no other whenp = 1 andq = 0

}
Real rank= 2q + 1
Cayley transform list:

ep−q and allei ± e2p+1−i for p − q + 1 ≤ i ≤ p

� = B2q+1

Real-rank-one subalgebras:
sl(2, R) for all long restricted roots
so(2p − 2q, 1) for all short restricted roots

mp,0 = so(2p − 2q − 1),
simple roots whenp > q + 1 by Cayley transform from
ep−q−1 and allei − ei+1 for 1 ≤ i ≤ p − q − 2

G = SO(2p, 2q + 1)0

K = SO(2p) × SO(2q + 1)
|Mp/(Mp)0| = 22q

Special features:
G/K is Hermitian whenp = 1 andq = 0,
G/K is quaternionic whenp = 2 andq ≤ 1,
g0 is a split real form whenp = q + 1

Further information:
For Mp, see Example 3 in §VI.5.
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sssppp(p, q), 1 ≤ p ≤ q

Vogan diagram:
Cp+q , trivial automorphism,
pth simple rootep − ep+1 painted

k0 = sp(p) × sp(q)
Simple roots fork0: compact simple roots and

2ep

Real rank= p
Cayley transform list:

all ei − e2p+1−i for 1 ≤ i ≤ p

� =
{

(BC)p if p < q
Cp if p = q

}
Real-rank-one subalgebras:

so(5, 1) for all restricted roots± fi ± f j

sp(q − p + 1, 1) for all ±{ fi , 2 fi}
mp,0 = su(2)p ⊕ sp(q − p),

simple roots by Cayley transform from
all ei + e2p+1−i for 1 ≤ i ≤ p,
all e2p+i − e2p+i+1 for 1 ≤ i ≤ q − p − 1,
and also 2ep+q if p < q

G = Sp(p, q)
K = Sp(p) × Sp(q)
|Mp/(Mp)0| = 1

Special feature:
G/K is quaternionic whenp = 1

Further information:
Mp is connected by Corollary 7.69 and Theorem 7.55.
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sssppp(n, R), n ≥ 1

Vogan diagram:
Cn, trivial automorphism,
nth simple root 2en painted

k0 = u(n)
Simple roots fork0: compact simple roots only

Real rank= n
Cayley transform list:

all 2ei , 1 ≤ i ≤ n

� = Cn

Real-rank-one subalgebras:
sl(2, R) for all restricted roots

mp,0 = 0

G = Sp(n, R)
K = U (n)
|Mp| = 2n

Special features:
G/K is Hermitian,
g0 is a split real form

Further information:
For isomorphisms see Problem 15 for Chapter VI and Problem 30 for

Chapter VII.
For the Hermitian structure see Problems 31–33 for Chapter VII.
For restricted roots see Problem 38 for Chapter VII.
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sssooo(2p + 1, 2q + 1), 0 ≤ p ≤ q but notso(1, 1) or so(1, 3)

Vogan diagram:
Dp+q+1, nontrivial automorphism,
pth simple rootep − ep+1 painted, none ifp = 0

k0 = so(2p + 1) ⊕ so(2q + 1)
Simple roots fork0:

ep (if p > 0), ep+q , and
all ei − ei+1 with 1 ≤ i ≤ p − 1 or p + 1 ≤ i ≤ p + q − 1

Real rank= 2p + 1
Cayley transform list:

all ei ± e2p+1−i , 1 ≤ i ≤ p

� =
{

Bp if p < q
Dp if p = q

}
Real-rank-one subalgebras:

sl(2, R) for all long restricted roots
so(2q − 2p + 1, 1) for all short restricted roots whenp < q

mp,0 = so(2q − 2p),
simple roots whenp < q − 1 by Cayley transform from
ep+q−1 + ep+q and alle2p+i − e2p+i+1 for 1 ≤ i ≤ q − p − 1

G = SO(2p + 1, 2q + 1)0

K = SO(2p + 1) × SO(2q + 1)
|Mp/(Mp)0| = 22p

Special features:
g0 is a split real form whenq = p,
g0 is a quasisplit real form whenq = p + 1,
g0 has one conjugacy class of Cartan subalgebras whenp = 0

Further information:
For p = 0 andq = 1, so(1, 3) ∼= sl(2, C) is complex.
For Mp, see Example 3 in §VI.5.
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sssooo(2p, 2q), 1 ≤ p ≤ q but notso(2, 2)

Vogan diagram:
Dp+q , trivial automorphism,
pth simple rootep − ep+1 painted

k0 = so(2p) ⊕ so(2q)
Simple roots fork0: compact simple roots and{

ep−1 + ep when p > 1
no other whenp = 1

}
Real rank= 2p
Cayley transform list:

all ei ± e2p+1−i , 1 ≤ i ≤ p

� =
{

Bp if p < q
Dp if p = q

}
Real-rank-one subalgebras:

sl(2, R) for all long restricted roots
so(2q − 2p + 1, 1) for all short restricted roots whenp < q

mp,0 = so(2q − 2p),
simple roots whenp < q − 1 by Cayley transform from
ep+q−1 + ep+q and alle2p+i − e2p+i+1 for 1 ≤ i ≤ q − p − 1

G = SO(2p, 2q)0

K = SO(2p) × SO(2q)
|Mp/(Mp)0| = 22p−1

Special features:
G/K is Hermitian whenp = 1,
G/K is quaternionic whenp = 2 or q = 2,
g0 is a split real form whenp = q
g0 is a quasisplit real form whenq = p + 1

Further information:
For p = q = 2, so(2, 2) ∼= sl(2, R) ⊕ sl(2, R) is not simple.
For Mp, see Example 3 in §VI.5.



3. Classical Noncompact Simple Real Lie Algebras 705

sssooo∗(2n), n ≥ 3

Vogan diagram:
Dn, trivial automorphism,
nth simple rooten−1 + en painted

k0 = u(n)
Simple roots fork0: compact simple roots only

Real rank= [n/2]
Cayley transform list:

all en−2i+1 + en−2i+2, 1 ≤ i ≤ [n/2]

� =
{

(BC) 1
2 (n−1) if n odd

C 1
2 n if n even

}
Real-rank-one subalgebras:{

sl(2, R) for all ± 2 fi if n even
su(3, 1) for all ± { fi , 2 fi} if n odd

}
so(5, 1) for all ± fi ± f j

mp,0 =
{

su(2)
1
2 n if n even

su(2)
1
2 (n−1) ⊕ R if n odd

}
,

simple roots by Cayley transform from
all en−2i+1 − en−2i+2 for 1 ≤ i ≤ [n/2]

G = SO∗(2n)
K = U (n)

|Mp/(Mp)0| =
{ 2 if n even

1 if n odd

}
Special feature:

G/K is Hermitian

Further information:
Whenn = 2, so∗(4) ∼= sl(2, R) ⊕ su(2) is not simple.
Forh0 and explicit root structure, see Problem 6 for Chapter VI.
Mp is connected whenn is odd by Corollary 7.69 and Theorem 7.55.
For Hermitian structure see Problems 34–36 for Chapter VII.
For restricted roots see Problem 39 for Chapter VII.
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4. Exceptional Noncompact Simple Real Lie Algebras

This section exhibits the structure of the exceptional noncompact
noncomplex simple real Lie algebras by using the methods of §§VI.10–11.

The format is rather similar to that in the previous section. The first
three items following the name of a Lie algebrag0 (given as in the listing of
Cartan [1927a] and Helgason [1978]) describe the standard Vogan diagram
of g0, the fixed subalgebrak0 of a Cartan involution, and the simple roots
of k0. In the cases ofF4 andG2, the left root in a Dynkin diagram is short.
Techniques for obtaining the roots ofk0 are described in §3, and references
to explicit roots use the notation of §2. As in §3, when the automorphism
in the Vogan diagram is trivial and dimc0=0, there is one simple root ofk0

that is not simple forg0. This root is the unique smallest root containing the
noncompact simple root twice in its expansion. It may be found by referring
to the appropriate table in §2 of “positive roots having a coefficient≥ 2.”

One difference in format in this section, by comparison with §3, is that
roots are displayed in two ways. The first way gives the expansion in terms
of simple roots, using notation introduced in §2. The second way is in
terms of the underlying spaceV of the root system.

The next two items give the real rank and a list of roots to use in Cayley
transforms to obtain a maximally noncompact Cartan subalgebra. The
three items after that identify the system of restricted roots, the real-rank-
one subalgebras associated to each restricted root, and the subalgebramp,0.
The techniques are unchanged from §3.

The final item is the mention of any special feature. A notation appears
if G/K is Hermitian or ifg0 is a split or quasisplit real form or ifg0 has
just one conjugacy class of Cartan subalgebras. For each complex simple
Lie algebra of rank≥ 2, there is a unique real form such thatG/K has
a kind of quaternionic structure (see the Historical Notes); the subalgebra
k0 always has a summandsu(2) for this case. Under the item of special
features, a notation appears ifG/K is quaternionic.

Vogan diagrams of the Lie algebras in this section appear also in Figures
6.2 and 6.3, andk0 for each diagram is indicated in those figures. A table
of real ranks and restricted-root systems appears as (6.108).
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E I

k0 = sp(4)
Simple roots fork0:

1)
( 0

00100

)
,

( 0
01

201
20

)
,

( 0
1
20001

2

)
,

( 1
01

211
20

)
2) e3−e2, 1

2(e4−e3+e2−e1), 1
4(e8−e7−e6+e5−3e4−e3−e2+e1),

1
2(e4 + e3 + e2 + e1)

Real rank= 6
Cayley transform lists:

1)
( 1

00000

)
,

( 1
01210

)
,

( 1
11211

)
,

( 1
12221

)
2) e2 + e1, e4 + e3, 1

2(e8 − e7 − e6 + e5 − e4 + e3 − e2 + e1),
1
2(e8 − e7 − e6 + e5 + e4 − e3 + e2 − e1)

� = E6

Real-rank-one subalgebras:
sl(2, R) for all restricted roots

mp,0 = 0

Special feature:
g0 is a split real form
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E II

k0 = su(6) ⊕ su(2)
Simple roots fork0: compact simple roots and( 2

12321

)
= 1

2(e8 − e7 − e6 + e5 + e4 + e3 + e2 + e1)

Real rank= 4
Cayley transform lists:

1)
( 1

00000

)
,

( 1
01210

)
,

( 1
11211

)
,

( 1
12221

)
2) e2 + e1, e4 + e3, 1

2(e8 − e7 − e6 + e5 − e4 + e3 − e2 + e1),
1
2(e8 − e7 − e6 + e5 + e4 − e3 + e2 − e1)

� = F4

Real-rank-one subalgebras:
sl(2, R) for all long restricted roots
sl(2, C) for all short restricted roots

mp,0 = R2

Special features:
G/K is quaternionic,
g0 is a quasisplit real form
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E III

k0 = so(10) ⊕ R
Simple roots fork0: compact simple roots only

Real rank= 2
Cayley transform lists:

1)
( 0

10000

)
,

( 1
12210

)
2) e5 − e4, e5 + e4

� = (BC)2

Real-rank-one subalgebras:
so(7, 1) for restricted roots± f1 ± f2

su(5, 1) for ±{ fi , 2 fi}
mp,0 = su(4) ⊕ R, simple roots by Cayley transform from

1)
( 1

00000

)
,

( 0
00010

)
,

( 0
00100

)
2) e2 + e1, e2 − e1, e3 − e2

Special feature:
G/K is Hermitian
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E IV

k0 = f4

Simple roots fork0:

1)
( 0

00100

)
,

( 0
01

201
20

)
,

( 0
1
20001

2

)
,

( 1
00000

)
2) e3−e2, 1

2(e4−e3+e2−e1), 1
4(e8−e7−e6+e5−3e4−e3−e2+e1),

e2 + e1

Real rank= 2
Cayley transform list: empty

� = A2

Real-rank-one subalgebras:
so(9, 1) for all restricted roots

mp,0 = so(8), simple roots by Cayley transform from

1)
( 1

00000

)
,

( 0
00100

)
,

( 0
01110

)
,

( 0
11111

)
2) e2 + e1, e3 − e2, e4 − e1,

1
2(e8 − e7 − e6 + e5 − e4 − e3 − e2 − e1)

Special feature:
g0 has one conjugacy class of Cartan subalgebras
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E V

k0 = su(8)
Simple roots fork0: compact simple roots and( 2

012321

)
= 1

2(e8 − e7 − e6 + e5 + e4 + e3 + e2 + e1)

Real rank= 7
Cayley transform lists:

1)
( 1

000000

)
,

( 1
001210

)
,

( 1
122210

)
,

( 1
011211

)
,( 1

012221

)
,

( 1
111221

)
,

( 1
112211

)
2) e2 + e1, e4 + e3, e6 + e5,

1
2(e8 − e7 − e6 + e5 − e4 + e3 − e2 + e1),
1
2(e8 − e7 − e6 + e5 + e4 − e3 + e2 − e1),
1
2(e8 − e7 + e6 − e5 − e4 + e3 + e2 − e1),
1
2(e8 − e7 + e6 − e5 + e4 − e3 − e2 + e1)

� = E7

Real-rank-one subalgebras:
sl(2, R) for all restricted roots

mp,0 = 0

Special feature:
g0 is a split real form
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E VI

k0 = so(12) ⊕ su(2)
Simple roots fork0: compact simple roots and( 2

123432

)
= e8 − e7

Real rank= 4
Cayley transform lists:

1)
( 0

000001

)
,

( 1
001221

)
,

( 1
122221

)
,

( 2
123421

)
2) 1

2(e8 − e7 − e6 − e5 − e4 − e3 − e2 + e1),
1
2(e8 − e7 − e6 − e5 + e4 + e3 + e2 − e1),
1
2(e8 − e7 + e6 + e5 − e4 − e3 + e2 − e1),
1
2(e8 − e7 + e6 + e5 + e4 + e3 − e2 + e1)

� = F4

Real-rank-one subalgebras:
sl(2, R) for all long restricted roots
so(5, 1) for all short restricted roots

mp,0 = su(2) ⊕ su(2) ⊕ su(2), simple roots by Cayley transform from

1)
( 1

000000

)
,

( 0
001000

)
,

( 0
100000

)
2) e2 + e1, e4 − e3, e6 − e5

Special feature:
G/K is quaternionic
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E VII

k0 = e6 ⊕ R
Simple roots fork0: compact simple roots only

Real rank= 3
Cayley transform lists:

1)
( 0

100000

)
,

( 1
122210

)
,

( 2
123432

)
2) e6 − e5, e6 + e5, e8 − e7

� = C3

Real-rank-one subalgebras:
sl(2, R) for all long restricted roots
so(9, 1) for all short restricted roots

mp,0 = so(8), simple roots by Cayley transform from

1)
( 1

000000

)
,

( 0
000010

)
,

( 0
000100

)
,

( 0
001000

)
2) e2 + e1, e2 − e1, e3 − e2, e4 − e3

Special feature:
G/K is Hermitian
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E VIII

k0 = so(16)
Simple roots fork0: compact simple roots and( 2

0123432

)
= e8 − e7

Real rank= 8
Cayley transform lists:

1)
( 0

0000001

)
,

( 1
0001221

)
,

( 1
0122221

)
,

( 2
0123421

)
,( 1

1122321

)
,

( 1
1223321

)
,

( 2
1222321

)
,

( 2
1123321

)
2) 1

2(e8 − e7 − e6 − e5 − e4 − e3 − e2 + e1),
1
2(e8 − e7 − e6 − e5 + e4 + e3 + e2 − e1),
1
2(e8 − e7 + e6 + e5 − e4 − e3 + e2 − e1),
1
2(e8 − e7 + e6 + e5 + e4 + e3 − e2 + e1),
1
2(e8 + e7 − e6 + e5 − e4 + e3 − e2 − e1),
1
2(e8 + e7 + e6 − e5 + e4 − e3 − e2 − e1),
1
2(e8 + e7 + e6 − e5 − e4 + e3 + e2 + e1),
1
2(e8 + e7 − e6 + e5 + e4 − e3 + e2 + e1)

� = E8

Real-rank-one subalgebras:
sl(2, R) for all restricted roots

mp,0 = 0

Special feature:
g0 is a split real form
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E IX

k0 = e7 ⊕ su(2)
Simple roots fork0: compact simple roots and( 3

2345642

)
= e8 + e7

Real rank= 4
Cayley transform lists:

1)
( 0

1000000

)
,

( 1
1222210

)
,

( 2
1223432

)
,

( 3
1245642

)
2) e7 − e6, e7 + e6, e8 − e5, e8 + e5

� = F4

Real-rank-one subalgebras:
sl(2, R) for all long restricted roots
so(9, 1) for all short restricted roots

mp,0 = so(8), simple roots by Cayley transform from

1)
( 1

0000000

)
,

( 0
0000010

)
,

( 0
0000100

)
,

( 0
0001000

)
2) e2 + e1, e2 − e1, e3 − e2, e4 − e3

Special feature:
G/K is quaternionic
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F I

k0 = sp(3) ⊕ su(2)
Simple roots fork0: compact simple roots and

( 2432) = e1 + e2, with ( 1000) short

Real rank= 4
Cayley transform lists:

1) ( 0001) , ( 0221) , ( 2221) , ( 2421)
2) e2 − e3, e2 + e3, e1 − e4, e1 + e4

� = F4

Real-rank-one subalgebras:
sl(2, R) for all restricted roots

mp,0 = 0

Special features:
G/K is quaternionic,
g0 is a split real form



4. Exceptional Noncompact Simple Real Lie Algebras 717

F II

k0 = so(9)
Simple roots fork0: compact simple roots and

( 2210) = e1 − e2, with ( 1000) short

Real rank= 1
Cayley transform lists:

1) ( 1000)
2) 1

2(e1 − e2 − e3 − e4)

� = (BC)1

Real-rank-one subalgebra:
F II

mp,0 = so(7), simple roots by Cayley transform from
1) ( 0010) , ( 0001) , ( 1210)
2) e3 − e4, e2 − e3,

1
2(e1 − e2 + e3 + e4).
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G

k0 = su(2) ⊕ su(2)
Simple roots fork0: compact simple root and

( 32) = −e1 − e2 + 2e3, with ( 10) short

Real rank= 2
Cayley transform lists:

1) ( 01) , ( 21)
2) − 2e1 + e2 + e3, −e2 + e3

� = G2

Real-rank-one subalgebras:
sl(2, R) for all restricted roots

mp,0 = 0

Special features:
G/K is quaternionic,
g0 is a split real form



HINTS FOR SOLUTIONS OF PROBLEMS

Introduction

1. To see that exp is ontoGL(n, C), use of Jordan form shows that it is enough
to handle a single Jordan blockB and that the diagonal entries of the block may
be taken to be 1. Set up an upper-triangular matrixX with 0 on the diagonal,a1

in all (i, i + 1)st entries,a2 in all (i, i + 2)nd entries, and so on. The equation
expX = B leads to equationsa1 = 1, a2 = f2(a1), a3 = f3(a1, a2), . . . , and

all these equations can be solved in turn. InGL(2, R), the matrix
( −1 1

0 −1

)
is

not an exponential. In fact, if it equals expX , then it commutes withX . This
commutativity forcesX to be upper triangular, and each diagonal entryd has to
have the property thated = −1, which is impossible for reald.

2.
{(

a z
0 −a

) ∣∣∣ a ∈ R, z ∈ C
}
.

3. What needs to be shown is that every sufficiently small open neighborhood
N of 1 in G1 is mapped to an open set byπ . SinceG1 is locally compact and has
a countable base, there exist open neighborhoodsUk of 1 such thatU k is compact
andG1 = ⋃

k Uk . The Baire Category Theorem shows thatπ(Un) has nonempty
interior V for somen. Let y be in V , and putU = π−1(y−1V ). ThenU is an
open neighborhood of 1 inG1, π(U ) is open inG2, andU is compact. LetN be
any open neighborhood of 1 inG1 that is contained inU . SinceU is compact,π
is a homeomorphism fromU with the relative topology toπ(U ) with the relative
topology. Thusπ(N ) is relatively open inπ(U ). Henceπ(N ) = π(U ) ∩ W for
some open setW in G2. Sinceπ(N ) ⊆ π(U ), we can intersect both sides with
π(U ) and getπ(N ) = π(U )∩ W ∩π(U ) = W ∩π(U ). SinceW ∩π(U ) is open
in G2, π(N ) is open inG2.

4. For (a) we know from Theorem 0.15 thatS is a manifold. Suppose
S is 1-dimensional. Then Corollary 0.26 shows that the continuous map
(et ) �→ diag(eit , eit

√
2 ) is onto. It is one-one since

√
2 is irrational. Problem 3

shows that it is a homeomorphism. But{(et )} is noncompact andS is compact, so
that we have a contradiction. For (b) we conclude from (a) thatS is 2-dimensional.
ThenS andT have the same linear Lie algebra and coincide by Corollary 0.21.
HenceS is dense.

5. Put (s1, . . . , sn) = ϕ1(x1, . . . , xn+1) and |s|2 = ∑
s2

j . Solving gives
|s|2 = (1 + xn+1)/(1 − xn+1), 1 + xn+1 = 2|s|2/(1 + |s|2), and 1− xn+1 =

719
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2/(1 + |s|2). So xj = 2sj/(1 + |s|2) for j ≤ n, and one finds that
ϕ2 ◦ ϕ−1

1 (s1, . . . , sn) = |s|−2(s1, . . . , sn).

6. Fixing the order of the coordinates, we can form the map� : S3 → SU (2)

given byF(x1, x2, x3, x4) = (α, β) = (x1+i x2, x3+i x4). To see thatF is smooth
into GL(2, C), we form F ◦ ϕ−1

1 or F ◦ ϕ−1
2 as appropriate, say the former. Put

(s1, s2, s3) = ϕ1(x1, x2, x3, x4). The inversion formulas for thex ’s in terms of the
s’s are in the solution to Problem 5, and substitution shows the desired smoothness
of F into GL(2, C). By Theorem 0.15b,F is smooth intoSU (2). Theorem 0.15b
says that the real and imaginary parts ofα andβ are smooth functions onSU (2),
and this is just the statement thatF−1 is smooth.

7. For (a), we usey2
1 + y2

2 + y2
3 = 1 to obtain|w|2 = (1 − y2

3)/(1 − y3)
2 =

(1 + y3)/(1 − y3). Then|w|2 − 1 = 2y3/(1 − y3) and|w|2 + 1 = 2/(1 − y3),
and division givesy3 = (|w|2 − 1)/(|w|2 + 1). The formulas fory1 andy2 follow
readily.

8. �
(

eit 0
0 e−i t

)
=

(
cos 2t − sin 2t 0
sin 2t cos 2t 0

0 0 1

)
, and thend�

(
i 0
0 −i

)
=

(
0 −2 0
2 0 0
0 0 0

)
. Simi-

larly d�
(

0 1
−1 0

)
=

(
0 0 −2
0 0 0
2 0 0

)
andd�

(
0 i
i 0

)
=

(
0 0 0
0 0 −2
0 2 0

)
.

9. For (a) the three computed values ofd� in Problem 8 are linearly indepen-
dent, andso(3) is 3-dimensional. For (b) the thing that needs proof is thatSO(3)

is connected. The groupSO(3) acts transitively onS2 with isotropy subgroup
SO(2) at a suitable base pointp. If SO(3) were the disjoint union ofSO(3)0 and
some nonempty open setV , then we would haveS2 = SO(3)0 p ∪ V p. Since
S2 is connected,SO(3)0 p would have to meetV p. This saysv−1sp = p for
somev ∈ V ands ∈ SO(3)0. Thenv−1s would be inSO(2), which is contained
in SO(3)0. So we would havev ∈ SO(3)0, contradiction. For (c) the question
is what pairs(α, β) make the 3-by-3 matrix in Problem 7b equal to the identity.
Since|α|2 + |β|2 = 1, the lower right entry forcesβ = 0. Thenα = eiθ , and one
checks that the identity matrix results if and only ifθ is a multiple ofπ .

Chapter I

1. In Example 12a, [g, g] hasa = b = 0, and [g, [g, g]] = 0. In Example 12b
an elementary sequence hasa1 with t = 0 anda2 with t = x = 0.

2. For (c), the span ofX andY is characterized as [g, g]. The givenZ is an
element not in [g, g], and adZ has eigenvalues 0 (fromZ ), α (from X ), and 1 (from
Y ). If Z is replaced byZ + s X + tY , then the eigenvalues are unchanged. If we
multiply by c ∈ R, the eigenvalues are multiplied byc. Henceα is characterized
as follows: LetZ be any vector not in [g, g]. Thenα is the ratio of the larger
nonzero absolute value of an eigenvalue to the smaller one.
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4. The complexifications in this sense are bothsl(2, C).

8. ComputeB(X, Y ) andC(X, Y ) for X = Y = diag(1, −1, 0, . . . , 0) and
find thatB = 2nC .

9. Abbreviate the displayed matrix as(θ, x, y). For (a) we have

[(1, 0, 0), (θ, x, y)] = (0, y, −x).

Hence ifC(θ, x, y) is an ideal,x = y = 0. But thenθ = 0 also from the same
bracket formula withx = 1, y = 0. For (b), ad(1, 0, 0) has eigenvalues 0 and±i .

10. Since [g, g] ⊆ n andg/[g, g] is abelian,g/n has to be abelian.

11. Let Ei j be the matrix that is 1 in the(i, j)th place and 0 elsewhere. One
solution is to takeg to be the linear span ofE11 + E22, E12, E13, E21, andE23.

12. Lie’s Theorem shows that adg can be taken simultaneously upper triangular,
and (1.31) shows that the diagonal entries are then 0.

13. The Killing formB, being nondegenerate, gives a vector space isomorphism
b : g → g∗, whileC gives a linear mapc : g → g∗. Thenb−1c : g → g is a linear
map that commutes with adg. Sinceg is simple, ad :g → Endg is an irreducible
representation. As in Lemma 1.69,b−1c must then be scalar.

14. Forsl(2, R), there is a 2-dimensional subalgebra, while forsu(2), there is
not.

16. No if n > 1. SU (n) andZ have finite nontrivial intersection.

17. The linear mapϕ
(

1 0
0 −1

)
acts onP

(
z1

z2

)
= zn

2 with eigenvaluen. Sinceϕ

is a direct sum of irreducibles andn is an eigenvalue ofϕ
(

1 0
0 −1

)
, it follows that

an irreducible of some dimensionn +2k with k ≥ 0 occurs inVn. Dimensionality
forcesk = 0 and gives the result.

19. We use Problem 18. Direct computation shows that [g, g] is contained
in the subspace withθ = 0. One still has to show that equality holds. For this
purpose one is allowed to pick particular matrices to bracket and show that the
span of such brackets is 3-dimensional.

20. The starting point is Theorem 1.127, and the rest is an induction downward
on the indexi .

21. n; 2 − (n mod 2) if n ≥ 3; 2; n; 2 − (n mod 2) if n ≥ 3; 2.

22. LetM be the diagonal matrix withn diagonal entries ofi and thenn diagonal
entries of 1. An isomorphismG → SO(2n, C) is x �→ y, wherey = Mx M−1.

24. G = {diag(ek, e−k}∞k=−∞.

27. A suitable linear combinationL of the two given linear mappings lowers
the degree ofP(s) in e−πs2

P(s) by exactly one. Take a nonzeroe−πs2
P(s) in

an invariant subspaceU and applyLdegP to e−πs2
P(s) to see thate−πs2

is in U .
Apply powers of “multiplication by−i h̄s” to this to see that all ofV is contained
in U .
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28. LetZ be nonzero in [g, g]. Extend to a basis{X, Y, Z}. If [g, Z ] = 0, then
[g, g] = R[ X, Y ] and hence [X, Y ] = cZ with c = 0; in this case we can easily
set up an isomorphism with the Heisenberg algebra. Otherwise [g, Z ] = RZ .
Since [X, Z ] and [Y, Z ] are multiples ofZ , some nonzero linear combination of
X andY bracketsZ to 0. Thus we can find a basis{X ′, Y ′, Z} with [X ′, Z ] = 0,
[Y ′, Z ] = Z , [X ′, Y ′] = cZ . Then {X ′ + cZ , Y ′, Z} has [X ′ + cZ , Z ] = 0,
[Y ′, Z ] = Z , [X ′ + cZ , Y ′] = 0. Theng = R(X ′ + cZ) ⊕ span{Y ′, Z} as
required.

29. A 2-dimensional nilpotent Lie algebra is abelian; hence [g, g] is abelian.

The matrix
(

α β

γ δ

)
is nonsingular since otherwise dim[g, g] < 2.

30. Classify by dim[g, g]. If this is 3, g is simple by the remarks at the end
of §2. If it is 2 or 1,g is analyzed by Problem 29 or Problem 28. If it is 0,g is
abelian.

31. If X = [Y, Z ], then adX = adY adZ − adZ adY , and the trace is 0.

32. One of the eigenvalues of adX0 is 0, and the sum of the eigenvalues is 0
by Problem 31. Hence the eigenvalues are 0, λ, −λ with λ ∈ C. The numberλ
cannot be 0 since adX0 is by assumption not nilpotent. Since the characteristic
polynomial of adX0 is real,λ is real or purely imaginary. Ifλ is real, then the sum
of the eigenspaces ing for λ and−λ is the required complement. Ifλ is purely
imaginary, then the intersection ofg with the sum of theλ and−λ eigenspaces in
gC is the required complement.

33. Letλ be as in Problem 32. Ifλ is real, then scaleX0 to X to makeλ = 2
and show that adX has the first form. Ifλ is purely imaginary, scaleX0 to X to
makeλ = i and show that adX has the second form.

34. The Jacobi identity gives(adX)[Y, Z ] = 0. So [Y, Z ] = aX , anda cannot
be 0 since [g, g] = g. Scale one ofY and Z to makea = 1, and then compare
with (1.6) and (1.3) in the two cases.

35. In Problem 32 we still obtainλ ∈ C with λ = 0. Since the field isC, we
obtain eigenvectors for adX0 with eigenvaluesλ and−λ, respectively. Then we
can proceed as in the first case of Problem 33.

Chapter II

1. (2n + 2)−1, (2n − 1)−1, (2n + 2)−1, (2n − 2)−1.

2. One of the ideals is the complex span of 0 0 1 i
0 0 −i 1

−1 i 0 0
−i −1 0 0

 , its conjugate, and

 0 1 0 0
−1 0 0 0

0 0 0 −1
0 0 1 0

 .
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3. For (c),g = CX ⊕ CY with CY the weight space for the linear functional
cX → c.

4. For (a), takeg = sp(2, C) and
′ = {±e1 ± e2}.
6. Propositions 2.17c and 2.17e show that dimg ≥ 3 dimh and that dimg ≡

dimh mod 2. Thus dimh ≥ 3 implies dimg ≥ 9. If dimh = 2, then dimg is even
and is≥ 6. Hence dimg = 4, 5, or 7 implies dimh = 1. Meanwhile Propositions
2.21 and 2.29 show that dimh = 1 implies dimg = 3. Hence dimg = 4, 5, and 7
cannot occur.

7. From|α|2 > 0, we get〈α, αi 〉 > 0 for some simpleαi . Use thisi as ik ,
repeat withα − αik , and iterate.

8. Proposition 2.48e for the first conclusion. For the second conclusion use the
positive roots in (2.50) and takeβ0 = e1.

10. In (a) any two roots at an angle 150◦ will do.

11. For (a) if the two roots areα andβ, thensαsβ(α) = β. For (b) combine (a)
with Proposition 2.62, using a little extra argument in the nonreduced case.

13. By induction Chevalley’s Lemma identifies the subgroup of the Weyl group
fixing a given vector subspace as generated by its root reflections. For (a) use this
extended result for the+1 eigenspace, inducting on the dimension of the−1
eigenspace. Then (b) is a special case.

14. Choosew with l(w) as small as possible so thatwλ andλ are both dominant
but wλ = λ. Write w = vsα with α simple andl(v) = l(w) − 1. Thenvα > 0
by Lemma 2.71. So〈wλ, vα〉 ≥ 0, and we get〈λ, α〉 ≤ 0. Sinceλ is dominant,
〈λ, α〉 = 0. Thenλ = wλ = vλ, in contradiction with the minimal choice ofw.

17. For (b) if α = ∑
ciαi with all ci ≥ 0, thenα∨ = ∑

diα
∨
i with di =

ci |α|−2|αi |2 ≥ 0.

18. For (a) use Theorem 2.63. For (b) the indicated Dynkin diagrams admit
no nontrivial automorphisms. For (c) and (d) use the explicit descriptions of the
Weyl groups in Example 1 of §6.

19. (BC)1 ⊕ A1 and(BC)1 ⊕ (BC)1 are missing.

20. Hereg′ = g, h′ = h, andϕ = w. Fix �, and choose nonzero root vectors
Eα for α ∈ �. For eachα ∈ �, choose any nonzero root vectorEwα, and require
that Eα map toEwα.

22. For (a) Lemma 2.71 allows us to see that sgnw = −1 if w is a product of an
odd number of simple reflections in any fashion and sgnw = +1 if w is a product
of an even number of simple reflections in any fashion. The homomorphism
property follows. In (b), sgnw and detw are multiplicative and agree on simple
reflections. Part (c) follows from (b).
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23. We have

l(w1w2) = #{α > 0 | w1w2α < 0}
= #{α > 0 | w2α > 0, w1w2α < 0}

+ #{α > 0 | w2α < 0, w1w2α < 0}
= #{α | α > 0, w2α > 0, w1w2α < 0}

+ l(w2) − #{α | α > 0, w2α < 0, w1w2α > 0}
= #{β | w−1

2 β > 0, β > 0, w1β < 0}
+ l(w2) − #{γ | w−1

2 γ < 0, γ > 0, w1γ < 0}
= l(w1) − #{β | w−1

2 β < 0, β > 0, w1β < 0}
+ l(w2) − #{γ | w−1

2 γ < 0, γ > 0, w1γ < 0}

with β = w2α andγ = −w2α.

24. By Problem 23,

l(wsα) = l(w) + l(sα) − 2#{β > 0 | wβ < 0 andsαβ < 0}.

For the first conclusion we thus are to prove thatwα < 0 implies

(∗) l(sα) < 2#{β > 0 | wβ < 0 andsαβ < 0}.

Here the left side is #{γ > 0 | sαγ < 0}. Except forα, suchγ ’s come in pairs,γ
and−sαγ . From each pair at least one ofγ and−sαγ is aβ for the right side of
(∗) becauseγ − sαγ = 2〈γ,α〉

|α|2 α is > 0 andwα is < 0. So each pair,γ and−sαγ ,
makes a contribution to(∗) for which the left side is≤ the right side. The rootα
contributes 1 to the left side of(∗) and 2 to the right side. So the inequality(∗) is
strict.

25. Use expansion in cofactors about the first column.

26. The Dynkin diagram should consist consecutively of vertex, single edge,
vertex, single edge, and then the rest of the diagram.

28. In handlingCn andDn, take into account thatC2
∼= B2 andD3

∼= A3.

31. In (a) the long roots are already as in (2.43); no isomorphism is involved.
In (b) each member ofWF preserves length when operating on roots. In (c)
the two indicated reflections correspond to two distinct transpositions of the three
outer roots of the Dynkin diagram ofD4, and together they generate the symmetric
group on three letters. This group is the full group of automorphisms of the Dynkin
diagram ofD4. For (d) the order ofWD is given in Problem 15.

32. For (a) use Problem 11b. Letα be the root in (a). In (b) there are five simple
roots orthogonal toα, and all the roots orthogonal toα then have to be in the space
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spanned by these simple roots. For (c) apply Chevalley’s Lemma to−sα. For (d)
use Chevalley’s Lemma directly. For (e) the number of roots forE6 is given in
Problem 16, and the order of the Weyl group fixingα is given in Problem 15, by
(d).

33. Same idea as for Problem 32.

34. Same idea as for Problem 32 once the result of Problem 33d is taken into
account.

35. Multiply Xt I3,3 + I3,3X = 0 through on the left and right byS−1.

36. Use the basis in the order

(e1 ∧ e4) + (e2 ∧ e3), (e1 ∧ e2) + (e3 ∧ e4), (e1 ∧ e3) − (e2 ∧ e4),

(e1 ∧ e4) − (e2 ∧ e3), (e1 ∧ e2) − (e3 ∧ e4), (e1 ∧ e3) + (e2 ∧ e4).

Then the matrix ofM is of the form
(

a b
c d

)
with a, b, c, d each 3-by-3, witha and

d skew symmetric, and withc = bt . This is the condition thatM be ing.

37. Sincesl(4, C) is simple and the kernel is an ideal, it suffices to find one
element that does not act as 0, and a diagonal element will serve this purpose.
Then the homomorphism is one-one. A count of dimensions shows it is onto.

38. The condition for a 4-by-4 matrix
(

a b
c d

)
, with a, b, c, d each 2-by-2, to

be in sp(2, C) is thatd = −at andc = bt . Putting this condition into place in
Problem 36 as solved above, we find that the last row and column of the image
matrix are always 0.

39. The homomorphism is one-one by Problem 37, and a count of dimensions
shows it is onto.

40. The projected system consists of the six vectors obtained by permuting the
indices of± 1

3 He1+e2−2e3, together with the six vectorsHei −ej for i = j .

41. The centralizer is the direct sum of the Cartan subalgebra and the six
1-dimensional spacesCHei −ej .

42. Showing closure under brackets involves several cases and makes sys-
tematic use of Corollary 2.37. Under the action of the complementary space to
He1+e2+e3 in the Cartan subalgebra, the roots are those in Problem 40 and form a
system of typeG2.

43. The inductive step reduces matters from sizen to sizen − 1 if the n-by-n
matrix is not 0. ConjugatingA by a permutation matrix, we may assume that some
entry in the last column is= 0. If the diagonal entryd is = 0, usex = −bd−1 and

reduce to
(

a′ 0
0 d

)
. If d = 0, some entry ofb is = 0, say thei th. Then usey = k Eni

with aii k2 + 2bi k = 0 to reduce to a matrix whose lower right entry is= 0.
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44. The inductive step reduces matters from sizen to sizen − 2 if the n-by-n
matrix is not 0. Conjugating by a permutation matrix, we may arrange that the
lower right 2-by-2 blockd is = 0. Thend is invertible, and use ofx = −bd−1

reduces to the matrix
(

a′ 0
0 d

)
.

45. For (a) we may assume by Problem 43 thatA is diagonal. SinceC is
closed under square roots, we can choose a diagonalM with M2 = A−1. Then
M commutes withA, and Mt AM = 1. For (b) we can find by Problem 44 a
nonsingularN with N t AN block diagonal, all diagonal blocks being of sizes 1 or
2. SinceA is invertible, so isN t AN , and then there can be no 1-by-1 blocks. So

n is even. In the 2-by-2 case, we have
(

a 0
0 1

) (
0 c

−c 0

) (
a 0
0 1

)
=

(
0 ac

−ac 0

)
. Taking

a = c−1, we see that we can find a nonsingularP with Pt AP block diagonal

with diagonal blocks
(

0 1
−1 0

)
. Applying this result toJ , we obtainQt J Q block

diagonal with diagonal blocks
(

0 1
−1 0

)
. Then(P Q−1)t A(P Q−1) = J .

46. Part (a) is elementary by the methods of Chapter I. The reason that the
definition of gA does not include TrX = 0 is that this condition is implied:
0 = Tr(AXt A−1 + X) = Tr(Xt + X) = 2 Tr X implies TrX = 0. For (b)
we may assume thatB = 1. By Problem 45a, choose a nonsingularM with
Mt AM = 1. Putg = Mt , so thatA = B−1(B−1)t . Thenx−1 = Axt A−1 if and
only if y = gxg−1 satisfiesy−1 = yt . Also detx = 1 if and only if dety = 1.
So x is in G A if and only if y is in G1. In other words,gG Ag−1 = G1. Part (c)
is proved similarly, using Problem 45b. For (d) recall thattx = Lxt L−1. Then
GL = SO ′(n, C) andG1 = SO(n, C), so that the isomorphism of groups is a
special case of (b). For (e) we haveJ = In,n L. The defining property ofx is then
x−1 = In,n Lxt L In,n = In,n

tx In,n.

47. Part (a) follows from Proposition 2.13 after one verifies (b). In (b) for
so′(n, C), the diagonal Cartan subalgebrah is spanned byE11 − Enn,
E22− En−1,n−1, . . . , E[n/2],[n/2] − En+1−[n/2],n+1−[n/2], where the brackets indicate
greatest integer. Letei be evaluation of thei th diagonal entry ofH ∈ h, 1 ≤ i ≤ n.
Among theei ’s, the ones withi ≤ [n/2] form a basis ofh∗. From the theory for
sl(n, C), we have

[H, Ei j − En+1− j,n+1−i ] = (ei (H) − ej (H)))(Ei j − En+1− j,n+1−i ).

Thus Ei j − En+1− j,n+1−i is a root vector for the rootei − ej . The vectors
Ei j − En+1− j,n+1−i with i + j < n+1 span the strictly upper triangular subalgebra
of so′(n, C). For i < j , the root equalsei − ej if j ≤ [n/2], ei if j = 1

2(n + 1),
andei + en+1− j if i ≤ [n/2] and j > 1

2(n + 1). So the usual positive roots for this
Lie algebra are the roots corresponding to the upper triangular subalgebra ofg.

48. This comes down to producing real matricesM with Mt L M = In+1,n and
Mt L M = In,n in the two cases.
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Chapter III

1. For (a) the argument is essentially the same as the proof of Lemma 1.68.
Part (b) is trivial.

2. The finite-dimensional subspacesUn(g) are invariant.

3. Use Proposition 3.16 and the fact thatS(g) has no zero divisors.

4. For (a),F is 1-dimensional abelian. For (b) letV have basis{X, Y }. Then
the element [X, [. . . , [ X, Y ]]] is in F and is inT n+1(V ) if there aren factorsX .
When expanded out, this element contains the termX ⊗ · · · ⊗ X ⊗ Y only once,
the other terms being independent of this term. Hence the element is not 0.

5. For (a) a basis isX1, X2, X3, [ X1, X2], [ X2, X3], [ X3, X1]. Any triple
bracket is 0, and henceg is nilpotent. The bracket ofX1 and X2 is not zero,
and henceg is not abelian. In (b) one writes down the 6-by-6 symmetric matrix
that incorporates the given values forB and checks that it is nonsingular. This
proves nondegeneracy. For invariance it is enough to check behavior on the basis,
and expressionsB(Xi , [ X j , Xk ]) are the only ones that need to be checked.

6. Let F be a free Lie algebra onn elementsX1, . . . , Xn, and letR be the
two-sided ideal generated by all [Xi , [ X j , Xk ]]. ThenF/R is two-step nilpotent
and has the required universal property. The elements ofF∩ T2(span{Xi }n

i=1) map
ontoF/R, and finite dimensionality follows.

7. Let π : F → A be a Lie algebra homomorphism ofF into an associative
algebraA with identity. Restrictπ to a linear mapπ0 of V into A, and use the
universal mapping property ofT (V ) to extendπ0 to an algebra homomorphism
π̃ : T (V ) → A with π̃(1) = 1. Thenπ̃ is the required extension ofπ .

8. See the comparable construction for Lie algebras in §I.3.

9. This is an application of Proposition 3.3.

11. Use Proposition 3.3.

12. See Knapp [1986], proof of Theorem 3.6.

13. See Knapp [1986], proof of Lemma 3.5.

14. Letx1, . . . , xN be a basis ofV , and defineAi j = 〈xi , xj 〉. The matrixA is
nonsingular since〈 · , · 〉 is nondegenerate. The referenced problem says thatN is
even, and it producesM with Mt AM = J , hence with

〈 ∑
k xk Mki ,

∑
l xl Ml j 〉 =

Ji j . Putyi = ∑
k xk Mki . The result is thatV has a basisy1, . . . , yN with 〈yi , yj 〉 =

Ji j , and the isomorphism follows.

15. The matrix that corresponds toX0 hasr = −2.

16. To see that̃ι has the asserted properties, form the quotient map
T (H(V )C) → T (V C) by factoring out the two-sided ideal generated byX0 − 1.
The compositionT (H(V )C) → W (V C) is obtained by factoring out the two-
sided ideal generated byX0 − 1 and allu ⊗ v − v ⊗ u − 〈u, v〉1, hence by all
u ⊗ v − v ⊗ u − 〈u, v〉X0 and byX0 − 1. ThusT (H(V )C) → W (V C) factors
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into the standard quotient mapT (H(V )C) → U (H(V C)) followed by the quotient
map ofU (H(V )C) by the ideal generated byX0−1. By uniqueness in Proposition
3.3,̃ι is given by factoring out byX0 − 1.

17. Let P be the extension ofπ to an associative algebra homomorphism of
U (H(V )C) into A. ThenP(X0) = 1 sinceπ(X0) = 1. Problem 16 shows that
P descends toW (V C), i.e., that there exists̃π with P = π̃ ◦ ι̃. Restriction toV
givesπ = π̃ ◦ ι.

18. This is immediate from Problem 16 and the easy half (the spanning) of the
Poincaré–Birkhoff–Witt Theorem.

19. In Problem 15 takeV + = iRn andV − = Rn. Let the bases be the standard
basis of each.

21. For the irreducibility see the hint for Problem 27 in Chapter I.

22. Let ri = pi + 2πqi , so thatϕ(ri )
(
Pe−π |x |2) = (∂ P/∂xi )e−π |x |2. It is

enough to prove that no nontrivial linear combination of the members of the
spanning setqk1

1 · · · qkn
n r l1

1 · · · rln
n maps to 0 under̃ϕ. Let a linear combination

of such terms map to 0 under̃ϕ. Among all the terms that occur in the linear
combination with nonzero coefficient, let(L1, . . . , Ln) be the largest tuple of
exponents(l1, . . . , ln) that occurs; here “largest” refers to the lexicographic or-
dering takingl1 first, thenl2, and so on. PutP(x1, . . . , xn) = x L1

1 · · · x Ln
n . If

(l1, . . . , ln) < (L1, . . . , Ln) lexicographically, theñϕ(rl1
1 · · · rln

n )
(
Pe−π |x |2) = 0.

Thusϕ̃(qk1
1 · · · qkn

n r l1
1 · · · rln

n )
(
Pe−π |x |2) is 0 if (l1, . . . , ln) < (L1, . . . , Ln) lexico-

graphically and equalsxk1
1 · · · xkn

n L1! · · · Ln!e−π |x |2 if (l1, . . . , ln) = (L1, . . . , Ln).
The linear independence follows immediately.

Chapter IV

1. For (a),�(tθ )(zk
1zN−k

2 ) = (e−iθ z1)
k(eiθ z2)

N−k = ei(N−2k)θ zk
1zN−k

2 . For (c),

χ(tθ ) =
N∑

k=0

ei(N−2k)θ = ei(N+1)θ − e−i(N+1)θ

eiθ − e−iθ
.

For (d) writeχM as a sum andχN as a quotient, and then multiply and sort out.

2. If x ∈ G is given, chooseX in the Lie algebra with expX = x . By Theorem
4.34 there is an elementg ∈ G with Ad(g)X in the Lie algebra of the given torus.
Thengxg−1 = exp Ad(g)X is in the given torus.

3. See Knapp [1986], pp. 86–87.

4. Use diag(−1, −1, 1).

5. Matrices with one nonzero element in each row and column.
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6. Let G̃ be a nontrivial finite cover ofG. Then Proposition 4.67 shows that
there are analytically integral forms for̃G that are not algebraically integral, in
contradiction with Proposition 4.59.

7. dimV .

8. Expand the integrand as a sum, with four indices, of the product of matrix
coefficients, and apply Schur orthogonality.

9. It is enough to check thatso(n) acts in a skew-symmetric fashion, and this

reduces to checking what happens with a Lie algebra element that is
(

0 1
−1 0

)
in the

upper left 2-by-2 block and is 0 elsewhere.

11. LetvN−2 be inVN−2 andvN be inVN . Then

〈|x |2vN−2, vN 〉 = 〈vN−2, ∂(|x |2)vN 〉.

If vN is harmonic, then the right side vanishes and we see from the left side that
|x |2VN−2 is orthogonal toHN . In the reverse direction ifvN is orthogonal to
|x |2VN−2, then the left side vanishes and we see from the right side that∂(|x |2)vN

is orthogonal toVN−2 and must be 0.

12. The dimension of the image of
 in VN−2 must equal the dimension of the
orthogonal complement to the kernel in the domain.

13. Induction.

14. Use dimHN = dim VN − dim VN−2. The number of monomials inVN is
the number of ways of choosingn−1 dividers from amongN +n−1 contributions

of 1 to an exponent, thus is

(
N + n − 1

n − 1

)
.

16. We have
⊕

p+q=N Vp,q = VN and
⊕

p+q=N Vp−1,q−1 = VN−2. Certainly

(Vp,q) ⊆ Vp−1,q−1. If the inclusion is proper for one pair(p, q), then
 cannot
mapVN ontoVN−2.

17. Use dimVp,q = (dim Vp)(dim Vq) and the computation for Problem 14.

18. For (c) letλ = ∑
cj ej . If cj = aj + k

n with aj ∈ Z for all j , then
ξλ(diag(eiθ1, . . . , eiθn )) = expi(

∑
ajθj ). For (d), the quotient is canonically

isomorphic to the set of allk/n with k taken modulon.

19. For (c), use Proposition 4.68.

20. For (c),ξek (diag(eiθ1, . . . , eiθn , e−iθ1, . . . , e−iθn ) = eiθk .

21. For (d) the group is cyclic forSO(2n) with n odd, and it is the direct sum
of two groups of order 2 forSO(2n) with n even. In fact, two distinct nontrivial
coset representatives aree1 and 1

2(e1 + · · · + en). The first one has order 2 as a
coset, while the second one has order 2 as a coset ifn is even but order 4 ifn is
odd.
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Chapter V

1. For (b) applyw0 to (d) or (e) in Theorem 5.5.

2. For (a) Problem 11 in Chapter IV givesPN = PN−2 ⊕ |x |2HN . Once
one has shown thatNe1 is the highest weight ofPn, then(N − 2)e1 must be the
highest weight ofPN−2, andNe1 must be the highest weight ofHN . For (b) the

result of Problem 14 in Chapter IV is
(

N+n−1
n−1

)
−

(
N+n−3

n−1

)
= (N+n−3)!(2N+n−2)

N !(n−2)! .

When n = 2m + 1 is odd, useδ = (m − 1
2, m − 3

2, . . . , 1
2) and Ne1 + δ =

(N + m − 1
2, m − 3

2, . . . , 1
2) in the Weyl Dimension Formula to obtain

( N + m − 1
2

m − 1
2

)( m∏
j=2

N + j − 1

j − 1

)( m∏
j=2

N + 2m − j

2m − j

)
,

which reduces to the same result.

3. For (a) argue as in Problem 2a. For (b) the result of Problem 17 in Chapter IV
is (p+n−2)!(q+n−2)!(p+q+n−1)

p!q!(n−1)!(n−2)! . Use〈δ, ei − ej 〉 = j − i in the Weyl Dimension

Formula to obtain

( p + q + n − 1

n − 1

)( n−1∏
j=2

q + j − 1

j − 1

)( n−1∏
i=2

p + n − i

n − i

)
,

which reduces to the same result.

4. AbbreviateHe1−e2 asH12, etc. A nonzero homogeneous element of degree
3 is (H12 + H13)(H21 + H23)(H31 + H32).

5. Let t = diag(t1, . . . , tn) with
∏

ti = 1. ThenW is the symmetric group on
n letters, andε(w) is the sign of the permutation. The right side of the formula
in Corollary 5.76, evaluated att , is the determinant of the Vandermonde matrix
with (i, j)th entry (tn+1− j )

i−1. The left side, evaluated att , is the value of the
determinant, namely

∏
i< j (ti − tj ).

6. Use the Kostant Multiplicity Formula for occurrence of the weightλ in the
trivial representation.

7. The Weyl Dimension Formula gives∏
i< j

〈 ∑l
k=1 ek + δ, ei − ej

〉∏
i< j 〈δ, ei − ej 〉 =

∏
i≤l< j

(
j − i + 1

j − i

)
=

(
n
l

)
.

8. Hereδ = (n − 1
2, n − 3

2, . . . , 1
2), and the Weyl Dimension Formula gives us

nontrivial factors for theei − ej with i ≤ l < j , theei with i ≤ l, theei + ej with
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i < j ≤ l, and theei + ej with i ≤ l < j , namely( ∏
i≤l< j

j−i+1
j−i

)( ∏
i≤l

n+ 3
2−i

n+ 1
2−i

)( ∏
i< j≤l

2n+3−i− j
2n+1−i− j

)( ∏
i≤l< j

2n+2−i− j
2n+1−i− j

)
= ( n

l

) n+ 1
2

n+ 1
2−l

( ∏
i≤l

2n+1−i−l
n+1−i

)( ∏
i<l

(2+2n−2i)(1+2n−2i)
(2+2n−i−l)(1+2n−i−l)

)
,

and this reduces to
(

2n+1
l

)
.

9. Similar to Problem 8 but without factors from theei ’s.

10. The dimension of
∧nC2n is

(
2n
n

)
, and the dimensions of the indicated

irreducible representations are seen to be each1
2

(
2n
n

)
. Each weight of

∧nC2n is

of the form
∑n

j=1 aj ej with aj = 1, 0, or−1 and with
∑

aj of the same parity
asn. Here

∑n
j=1 ej has multiplicity one and corresponds to one of the irreducible

constituents. The next highest weight is
( ∑n−1

j=1 ej
) − en, which is not a weight of

this irreducible constituent by Theorem 5.5d. Hence it leads to a second irreducible
constituent. These two constituents account for the full dimension of

∧nC2n.

11. If not, then the action ofU (n−) in V (λ) would not be one-one, in contra-
diction with Proposition 5.14b.

12. By Proposition 5.11c,µ − δ = λ − δ − q+ with q+ in Q+. Also µ is in
Wλ by Theorem 5.62 and Example 2 at the end of §5.

13. M must have at least one highest weight vector, and irreducibility implies
that that vector must generate. By Proposition 5.14c,M is isomorphic to a quotient
of someV (µ). By Proposition 5.15,M is isomorphic toL(µ).

16. To multiply two basis vectors, one deletes the common pairs ofui ’s, inserts
a factor of−1 for each such pair, puts the remainingui ’s in order, and inserts the
sign of the permutation used to put theui ’s in order. In the same way it is possible
to give a description of how to multiply three basis vectors, and associativity comes
down to knowing that the sign function is multiplicative on the permutation group.

17. The bracket [ui uj , ui ′uj ′ ] is 0 if all indices are different, is 2ui uj ′ if j = i ′

andi = j ′, and so on.

20. c(u2m+1)zS = ±zS′ andc(u2m+1)zS′ = ±zS.

21. This follows from Problems 19 and 20.

22. The parity of the number of elements ofS changes under eachc(zj ) orc(z̄ j ),
hence under eachc(u2 j−1) or c(u2 j ). Hencec(qC) leavesS+ andS− invariant.

23. Argue as in Problem 22, taking the result of Problem 20 into account.

26. The computation in (b) is similar to the one for Problem 10.

27. The computation in (b) is similar to the one in Problem 8 whenl = n.
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28. For (a), 2
〈 ∑l

k=1 ek, ei − ei+1
〉
/|ei − ei+1|2 is 1 if i = l, 0 if i = l. For (b)

Problem 7 shows that the alternating-tensor representation in
∧lCn is irreducible

with highest weight
∑l

k=1 ek .

31. For theαth factor of the Weyl Dimension Formula, we have

〈λ + δ, α〉
〈δ, α〉 = 〈λ′ + δ, α〉

〈δ, α〉 + 〈λ − λ′, α〉
〈δ, α〉 .

The right side is≥ the first term on the right for everyα, and there is someα for
which the inequality is strict.

32. It follows from Problem 31 by induction that ifλ = ∑
ni�i and M =∑

ni , then the dimension of the irreducible representation with highest weightλ

is ≥ M + 1.

33. For (a) Problem 42 in Chapter II exhibits a complex simple Lie algebra
of type G2 inside a complex simple Lie algebra of typeB3. The latter can be
taken to beso(7, C), for which the standard representation has dimension 7. The
Cartan subalgebra ofG2 does not act trivially in this representation, and hence the
representation is not 0. For (c) the dimension of the fundamental representation
attached toα2 is 7. For (d) letϕλ be irreducible with highest weightn1�1 +n2�2.
Problem 31 shows that dimϕλ ≥ 14 if n1 ≥ 1. Also dimϕλ ≥ 7 if n2 ≥ 1 with
equality only if (n1, n2) = (0, 1). Hence a nonzero irreducible representation
must have dimension≥ 7. Since the representation in (a) is completely reducible
(Theorem 5.29) and nonzero, one of its irreducible constituents has dimension
≥ 7. This irreducible constituent must exhaust the representation.

34. Choose a basis ofg consistent with the root-space decomposition, and
arrange the basis vectors in order so that their weights underh are nondecreasing.
Then the matrix of ad(H+X) in this basis is lower triangular with the eigenvalues of
adH along the diagonal. It follows that the generalized eigenspace for ad(H + X)

and the eigenvalue 0 has dimension equal to dimh. ThereforeH + X is regular,
and Theorem 2.9′ shows thatg0,H+X is a Cartan subalgebra. By Proposition 2.10
any Cartan subalgebra ofg is abelian, and thusg0,H+X equals the centralizer of
H + X in g. A second look at the matrix of ad(H + X) shows that the centralizer
lies completely withinb.

35. Start with Theorem 2.15 to reduce toh′ = h. Working with the analytic
subgroup of Intg whose Lie algebra isu0, use Theorems 2.63 and 4.54 to reduce
to b′ = b. Then the sets of root vectors can be aligned by means of Ad(expH)

for someH in h.

Chapter VI

1. By Theorem 2.15 we can assume that the two split real formsg0 andg′
0

have a common Cartan subalgebrah0. Fix a positive system of roots. For each
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simple rootα, choose root vectorsXα ∈ g0 andX ′
α ∈ g′

0. Using the Isomorphism
Theorem, construct an isomorphismϕ : g → g that is the identity onh0 and carries
Xα to X ′

α for each simple rootα.

2. Let G be semisimple with Lie algebrag0, and let K correspond tok0.
Then Adg0(K ) is compact with Lie algebra adg0(k0), and hencek0 is compactly
embedded. Ifk0 ⊆ k1 with k1 compactly embedded, letK1 correspond tok1. Since
Int g0

∼= Ad(G), the analytic subgroup of Intg0 with Lie algebra adg0(k1), which is
compact by assumption, is Adg0(K1). Apply Theorem 6.31g to the group Ad(G).

3. Write exp1
2Y expX = k expX ′ with k ∈ K and X ′ ∈ p0. Apply θ to this

identity, take the inverse, and multiply.

4. Write g1/2 = kan with k ∈ K , a ∈ A, n ∈ N . Apply θ to this identity, take
the inverse, and multiply.

7. For (b) letα1, . . . , αl be the simple roots of
+, with αs+1, . . . , αl spanning
V . For i ≤ s, the root−θαi has the same restriction toa asαi . In particular it
is positive. Write−θαi = ∑l

j=1 ni jαj with ni j an integer≥ 0. Then−θαi is in∑s
j=1 ni jαj + V . Application of−θ shows thatαi is in

∑s
j=1

∑s
k=1 ni j njkαk + V .

Hence(ni j )
2 = (δi j ). Giveni , choosei ′ with nii ′ni ′i = 1. Thennii ′ni ′k = 0 for

k = i saysni ′k = 0 for k = i ′. It follows that(ni j ) is the matrix of a permutation
of order 2. For (c) the definition makes−θαi (H) = αi (H) for 1 ≤ i ≤ l. So
αi (−θ H) = αi (H) for all i , andθ H = −H . Result (d) is immediate from (c).
For (e) suppose thatαi |a0 = β ′ +β ′′ with β ′ andβ ′′ in �+. By (a),β ′ = αi ′ |a0 and
β ′′ = αi ′′ |a0 with αi ′ andαi ′′ simple. Then the set of restrictions from the orbits is
dependent, in contradiction with (d).

8. K̃ ∼= SU (2), andM̃ is a subgroup of̃K of order 8 withM as a quotient.
Since M̃ ⊆ SU (2), M̃ has a unique element of order 2. Considering the five
abstract groups of order 8, we see that{±1, ±i, ± j, ±k} is the only possibility.

9. Theorem 6.74 reduces this to showing that a subdiagramD of D′ closed
under the automorphism yields a subalgebra ofg′

0. There is no loss of generality
in assuming thatg′

0 is set up as in the proof of Theorem 6.88, with corresponding
compact real formu′

0 as in (6.89). Letu0 be the sum as in (6.89) but taken just
over rootsα for D. SinceD is closed under the automorphism,θ ′u0 = u0. Thus
u0 = (u0 ∩ k′) ⊕ (u0 ∩ p′), and we can takeg0 = (u0 ∩ k′) ⊕ i(u0 ∩ p′).

10. For (a) leth0 be the Cartan subalgebra, and letα1, . . . , αl be the simple
roots. DefineH ∈ ih0 byαj (H) = +1 if αj is noncompact, 0 ifαj is compact. Put
k = expπ i H ∈ K . Then Ad(k)Xα = eπ iα(H) Xα for α simple. By the uniqueness
in the Isomorphism Theorem, Ad(k) = θ . For (b), Ad(k) is −1 onp0, hence on
a0. SoW (G, A) contains−1. By Theorem 6.57,−1 is in W (�).

11. Leth0 = t0 ⊕ a0 be a maximally compact Cartan subalgebra, choose
+

takingit0 beforea0, and supposek exists. Since Ad(k) fixest0, k is in the analytic
subgroupT corresponding tot0 (Corollary 4.51). LetU be the adjoint group of the
compact real formk0⊕ip0, and letS be the maximal torus with Lie algebrat0⊕ia0.
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Then Ad(k) is in S. By Theorem 4.54, Ad(k) is in W (
). But θ
+ = 
+. So
Theorem 2.63 says thatθ = 1 onh0, in contradiction witha0 = 0.

12. If Eα is a root vector forα, thenθ [Eα, θ Eα] = −[Eα, θ Eα]. So if α + θα

is a root (necessarily imaginary), it is noncompact. This contradicts Proposition
6.70.

14. Let the third subalgebra be{H(t, θ)}. Let g ∈ GL(4, R) conjugate
the third subalgebra so thatg{H(t, 0)}g−1 is contained inh0 andg{H(0, θ)}g−1

is contained inh′
0. Then gH(t, 0)g−1 must be diagonal with diagonal

entries(t, t, −t, −t) or (−t, t, t, −t) or (t, −t, −t, t) or (−t, −t, t, t). Since
gH(0, θ)g−1 has to commute with one of these for allt , it has to occur in blocks,
using entries(12, 21) and(34, 43), or (14, 41) and(23, 32). However,h′

0 uses
entries(13) (31), (24), (42), which are different.

15. The map carriessp(n, C) to itself. Thus in (b) the membersY of the image
satisfyJY + Y ∗ J = 0 andJY + Y t J = 0. HenceY is real.

16. The computation in (a) should be compared with the example at the
beginning of §6. In (b) the exponential map commutes with matrix conjugation.
Hence it is enough to find which matrices of (a) are in the image. To do so, one
first checks that any matrix (like theX that exponentiates to it) that commutes with(

a 0
0 a−1

)
for somea with a = a−1 is itself diagonal. Similarly, any matrix that

commutes with±
(

1 t
0 1

)
for somet = 0 is upper triangular.

17. Two copies of the Dynkin diagram ofg with an arrow between each vertex
of one diagram and the corresponding vertex of the other diagram.

18. A simple rootβ in the Vogan diagram gets replaced bysαβ =
β −2〈β, α〉/|α|2. Sinceθ fixesα, expansion ofsαβ in terms ofα andβ shows that
θ commutes withsα. Hence the automorphism of the Dynkin diagram ofsα
+

has the same effect as it does on the Dynkin diagram of
+. For the imaginary
roots the key fact for the painting is (6.99). Supposeα is compact. Sincesαβ is the
sum ofβ and a multiple ofα, β andsαβ get the same painting. Ifα is noncompact,
sαβ = β − 2〈β, α〉/|α|2. For β = α, α gets replaced by−α, for no change in
painting. Forβ orthogonal toα, β is left unchanged. This proves (a) and (b).
Forβ adjacent toα, the painting ofβ gets reversed unless 2〈β, α〉/|α|2 = −2, in
which case it is unchanged. This proves (c). The algorithm for (d) is repeatedly
to let sα be the second painted simple root from the left and to applysα.

19. In (a) the root is the sum of12(e1 − e2 − e3 − e4), e3 − e4, e4 ande4. In
(b) the roots are orthogonal but not strongly orthogonal. If a Cayley transform
is performed relative to one of the two roots, the other root becomes compact by
Proposition 6.72b.

20. e2 − e3, e2 + e3, e1 − e4, e1 + e4.

21. In the notation of (2.86), the algorithm givese6 − e5, e6 + e5, e8 − e7 as
the strongly orthogonal sequence of noncompact roots.
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22. B([p′
0, p

′
0
⊥], k0) = B(p′

0, [p′
0
⊥, k0]) ⊆ B(p′

0, p
′
0
⊥) = 0. Since [p′

0, p
′
0
⊥] ⊆

k0 and sinceB|k0×k0 is negative definite, [p′
0, p

′
0
⊥] = 0.

23. Invariance under adk0 follows from the Jacobi identity. SinceB|p0×p0

is positive definite,p0 = p′
0 ⊕ p′

0
⊥. By Problem 22, [p′

0, p0] = [p′
0, p

′
0]. Then

[p0, {[p′
0, p0]⊕p′

0}] ⊆ [p0, [p′
0, p

′
0]]+[p0, p

′
0]. The first term, by the Jacobi identity,

is ⊆ [p′
0, [p0, p

′
0]] ⊆ [p′

0, k0] ⊆ p′
0.

24. In (a) Problem 23 says that [p0, p0] ⊕p0 is an ideal ing0. Sinceg0 is simple
andp0 = 0, this ideal isg0. Hence [p0, p0] = k0. In (b) a larger subalgebra has to
be of the formk0 ⊕ p′

0, wherep′
0 is an adk0 invariant subspace ofp0. If p′

0 = 0,
Problem 23 forces [p′

0, p0] ⊕ p′
0 = g0, and thenp′

0 has to bep0.

25. All the necessary Vogan diagrams are the special ones from Theorem 6.96.
So this problem is a routine computation.

26. These are the restrictions to real matrices, and the images are the sets of
real matrices inso(3, 3)C andso(3, 2)C, respectively.

27. The point here is that the domain groups are not simply connected. But the
analytic subgroups of matrices corresponding to the complexified Lie algebras are
simply connected. The kernel in each case has order 2.

28. The transformationσm,n is conjugate linear, has order 2, and fixes exactly
the members ofsu(m, n); therefore it is the required conjugation. The conjugations
σm ′,n′ andσm,n are related byσm ′,n′ = Ad(g) ◦ σm,n, whereg = Im ′,n′ Im,n. This
particularg is not necessarily inSL(m +n, C) and it may be necessary to multiply
it by a scalar matrix to complete the argument.

29. LetG̃ be a simply connected cover of Int(gR). Thenσ lifts to a homomor-
phism�̃ of G̃ onto Int(gR). The center gets mapped to the center, and Int(gR)

has trivial center by Proposition 6.30. The condition for�̃ to descend to a map
� : Int(gR) → Int(gR) is that�̃ be trivial on the kernel of the covering map; this
kernel equals the center.

30. The automatic existence ofu0 follows from Theorem 6.11 and the formula
(6.12). For the proof of uniqueness ofg, we may take the two triples to be the
same. WritingG = Int g, we need to be able to work with the normalizerNG(h).
We set up an Iwasawa decomposition inG. The groupK is the analytic subgroup
of G with Lie algebrau0. The groupA is the analytic subgroup corresponding to
a = h ∩ iu0, which is maximal abelian iniu0. The Lie algebram in Proposition
6.47 isia, and the Cartan subalgebrah coincides witha ⊕ m. Each root, being
complex linear, is completely determined by its values ona. Each root space has
complex dimension 1 and therefore real dimension 2. Thus the roots relative toh

may be identified with the restricted roots relative toa, each restricted root having
multiplicity 2. Positivity for the roots is defined relative to the givenb, and we may
transfer this definition of positivity to the restricted roots. Since the real subspace
a of h is exactly the space on which the roots are real valued, it follows readily
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that NG(h) = NG(a). Use of Theorems 6.57 and 2.63 reduce the possibilities for
g to something in exph, and an easy computation completes the argument.

31. By (1.82) and Problem 29,(σ ′)2 = Ad(g)−1 ◦ Ad(�(g))−1. This shows
that(σ ′)2 is inner. Since(σ ′)2 sends{(b, h, Xα}) to itself, Problem 30 shows that
(σ ′)2 = 1. Thusσ ′, which is certainly a conjugate linear mapping respecting
brackets, is the conjugation ofg with respect to some real formg′

0. The formula
σ ′(b) = b shows that the fixed setg′

0 underσ ′ is a quasisplit real form, and the
formulaσ ′ = Ad(g)−1 ◦ σ shows thatg0 andg′

0 are inner forms of one another.

32. Letπ andπ ′ be the projections ofb onh andn. Arrange the positive roots
α in increasing order, and let{σ(Xα)} be the corresponding ordered basis ofn. For
H ∈ h, we compute the matrix of adH in this basis. We have(adH)(σ (Xα)) =
[H, σ (Xα)] = σ [σ H, Xα] = σ [πσ H, Xα] + σ [π ′σ H, Xα] = α(πσ H)σ (Xα) +
σ [π ′σ H, Xα]. Sinceπ ′σ H is in n, the termσ [π ′σ H, Xα] contributes strictly
lower-triangular entries to the matrix. Thus the matrix of adH is lower triangular
with diagonal entriesα(πσ H), and it follows that the functionsH �→ α(πσ H)

are the positive roots. In other words, to each positive rootα corresponds a
positive rootβ such thatα(πσ H) = β(H). Sinceβ(Hδ) > 0 for all β, we obtain
α(Hδ + πσ Hδ) = 0 for all positive rootsα. Problem 34 in Chapter V allows us
to conclude from this fact thath′ = Zb(Hδ + σ(Hδ)) is a Cartan subalgebra ofg.
The equalityσ(h′) = h′ follows becauseσ fixes Hδ + σ(Hδ).

33. Statements (b) and (c) are equivalent because the roots of(mC
0 , tC0 ) are the

imaginary roots of(g, h). If (b) holds, impose an ordering on the roots of(g, h) that
takesa0 beforeit0. If there are no imaginary roots, the conjugate of any positive
root will be positive. Thus the Borel subalgebra built fromh and the root spaces
for the positive roots will exhibitg0 as quasisplit. This proves (a). Conversely if
(a) holds, Problem 32 allows us to assume that the conjugationσ of g with respect
to g0 leavesb = h ⊕ n stable and alsoh. Thenh ∩ g0 is a Cartan subalgebra of
g0. Apply Proposition 6.59 to obtain aθ stable Cartan subalgebrah′

0 of g0 and a
Borel subalgebrab′ containing it such thatσ(b′) = b′. The conditionσ(b′) = b′

implies that there are no imaginary roots, and there can be no imaginary roots only
whenh′

0 is maximally noncompact.

34. Sinceσ carriesb to b and h to h, it permutes the positive roots and
therefore also the simple roots. Being of order 2,σ operates with 1-element orbits
and 2-element orbits. For a 2-element orbit{α, β}, we put X ′

α = Xα, say, and
defineX ′

β = σ(X ′
α). Sinceσ 2 = 1, we obtainσ(X ′

β) = X ′
α. For a 1-element

orbit {α}, we haveσ(Xα) = cXα for somec = 0. Fromσ 2 = 1, we obtain
Xα = σ 2(Xα) = cc̄Xα, and thus|c|2 = 1. Choosez so thatz2 = c. Then
σ(zXα) = cz̄Xα = cz−2(zXα) = zXα, and henceX ′

α = zXα is fixed byσ .

35. The automorphism certainly sends(b′, h′, {Xα′ }) to itself. Sinceg0 andg′
0

are inner forms of one another, there existsg0 ∈ Int g such thatσ ′ = Ad(g0) ◦ σ .
Then the automorphism equals Ad(g) ◦ σ ◦ Ad(g)−1 ◦ Ad(g0) ◦ σ . The class of
this modulo Int(gR) is [σ ]2 = 1, and thus it is in Int(gR) = Int g. Problem 30 says
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that it is 1. Thereforeσ ′ = Ad(g) ◦σ ◦ Ad(g)−1. If X is in the fixed set ofσ , then
Ad(g)X is in the fixed set ofσ ′, and conversely. Thusg′

0 = Ad(g)g0.

Chapter VII

1. Whenn > 1, the elementg = diag(1, . . . , 1, −1) yields a nontrivial
automorphism of the Dynkin diagram. Then Theorem 7.8 implies that Ad(g) is
not in Intg.

2. In (a) the main step is to show thatK is compact. The subgroup of̃G
where� is 1 isR2, andK is of the formR2/D, which is compact. In (b),Gss is
(S̃L(2, R) × {0})/(D ∩ (S̃L(2, R) × {0})), and the intersection on the bottom is
trivial. ThusGss has infinite center. IfGss were closed inG, Kss would be closed
in G, hence inK . ThenKss would be compact, contradiction.

5. Let M AN be block upper-triangular with respective blocks of sizes 2 and 1.
ThenM is isomorphic to the group of 2-by-2 real matrices of determinant±1 and
has a compact Cartan subalgebra. The groupM is disconnected, and its center
Z M = {±1} is contained inM0. ThereforeM = M0Z M .

6. Refer to the diagram of the root systemG2 in Figure 2.2. Take this to be
the diagram of the restricted roots. Arrange fora0 to correspond to the vertical
axis and fort0 to correspond to the horizontal axis. The nonzero projections of
the roots on thea0 axis are of the required form.

7. In (b) oneM A is ∼= GL+(2, R) × Z/2Z (the plus referring to positive
determinant), and the other is∼= GL(2, R). If the two Cartan subalgebras were
conjugate, the twoM A’s would be conjugate.

8. It is easier to work withSO(2, n)0. For (a), conjugate the Lie algebra by
diag(i, i, 1, . . . , 1). In (b), c0 comes from the upper left 2-by-2 block. For (c) the
Cartan subalgebrah given in §II.1 is fixed by the conjugation in (a) and intersects
with g0 in a compact Cartan subalgebra ofg0. The noncompact roots are those that
involve±e1, and all others are compact. For (d) the usual ordering makese1 ± ej

ande1 larger than all compact roots; hence it is good.

9. It is one-one sinceNK (a0) ∩ ZG(a0) = Z K (a0). To see that it is onto, let
g ∈ NG(a0) be given, and writeg = k expX . By Lemma 7.22,k andX normalize
a0. Then X centralizesa0. Henceg can be adjusted by the member expX of
ZG(a0) so as to be inNK (a0).

10. Imitate the proof of Proposition 7.85.

11. For (a) whenα is real, form the associated Lie subalgebrasl(2, R) and argue
as in Proposition 6.52c. Whenα is compact imaginary, reduce matters toSU (2).
For (b), fix a positive system
+(k, h) of compact roots. Ifsα is in W (G, H),
choosew ∈ W (
(k, h)) with wsα
+(k, h) = 
+(k, h). Let w̃ and s̃α be repre-
sentatives. By Theorem 7.8, Ad(w̃s̃α) = 1 onh. Hencesα is in W (
(k, h)). By
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Chevalley’s Lemma some multiple ofα is in 
(k, h), contradiction. For (c) use
the group of 2-by-2 real matrices of determinant±1.

12. Parts (a) and (c) are trivial. In (b) putM = 0ZG(a0). If k is in NK (a0), then
Ad(k) carriest0 to a compact Cartan subalgebra ofm0 and can be carried back to
t0 by Ad of a member ofK ∩ M , essentially by Proposition 6.61.

13. The given ordering on roots is compatible with an ordering on restricted
roots. Any real or complex root whose restriction toa0 is positive contributes
to bothb and b̄. Any imaginary root contributes either tob or to b̄. Therefore
m ⊕ a ⊕ n = b + b̄.

14. OtherwiseNg0(k0) would contain a nonzero memberX of p0. Then adX
carriesk0 to k0 becauseX is in the normalizer, and adX carriesk0 to p0 sinceX
is in p0. So adX is 0 onk0. It follows that(adX)2 is 0 ong0. If B is the Killing
form, thenB(X, X) = 0. SinceB is positive definite onp0, X = 0.

15. Using Corollary 7.6, we can setG up as a closed linear group of matrices
closed under conjugate transpose. Then Example 4 of reductive Lie groups will
show thatNGC(g0) is reductive.

16. Without loss of generality,GC is simply connected, so thatθ extends to
g and lifts to� on GC. The closure of expia0 is a torus, and it is contained
in the maximal torus exp(t0 ⊕ ia0). If expia0 is not closed, then there is some
nonzeroX ∈ t0 such that expr X is in the closure for all realr . Every elementx
of expia0 has the property that�x = x−1. If expr X has this property for allr ,
thenθ X = −X . SinceX is in t0, θ X = X . HenceX = 0.

17. G = SL(2, C) contains elementsγβ = 1 as in (7.57), butKsplit is trivial.

18. LetT be a maximal torus ofK with Lie algebrat0. Let U be the analytic
subgroup ofGC with Lie algebrak0 ⊕ ip0. The analytic subgroupH of GC with
Lie algebra(t0)

C is a Cartan subgroup ofGC and is of the formH = T A for a
Euclidean groupA. The center ofGC lies inU ∩ H = T and hence lies inG.

19. LetG ⊆ GC
1 andG ⊆ GC

2 . DefineG̃C to be a simply connected cover of
GC

1 , and letG̃C → GC
1 be the covering map. Let̃G be the analytic subgroup of

G̃C with Lie algebrag0. The isomorphism between the Lie algebras ofGC
1 andGC

2

induced by the identity map ofG yields a holomorphic homomorphism̃GC → GC
2 ,

and the main step is to show that this map descends toGC
1 . By Problem 18 the

kernel of the holomorphic covering map̃GC → GC
1 and the constructed map

G̃C → GC
2 are both equal to the kernel of̃G → G, hence are equal to each

other. ThereforẽGC → GC
2 descends to a one-one holomorphic homomorphism

GC
1 → GC

2 . Reversing the roles ofGC
1 andGC

2 shows that this is an isomorphism.

20. G is isomorphic to the group Ad(G) of 8-by-8 matrices, butSL(3, C) is
not isomorphic to Ad(SL(3, C)).

21. The multiplication-by-i mappingJ : p0 → p0 has to come fromc0 by
Theorem 7.117, andg0 simple implies that dimc0 = 1. SinceJ 2 = −1, the only
possibilities forJ are some operator and its negative.
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24. SinceG/K is not Hermitian, there exist noncompact roots. Problem 23
shows that the lattices are distinct. By Theorem 6.96 we may assume that the
simple roots areα1, . . . , αl with exactly one noncompact, sayαl . SinceG/K is
not Hermitian, some expression 2αl + ∑l−1

j=1 njαj is a root, necessarily compact.
Then the lattice generated by the compact roots hasZ basisα1, . . . , αl−1, 2αl ,
while the lattice generated by all the roots hasZ basisα1, . . . , αl . Thus the index
is 2.

25. This is a special case of (6.103).

26. If s is the subalgebra, then the fact thatt ⊆ s means that

s = t ⊕
⊕

α

(s ∩ gα).

Thens = k ⊕ ⊕
α∈E gα since each root space has dimension 1.

27. This follows from the fact thatgα = g−α.

28. If V is an invariant subspace ofp, thenk⊕ V is a Lie subalgebra ofg, hence
is of the form in Problem 26 for someE ⊆ 
n. By Problem 24b in Chapter VI, any
proper nonemptyE satisfying the conditions in Problem 27 must haveE ∪(−E) =

n andE ∩ (−E) = ∅. Sincep is completely reducible, it follows that the only
nontrivial splitting ofp can involve someE and its complement. Hence there are
at most two irreducible pieces.

29. Letp1 be one of the two irreducible pieces, and let it correspond toE as
above. Letp2 be the other irreducible piece. Ifα1 andα2 are inE andα1 + α2 is
a root, then a nonzero root vector for−(α1 + α2) carries a nonzero root vector for
α1 to a nonzero root vector for−α2, hence a nonzero member ofp1 to a nonzero
member ofp2, contradiction. Thus a sum of two members ofE cannot be a root.
Consequently〈α, β〉 ≥ 0 for all α, β ∈ E . Let σ = ∑

α∈E α. Then it follows
that〈σ, α〉 > 0 for all α ∈ E . Proposition 5.99 implies thatσ is orthogonal to all
compact roots. Hencei Hσ is in c0. If we determine an ordering by usingHσ first,
thenp1 = p+ andp2 = p−.

30. Problem 15b of Chapter VI gives a one-one map on matrices that exhibits
the Lie algebras of the two groups as isomorphic. The groupSp(n, R) is connected
by Proposition 1.145, and it is enough to prove thatSU (n, n) ∩ Sp(n, C) is
connected. For this connectivity it is enough by Proposition 1.143 to prove that

U (2n) ∩ SU (n, n) ∩ Sp(n, C) is connected, i.e., that the unitary matrices
(

u1 0
0 u2

)
in Sp(n, C) are exactly those withu2 = ū1. This is an easy computation from the
definition ofSp(n, C).

31. The example in §9 shows thatSU (n, n) preserves the condition that
1n − Z∗ Z is positive definite. Let us check that the preservation of the condition

Z = Zt depends only onSp(n, C). The conditions for
(

A B
C D

)
to be inSp(n, C)

are thatAt C = Ct A, Bt D = Dt B, andAt D − Ct B = 1. These conditions imply
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that(ZCt + Dt )(AZ + B) = (Z At + Bt )(C Z + D) whenZ = Zt , and it follows
that(AZ + B)(C Z + D)−1 is symmetric when(C Z + D)−1 is defined.

33. e1 ≥ e2 ≥ · · · ≥ en.

37. For (b) the question concerns the projection of a rooter − es on the linear
span of theγj . The projection ofer −es can involve only thoseγj ’s containing±er

or ±es . Hence there are at most two. The projection of±(ei − en+m+1−i ) is ±γi

if i ≤ m, and the projection ofei − ej is 1
2(γi − γj ) if i and j are≤ m. Applying

root reflections, we must get all1
2(±γi ± γj ). If m = n, all er ’s contribute to the

γi ’s, and we get no other restricted roots. Ifm < n, thenen does not contribute
to theγi ’s. If r is any index such thater does not contribute, then±(ei − er ) has
projection± 1

2γi .

40. The rootsα + β andγ are positive noncompact, and their sum cannot be a
root in a good ordering since [p+, p+] = 0.

41. For (a), 2〈γ, γi 〉/|γi |2 = 2ci is an integer≤ 3 in absolute value. For (b)
if ci = − 3

2, thenγ, γ + γi , γ + 2γi , γ + 3γi are roots. Eitherγ or γ + γi

is compact, and then Problem 40 applies either to the first three roots or to the
last three. For (c) letci = ±1 andcj = 0. Applying root reflections suitably,
we obtain a rootγ with ci = −1 andcj < 0. Then we can argue as in (b)
for the sequenceγ, γ + γi , γ + 2γi , γ + 2γi + γj . In (d) if ci = 0, cj = 0,
and ck = 0, we may assumeγ hasci < 0, cj < 0, ck < 0. Then we argue
similarly with γ, γ + γi , γ + γi + γj , γ + γi + γj + γk . In (e) the restricted
roots are all possibilities for

∑s
i=1 ciγi , and parts (a) through (d) have limited

these to±γi , 1
2(±γi ± γj ), ± 1

2γi . For (f) the±γi are restricted roots, and the
system is irreducible. If some± 1

2γi is a restricted root, then the system is(BC)s

by Proposition 2.92. Otherwise the system is an irreducible subsystem of ranks
within all ±γi and 1

2(±γi ± γj ), and it must beCs .

42. FromuGu−1 = G ′, we haveuG B = G ′u B. Also G B = �K C P− implies

uG B = u�K C P−. Hereu

(
1 z
0 1

)
= 1√

2

(
1 z + i
i i z + 1

)
hasP+ component(

1 z+i
i z+1

0 1

)
, and henceuG B = �′′K C P−, where�′′ consists of all

(
1 w

0 1

)
with w = z + i

i z + 1
and |z| < 1. Then�′′ is just �′ (the mapping from� to �′

being the classicalCayley transform). The action ofG ′ on �′ is by g(ω′) =
(P+ component ofgω′), and this is given by linear fractional transformations by
the same computation as for the action ofG on�.

43. For
1√
2

(
1 i
i 1

)
, the decomposition intoP+K C P− is

(
1 i
0 1

) ( √
2 0

0 1/
√

2

) (
1 0
i 0

)
.



Chapter VII 741

The elementuj is the Cayley transformcγj defined as in (6.65a), with root vectors
normalized so that [Eγj , Eγj ] = 2|γj |−2Hγj = H ′

γj
. More precisely we are to think

of Eγj ↔
(

0 −i
0 0

)
and Eγj ↔

(
0 0
i 0

)
, so thatuj = expπ

4 (Eγj − Eγj ) ↔
1√
2

(
1 i
i 1

)
. Then the decomposition for (a) is

uj = exp(−Eγj ) exp(( 1
2 log 2)H ′

γj
) exp(Eγj ).

In (b) the factoruj of u affects only thej th factor of exp
( ∑

cj (Eγj + Eγj )
)
,

and the result of applying Ad(u) is therefore exp
∑

cj Ad(uj )(Eγj + Eγj ) =
exp

∑
(−cj H ′

γj
) by a computation insl(2, C). In (c) define a restricted rootβ

to be positive ifβ(Eγj + Eγj ) < 0 for the first j havingβ(Eγj + Eγj ) = 0. If
X is a restricted-root vector for such aβ and j is the distinguished index, then
[Eγi + Eγi , X ] = −ci X for all i , with c1 = · · · = cj−1 = 0 andcj > 0. Then

[H ′
γi
, Ad(u)X ] = −[Ad(u)(Eγi + Eγi ), Ad(u)X ] = ci Ad(u)X.

So Ad(u)X is a sum of root vectors for roots̃β such that̃β(H ′
γi
) = ci . If β̃ is

negative and noncompact, then〈β̃, γi 〉 is < 0 when it is = 0 for the first time.
But 〈β̃, γj 〉 = cj > 0. Henceβ̃ is compact or positive noncompact. Then
(c) follows, and (d) is a consequence ofuG B = (uNpu−1)(u Apu−1)uK B ⊆
P+K C · K C · P+K C P− · K B ⊆ P+K C P−.

44. This follows from Problem 43 and the style of argument used in the proof
of Theorem 7.129.

45. Assume the contrary. Ifg is in Intg, then Ad(g) has to carry each term
sl(n, C) into itself. Thusg must exhibitsl(n, R) andsu(n) as inner forms within
sl(n, C). If [ · ] denotes greatest integer, Problem 28 in Chapter VI says thatsu(n)

andsu([n/2], [(n + 1)/2]) are inner forms of one another. Hence the existence
of g would imply thatsl(n, R) andsu([n/2], [(n + 1)/2]) are inner forms of one
another. But this possibility is ruled out by Problem 35 in Chapter VI since these
Lie algebras are quasisplit and nonisomorphic.

46. Use Theorem 7.8 for (a) and Problem 35 in Chapter VI for (b). Part (c)
makes use of these results and also Problem 31 in Chapter VI.

47. Use Corollary 6.10.

48. Theorem 6.94a gives(gR)C ∼= g ⊕ g, and the proof shows that an
isomorphism is given byX + iY �→ (X + JY, τ (X − JY )), whereτ is any
conjugation ofg with respect to a real form. Ifϕ is in Aut(gR), we complexifyϕ
by ϕ(X + iY ) = ϕ(X) + iϕ(Y ) and obtain an automorphism of(gR)C. Using the
above isomorphism we form the corresponding automorphism ofg ⊕ g, given by
ϕ̃(X + JY, τ (X − JY )) = (ϕ(X)+ Jϕ(Y ), τ (ϕ(X)− Jϕ(Y ))). PuttingX = JY ,
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we obtaiñϕ(2X, 0) = (ϕ(X) − Jϕ(J X), τ (ϕ(X) + Jϕ(J X))). The image of an
ideal under the complex-linear̃ϕ is an ideal, and thus one of the two coordinates
of ϕ̃(2X, 0) is identically 0. In other words eitherϕ(X) − Jϕ(J X) = 0 for all
X or ϕ(X) + Jϕ(J X) = 0 for all X . In the first caseϕ is conjugate linear, and
in the second caseϕ is complex linear. Thus the automorphisms ofgR are of two
kinds, the complex linear ones and the product of the complex linear ones by a
fixed conjugation. Then it follows readily that the order in question is 2N .

49. Letg0 andg′
0 be isomorphic real forms, and letσ andσ ′ be the corresponding

conjugations ofg. Letτ : g0 → g′
0 be an isomorphism, and extendτ to be complex

linear fromg to itself. Thenτ ◦ σ ◦ τ−1 satisfies the defining properties ofσ ′ and
hence equalsσ ′. Thus we haveτ ◦ σ ◦ τ−1 ◦ σ ′ = 1 in Aut(gR). Problem 48
says that the quotient group Aut(gR)/Int(gR) has order 4 and is therefore abelian.
Passing to this quotient in our identity, we obtain [σ ][σ ′] = [τ ][σ ][τ ]−1[σ ′] = 1.
Thusσ ◦σ ′ is in Int(gR) = Int g, and we obtainσ = Ad(g)◦σ ′ for someg ∈ Int g.

50. These are the situations in whichN = 2. When two nonisomorphic
quasisplit real forms can be found, Problem 46 completes the argument. ForAn,
the quasisplit forms aresl(n + 1, R) andsu([(n + 1)/2], [(n + 2)/2]). For Dn,
they areso(n, n) andso(n − 1, n + 1). For E6, they are E I and E II.

51. Leth be the Cartan subalgebrahC
0 , and letb be the Borel subalgebra built

from h and the root spaces for the positive roots. Thenσ(b) = b andσ(h) = h.
By Problem 34 of Chapter VI, choose root vectorsXα for the simple roots such
thatσ {Xα} = {Xα}. Thenσ fixes Xe1−e2 and Xe2−e3, and it interchangesXe3−e4

and Xe3+e4. By Theorem 2.108, there exists a unique automorphismτ of g with
the following properties: it carriesh into itself; it fixes Xe2−e3; it sendsXe1−e2

to Xe3−e4, Xe3−e4 to Xe3+e4, and Xe3+e4 to Xe1−e2; and it acts compatibly onh.
Put g′

0 = τ(g0). The conjugation ofg with respect tog′
0 is σ ′ = τ ◦ σ ◦ τ−1.

Computing the effect on each root vectorX for a simple root, we obtainσ ′◦σ(X) =
τ ◦ σ ◦ τ−1 ◦ σ(X) = τ−1(X). If we hadσ ′ ◦ σ = Ad(g) for someg ∈ Int g, the
uniqueness in Theorem 2.108 would say thatτ−1 = Ad(g) ong, in contradiction
to Theorem 7.8.

52. For (a) the Schwarz inequality gives|2〈α, ᾱ〉/|α|2| < 2, and we need
2〈α, ᾱ〉/|α|2 = 1. Sinceᾱ = −θα, this follows from Problem 12 in Chapter VI.

53. Letα be a root withαR = β, and letγ be a root withγR = 2β. If α is real,
then 4|α|2 = |2β|2 ≤ |γ |2, but the lengths ofα andγ cannot be related this way
in an irreducible root system. If 2〈α, ᾱ〉/|α|2 = −1, thenα + ᾱ = 2β is a root.
Problem 52 says that the only other possibility is that 2〈α, ᾱ〉/|α|2 = 0, in which
case|α|2 = 1

2|2β|2. We may suppose thatγ is not real. Since 4β is not a restricted
root, Problem 52 says that 2〈γ, γ̄ 〉/|γ |2 = 0. Then|γ |2 = 2|γR|2 = 2|2β|2, and
hence|γ |2 = 4|α|2, contradiction. Finally the complex roots contribute in pairs to
the multiplicities of the restricted roots. Since 2β is a real root andβ is not,m2β

is odd andmβ is even.
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54. SupposeαR = β. Problem 53 shows that 2β is a root. Thusα + ᾱ is a
root. Since〈α, ᾱ〉 = 0, α − ᾱ = α + θα is a root, in contradiction to Problem 12
of Chapter VI.

55. Problem 53 supplies a real root, and Proposition 6.70 says thata ⊕ t is not
a maximally compactθ stable Cartan subalgebra. This proves the first statement.
In fact, the compact Cartan subalgebra can be constructed by Cayley transform
from a ⊕ t and the real root 2β, and the formulas of §VI.7 show that the result is
the sum oft and something that can be taken to be of the formR(X + θ X) with
X in g2β .

56. For (a) theθ stable Cartan subalgebraa ⊕ t is not maximally compact,
and Proposition 6.70 says that there is a real root. Up to sign this must beβ

or 2β. If β is a restricted root, Problem 53 says that 2β is a real root; so 2β
has to be a real root in any case (and thenβ cannot be a real root). For (b) any
noncompact root relative to a compact Cartan subalgebra can be used in a Cayley
transform to produce a noncompact Cartan subalgebra, which must be maximally
noncompact sinceg has real rank one. The results from two different noncompact
roots must be conjugate, as a result of Theorems 6.51 and 4.34, and it follows
that the noncompact roots must be conjugate, hence must be of the same length.
Suppose that there are two lengths of roots and that all noncompact roots are long.
Then 2β is long. Supposeγ is a noncompact root with|γ | < |2β|. If 〈γ, 2β〉 = 0,
thenγ and 2β are strongly orthogonal, and it follows thatg has real rank≥ 2,
contradiction. So〈γ, 2β〉 = 0. Possibly replacingγ by −γ , we may assume that
〈γ, 2β〉 > 0, hence that 2〈γ, 2β〉/|γ |2 ≥ 2. Thenγ projects alongRβ to β, and
γ̄ = 2β − γ . Since 2〈γ, γ̄ 〉/|γ |2 = 2〈γ, 2β − γ 〉/|γ |2 ≥ 2− 2 = 0, Problems 52
and 54 show that we have a contradiction.

57. If c is an integer andX is ingcβ , then Ad(γ2β)X = exp(ad 2π i |2β|−2H2β)X
= e2π i |2β|−2〈2β,cβ〉 X = (−1)c X . This proves (a) and shows that Ad(γ2β) is the
identity ong1. For (b) and (c), Theorems 7.53b and 7.55 show thatγ2β is in the
center ofM , while Theorems 7.53c and 7.55 show thatM is generated byM0

andγ2β . It follows from Problem 55 thatγ2β is in K1. Sincem ⊆ k1 ⊆ g1 and
m ⊆ k1 ⊆ k, we haveM ⊆ K1 ⊆ G1 andM ⊆ K1 ⊆ K . Sinceγ2β is in K1 and
Ad(γ2β) = 1 ong1, γ2β is in the center ofK1 and the center ofG1. Part (a) shows
thatγ2β does not centralize members ofk of the form X + θ X with X ∈ gβ , so
that it is not in the center ofK if mβ = 0. This proves (b). For (c), the elementgθ

is in the exponential of the compact Cartan subalgebra and hence is inK1. Since
Ad(gθ ) = θ , gθ centralizesK but notG. The elementgθ is not in M because
Ad(gθ ) is −1 ona. This proves (c).

Chapter VIII

1. Let{ψα} be a smooth partition of unity as in (8.8). Define a smoothm form
ωα onUα by ωα = ϕ∗

α(dx1 ∧· · ·∧dxm). Thenω = ∑
α ψαωα is a smoothm form
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on M . SinceM is oriented, the local coefficient (8.4) of eachωα is ≥ 0 in each
coordinate neighborhood. Hence the sum definingω involves no cancellation in
local coordinates and is everywhere positive.

2. It is assumed thatF is real analytic on a neighborhood of a cube, say with
sides 0≤ xj ≤ 1. The set ofa with 0 ≤ a ≤ 1 such thatF(a, x2, . . . , xn) is
identically 0 is finite since otherwise there would be an accumulation point and a
power series expansion about the limiting point would show thatF vanishes on
an open set. This fact may be combined with Fubini’s Theorem and induction to
give a proof.

3. We have

(
a0 b0

0 1

) (
a b
0 1

)
=

(
a0a a0b + b0

0 1

)
. Thus left trans-

lation carriesda db to d(a0a) d(a0b) = a2
0 da db, and it carriesa−2 da db to

(a0a)−2a2
0 da db = a−2 da db. Soa−2 da db is a left Haar measure. The compu-

tation for a right Haar measure is similar.

4. G is unimodular by Corollary 8.31, andMp ApNp is not (by (8.38)). Apply
Theorem 8.36.

5. Use Problem 2.

6. GL(n, R) is reductive.

7. With Ei j as in Problem 8, use

E11, E21, . . . , En1, E12, . . . , En2, . . . , E1n, . . . , Enn

as a basis. ThenLx is linear, and its expression in this basis is block diagonal with
each block a copy ofx . Hence detLx = (detx)n.

8. Part (a) uses Problem 2. For (b) we use Problem 7 and the change-of-variables
formula for multiple integrals to write∫

GL(n,R)

f (y) dy =
∫

GL(n,R)

f (Lx y)| detLx | dy

=
∫

GL(n,R)

f (xy)| detx |n dy =
∫

GL(n,R)

f (y)| detx |n d(x−1y),

wheredy denotes Lebesgue measure restricted to the open setGL(n, R). This
shows that| detx |n d(x−1y) = dy, and it follows that| dety|−n dy is left invariant.

9. Writex = kan. Thenπ(n)v = v, andπ(a)v = eν logav. Hence‖π(x)v‖2 =
‖eν logaπ(k)v‖2 = e2ν loga‖v‖2.

10. Part (a) uses Problem 9, first with the standard representation (withv =(
1
0
0

)
) and then with

∧2 of the standard representation (withv =
(

1
0
0

)
∧

(
0
1
0

)
).

For (b),(2 f1) + 2( f1 + f2) = 2 f1 − 2 f3 = 2ρp.
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11. For (a) use the standard representation withv =


1
0
...
0
1

. The highest

restricted weightλ is 1 onE1,n+1 + En+1,1. Then

π(x)v =
 x11 + x1,n+1

...

xn+1,1 + xn+1,n+1

 ,

so that‖π(x)v‖2 = ∑n+1
j=1(xj1 + xj,n+1)

2 and

e2λHp(x) = 1
2

n+1∑
j=1

(xj1 + xj,n+1)
2.

In (b) the unique positive restricted rootα is 2 on E1,n+1 + En+1,1, andρp =
1
2(n − 1)α. Hencee2ρp Hp(x) = (e2λHp(x))n−1.

Chapter IX

1. Write out the proof first forn = 3 and, if it is helpful, specialize first to
a1 = 5, a2 = 3, a3 = 3.

2. With the conventions thatc0 = a1 andcn = an+1 = 0, eachbj is to satisfy
max(aj+1, cj ) ≤ bj ≤ min(aj , cj−1), and these conditions are independent of one
another. The interval of possiblebj ’s containsAj + 1 integers, and the product
formula follows.

3. The situation is a little clearer if one considers the noncompact Riemannian
dual GL(2n, R)0/SO(2n). We are to start from a maximally compact Cartan
subalgebra and take the compact part before the noncompact part when imposing
an ordering on the roots forGL(2n, R)0. The relevant data are in Example 2 of
§VI.8. The positive weights forGL(2n, R)0 are theei ± ej for i < j , all with
multiplicity 2, and the 2el with multiplicity 1. The weights forSO(2n) are the
ei ± ej for i < j with multiplicity 1. Thus� consists of theei ± ej for i < j
with multiplicity 1, together with the 2el with multiplicity 1. In other words,� is
a system of positive roots of typeCn.

4. Induct onn, the base case of the induction beingn = 2. For the inductive
step, the hypothesis allows onlywen = en andwen = en−1. In the first case, the
situation reduces ton−1 immediately, and in the second case the situation reduces
to n − 1 for the permutationw′ = (n−1 n)w.
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6. In (a), apply the root vectorsEei −ej for i < j , Eei +ej for i < j , andE2ei for
1 ≤ i ≤ 3, as they are defined in §II.1, to each of the given vectors and check that
the result is 0 in each case. For (b), Theorem 9.76 gives the highest weights as∑k−2l

i=1 ei for 0 ≤ l ≤ [k/2]; the multiplicities are 1 in each case. For 1≤ j < k,
define f j = ej ∧ ej+n + ej+1 ∧ ej+1+n. Nonzero highest weight vectors are given,
for 0 ≤ l ≤ [k/2], by e1 ∧ · · · ∧ ek−2l ∧ fk−2l+1 ∧ fk−2l+3 ∧ · · · ∧ fk−1.

7. The transformation rule is an easy change of variables. For continuity let
fx (y) = f (xy). We have

|(I f,v(x), v′)V − (I f,v(x ′), v′)V | ≤ sup
y∈G

| fx (y) − fx ′(y)| ‖(σ (h)v, v′)V ‖L2(H).

Squaring both sides and summing forv′ in an orthonormal basis, we obtain

|I f,v(x) − I f,v(x ′)|2V ≤ sup
y∈G

| fx (y) − fx ′(y)|2 ∫
H |σ(h)v|2V dh

= |v|2V sup
y∈G

| fx (y) − fx ′(y)|2,

and the required continuity follows from the uniform continuity off on G.

8. Starting from
∫

G(I f,v(x), F(x))V dx = 0 for someF in the induced space
and for all f and v, we obtain, after interchanging order of integration twice,∫

G f (x)(v, F(x))V dx = 0. This says(v, F(x))V = 0 almost everywhere for
eachv. Takingv in a countable orthonormal basis, we conclude thatF(x) = 0
almost everywhere. ThereforeF is the 0 element.

9. Takev = v′ = 0, and takef to be a function of small support near the
identity that is> 0 at the identity. Then(I f,v, v)V has real part> 0, and the
induced space is not 0.

10. The space for indGH σ is not 0 by Problem 9 and thus Theorem 9.4 shows
that some irreducible representationτ of G occurs in it. Applying Frobenius
reciprocity, we see thatσ occurs in the restriction ofτ to H .

11. SinceL2(S4n−1) ∼= indSp(n)

Sp(n−1) 1, Frobenius reciprocity reduces the problem
to finding the irreducible representations ofSp(n) containing the trivial represen-
tation of Sp(n − 1), together with the multiplicities. In Theorem 9.18 we take
c1 = · · · = cn−1 = 0. The restrictions on theaj ’s are given byci ≥ ai+2, and
thusa3 = · · · = an = 0. Thus the highest weights of the representations ofSp(n)

that we seek are(a + b)e1 + ae2 with a ≥ 0 andb ≥ 0. The multiplicity can
be computed from Theorem 9.18, but the multiplicity is given more directly by
Problem 2 asA1 + 1 becauseAi = 0 for i ≥ 2. SinceA1 = (a + b) − max(a, 0),
the multiplicity isb + 1.

12. With K1 written asSp(n − 1) × Sp(1) × Sp(1), the representation indK1
M 1

decomposes as the Hilbert-space sum forc0 ≥ 0 of 1̂⊗σc0en ⊗̂σc0en+1, all with multi-
plicity 1. (The representations on the two factorsSp(1) are to be contragredients,
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but each representation ofSp(1) is equivalent with its contragredient.) What
is needed for the outer step of an induction in stages is indSp(n)

Sp(n−1)×Sp(1) 1⊗̂σc0en .
Frobenius reciprocity converts this problem into finding irreducible representations
of Sp(n) whose restriction contains the given representation ofSp(n−1)× Sp(1);
we want also the multiplicities. Thus in Theorem 9.50 we takeµ = c0en

and we considerλ = ∑
aj ej . Sinceci = 0 for 1 ≤ i ≤ n − 1, we have

a3 = · · · = an = 0. Then A1 = a1 − a2 and A2 = · · · = An = 0. The
multiplicity is P(a1 − a2, 0, . . . , 0, −c0) − P(a1 − a2, 0, . . . , 0, c0 + 2). This is
0 whena1 − a2 − c0 is odd. When it is even, the first term is 1 if and only if
a1 − a2 ≥ c0, and the second term is 1 if and only ifa1 − a2 ≥ c0 + 2. Hence the
multiplicity is 1 if and only ifa1 − a2 = c0, and it is 0 otherwise. Substituting, we
obtain the desired formula indK

M 1.

13.
∑

a≥0 τa(e1+e2).

14.
∑

a≥0,b≥0 τae1−ben for Problem 11,
∑

a≥0,b≥0 τae1−ben ⊗̂σ(b−a)en+1 for Prob-
lem 12, and

∑
a≥0 τa(e1−en) for Problem 13. The multiplicities are 1 in all cases.

15. Changing notation, suppose that the weights ofτλ′ have multiplicity one.
Let τλ′′ occur more than once. By Proposition 9.72 writeλ′′ = λ+µ′ for a weight
µ′ of τλ′ . The proof of that proposition shows that a highest weight vector for each
occurrence ofτλ′′ contains a term equal to a nonzero multiple ofvλ ⊗ vµ′ . If τλ′′

occurs more than once in the tensor product but the weightµ′ has multiplicity 1,
then a suitable linear combination of the highest weight vectors does not contain
such a term, contradiction.

16. By Chevalley’s Lemma,〈λ, α〉 = 0 for some rootα. Rewrite the sum as
an iterated sum, the inner sum over{1, sα} and the outer sum over cosets of this
subgroup.

17. Puttingµ′′ = wλ′′ and using thatmλ(wλ′′) = mλ(λ
′′), we have

χλχλ′ = d−1
∑
w∈W

∑
µ′′=weight ofτλ

mλ(µ
′′)ε(w)ξµ′′ξw(λ′+δ)

= d−1
∑
w∈W

∑
λ′′=weight ofτλ

mλ(λ
′′)ε(w)ξw(λ′′+λ′+δ)

= d−1
∑

λ′′=weight ofτλ

mλ(λ
′′)sgn(λ′′ + λ′ + δ)

∑
w∈W

ε(w)ξw(λ′′+λ′+δ)∨

=
∑

λ′′=weight ofτλ

mλ(λ
′′)sgn(λ′′ + λ′ + δ)χ(λ′′+λ′+δ)∨−δ.

18. The lowest weight−µ hasmλ(−µ) = 1 by Theorem 5.5e. Ifλ′ − µ

is dominant, then sgn(−µ + λ′ + δ) = 1. Soλ′′ = −µ contributes+1 to the
coefficient ofχλ′−µ. Suppose some otherλ′′ contributes. Then(λ′′+λ′+δ)∨−δ =
λ′ − µ. So (λ′′ + λ′ + δ)∨ = λ′ − µ + δ, λ′′ + λ′ + δ = s(λ′ − µ + δ) =
λ′ − µ + δ − ∑

α>0 nαα, andλ′′ = −µ − ∑
α>0 nαα. This says thatλ′′ is lower

than the lowest weight unlessλ′′ = −µ.
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20. Write(λ′ +δ+λ′′)∨ = λ′ +wλ+δ, λ′ +δ+λ′′ = s(λ′ +wλ+δ). Subtract
λ′ + δ from both sides and compute the length squared, taking into account that
λ′ + δ is strictly dominant andλ′ + wλ + δ is dominant:

|λ′′|2 = |s(λ′ + wλ + δ) − (λ′ + δ)|2
= |λ′ + wλ + δ|2 − 2〈s(λ′ + wλ + δ), λ′ + δ〉 + |λ′ + δ|2
≥ |λ′ + wλ + δ|2 − 2〈λ′ + wλ + δ, λ′ + δ〉 + |λ′ + δ|2
= |(λ′ + wλ + δ) − (λ′ + δ)|2
= |λ|2.

Equality holds, and this forcess(λ′ +wλ+δ) = λ′ +wλ+δ. Henceλ′ +δ+λ′′ =
λ′ + wλ + δ, andλ′′ = wλ.

21. Use Corollary 4.16.

22. Retain in Steinberg’s Formula the coefficients of the terms on the right side
for which the character hasχ(λ′′+λ′+δ)∨−δ = χµ, i.e., (λ′′ + λ′ + δ)∨ − δ = µ.
This means thatλ′′ + λ′ + δ = w′(µ + δ) for somew′ ∈ WG . Then substitute for
mλ(λ

′′) from Corollary 5.83.

23. The roots forG × G are all expressions(α, 0) and(0, α) with α a root for
G. Positivity is defined by a regular element of diagG, (δ, δ) for example. Then

+

G×G consists of all(α, 0) and(0, α) with α > 0. We haveWG×G = WG × WG .
Kostant’s Branching Theorem says that the multiplicity equals∑

w,w′∈WG

ε(ww′)P((w, w′)(λ + δ, λ′ + δ) − (δ, δ) − µ̂),

whereµ̂ is the expression forµ in G × G whenG in embedded as diagG. A root
α embeds as the projection to the diagonal of(α, 0), thus as1

2(α, α). Soµ must
embed in the same way, and̂µ = 1

2(µ, µ). The positive weights fromG × G are
the 1

2(α, α) with α > 0, each with multiplicity 2, and the positive weights from
diagG are the same thing, each with multiplicity 1. Thus� consists of all12(α, α)

with α > 0, each with multiplicity 1. The above expression for the multiplicity
simplifies if we again identify each expression1

2(ν, ν) for diagG with ν for G.
ThenP becomesP wt, and the multiplicity transforms into the expression in the
statement of the problem.

24. Inτλ, the fact that the multiplicity of any weightλ′′ equals the multiplicity
of w′′λ′′, for w′′ ∈ WG , means that∑

w∈WG

P wt(w(λ + δ) − δ − λ′′) =
∑

w∈WG

P wt(w(λ + δ) − δ − w′′λ′′)

for all w′′ ∈ WG . In the result of Problem 22, put the sum overw′ on the
outside, and apply the above formula to the inside sum, takingw′′ = w′ and
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λ′′ = µ + δ − w′−1(λ′ + δ). Then restore the double sum and replacew′ by its
inverse. The effect is that the result of Problem 22 is transformed into the result
of Problem 23.

25. Induct onr . The base step of the induction is forr = 0 and is trivial.
The inductive step uses Theorem 9.14 and restriction in stages as is in (9.10). For
r = n −1, we sum over all multiplicative characters ofU (1) and find that the total
number of branching patterns coming fromλ equals the dimension.

26. Induct onr , but use the version of Theorem 9.14 that is proved in §4, namely
branching fromU (k) to U (k − 1) × U (1) rather than fromU (k) to U (k − 1).

27. If k is the first level at which two branching systems differ, then the respec-
tive subspaces at that stage, sayVk andV ′

k , are orthogonal by Schur orthogonality.
At subsequent stages the respective subspaces are contained inVk and V ′

k and
hence remain orthogonal.

28. The spanning is by Problem 25.

29. The(i, j)th box contains the integerl if λ
(n−l)
i ≥ j but λ(n−l+1)

i < j . If
the integerl − x with x > 0 is in the(i, j +1)st box, thenλ(n−l+x)

i ≥ j + 1 and
λ

(n−l+x+1)
i < j + 1. Hencej > λ

(n−l+1)
i ≥ λ

(n−l+x)
i ≥ j + 1, contradiction; this

proves (a) for a Young tableau. If the integerl − y with y ≥ 0 is in the(i+1, j)th

box, thenλ
(n−l+y)

i+1 ≥ j andλ
(n−l+y+1)

i+1 < j . Hence j > λ
(n−l+1)
i ≥ λ

(n−l)
i+1 ≥

λ
(n−l+y)

i+1 ≥ j , contradiction; this proves (b) for a Young tableau.

30. Problem 28 shows that the multiplicity ofµ equals the number of branching
systems of leveln −1 coming fromλ and yielding, via the process of Problem 26,
the weightµ. Each such branching system yields a Young tableau for the diagram
of λ with pattern(m1, . . . , mn) by Problem 29. The last step is to go in the reverse
direction, associating a branching system to each such Young tableau. To do
so, defineλ(n−l)

i to be the number of boxes in thei th row of the Young tableau
containing integers≤ l. Properties (a) and (b) of a Young tableau prove the
interleaving property at each stage, and thus the result is a branching system of the
required kind.

Chapter X

1. If v is the first standard basis vector, then the subalgebragv of g with gv = 0
is so(n − 1, C) and has dimgv = 1

2(n − 1)(n − 2) = dimg − dimCn.

2. Let A ∈ gl(2n, C) have entriesai j , definev = ∑n
m=1(e2m−1∧e2m), and letσ

be the permutation(1 2)(3 4) · · · (2n −1 2n) of {1, . . . , 2n}. A little computation
gives Av = ∑

k<l

(
(−1)lakσ(l) + (−1)k+1alσ(k)

)
(ek ∧ el). Thus Av = 0 if and

only if akσ(l) = (−1)k+lalσ(k) for all k < l. The appropriate dimensional equality
follows, and this handles

∧2C2n. In the case of
∧3Cn, dimgl(n, C) < dim

∧3Cn

for n large enough.
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3. Only finitely many representations have dimension≤ dimG, by Problem 32
in Chapter V.

4. Each nonzero nilpotent elemente lies in somesl2 triple (h, e, f ) by Theorem
10.3, Corollary 10.13 shows that there are only finitely many candidates forh, up to
conjugacy, and Theorem 10.10 shows that any twoe’s for the sameh are conjugate
by a member of Intg that fixesh.

5. In the notation of the chapter, letβ be the unique simple root of� − �′,
and let�′ = {γi }. For each rootγ , let X (γ ) be a nonzero root vector for the root
γ . Any rootα contributing tog1 can be written the formα = γi1 + · · · + γim +
β + γim+1 + · · · + γin with each partial sum from the left equal to a root. Writeγ0

for γi1 + · · · + γim . Thenα = β + γ0 + γim+1 + · · · + γin , and each partial sum
from the left is a root. The lowest-weight vectorX (β) of g1 then has the property
that X (α) = c(−1)n−m+1(adX (γin )) · · · (adX (γim+1))(adX (γ0))X (β) for some
nonzero constantc, and irreducibility follows.

6. A converse result is that if two distinct simple roots contribute tog1, then
g1 is reducible. Ifβ1 andβ2 are the simple roots in question, letV be the span
within g1 of the root vectors for all roots whose expansions in terms of simple
roots containβ1 once but notβ2. ThenV is invariant under adg0, contains a root
vector forβ1, and does not contain a root vector forβ2.

7. Use Theorem 10.10.

8. Apply Problem 7 withh equal to a suitable multiple ofHe1+e3 + He2−e3 =
He1+e2 and with f equal tocE−(e1+e3) + d E−(e2−e3) for suitable constantsc andd.
The important thing in verifying [e, f ] = h is that the difference ofe1 + e3 and
e2 − e3 is not a root.

9. If m = 2k is even, lete = ∑k
j=1(Ee2 j−1+em+ j +Ee2 j −em+ j ). This is well defined

since the inequalitym + k ≤ m + n is equivalent withm ≤ 2n. If m = 2k + 1 is
odd, lete = ∑k

j=1(Ee2 j−1+em+ j + Ee2 j −em+ j )+ Eem+em+k+1 + Eem−em+k+1. This is well

defined since the inequalitym+k+1 ≤ m+n is equivalent with1
2(m−1)+1 ≤ n,

i.e.,m + 1 ≤ 2n; the facts thatm is odd andm ≤ 2n imply thatm + 1 ≤ 2n. As
in Problem 8, the important thing in verifying [e, f ] = h is that the difference of
two roots contributing toe is never a root.



HISTORICAL NOTES

Background

The theory of Lie groups, as it came to be known in the twentieth century, was
begun single-handedly by Sophus Lie in 1873. Lie developed the theory over a
period of many years, and then he gave a systematic exposition as part of a three-
volume work written jointly with the younger F. Engel (Lie–Engel [1888–90–93]).
A detailed summary of this early theory, with extensive references, appears in
Bourbaki [1972], pp. 286–308. Further historical information may be found in
§1.16 of Duistermaat–Kolk [2000] and in Chapter I of Borel [2001b]. Two books
about the subject, written before the theory changed in form, are Bianchi [1903]
and Eisenhart [1933].

Lie worked with families of (not necessarily linear) transformations ofn com-
plex variables given by holomorphic functions

x′
i = fi (x1, . . . , xn, a1, . . . , ar ), 1 ≤ i ≤ n,

the family given by the complex parametersa1, . . . , ar . Later a1, . . . , ar were
allowed to be real. It was assumed that the transformation corresponding to some
seta0

1, . . . , a0
r of parameters reduced to the identity and that, roughly speaking,

the family was effective and was closed under composition. The result was a
“transformation group, finite and continuous.” For more detail about the compo-
sition law, see Cartan [1894], pp. 13–14, and for the definition of “effective,” see
Bourbaki [1972], p. 290.

Such a transformation group was not literally closed under composition, the
functions fi not being globally defined. Thus it had a local nature, and Lie and
Engel assumed that it was local when necessary. On the other hand, a transfor-
mation group in the sense of Lie is not quite what is now meant by a “local Lie
group,” because the space variablesxi and the group variablesaj were inseparable,
at least at first. In any event, to a “finite and continuous” transformation group, Lie
associated a family of “infinitely small transformations” or “infinitesimal trans-
formations,” which carried the information now associated with the Lie algebra.
In terms of a Taylor development through order 1, namely,

fi (x1, . . . , xn, a0
1 + z1, . . . , a0

r + zr ) = xi +
r∑

k=1

zk Xki (x1, . . . , xn) + · · · ,

751
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the infinitesimal transformations were given by

dxi = ( r∑
k=1

zk Xki (x1, . . . , xn)
)

dt, 1 ≤ i ≤ n.

The main results of Lie–Engel [1888–90–93] for current purposes were three
theorems of Lie for passing back and forth between “finite continuous” transfor-
mation groups and their families of infinitesimal transformations, each theorem
consisting of a statement and its converse. For precise statements, see Bourbaki
[1972], pp. 294–296. For precise statements with proofs, see Cohn [1957], Chap-
ter V.

Lie did observe that the (local) group of transformations ofCn yielded a new
transformation group whose space variables were the parameters, and he called
this the “parameter group.” There were in effect two parameter groups, one given
by the group of left translations of the parameters and one given by the group of
right translations of the parameters. Lie showed that two transformation groups
have isomorphic parameter groups if and only if their families of infinitesimal
transformations are isomorphic.

Although Lie did have occasion to work with particular global groups (such
as the complex classical groups), he did not raise the overall question of what
constitutes a global group. He was able to study his particular global groups
as transformation groups with their standard linear actions. A dictionary relating
Lie’s terminology with modern terminology appears on p. 87 of Duistermaat–Kolk
[2000].

The idea of treating global groups systematically did not arise until Weyl,
inspired by work of I. Schur [1924] that extended representation theory from
finite groups to the orthogonal and unitary groups, began his study Weyl [1924]
and [1925–26] of compact connected groups. Schreier [1926] and [1927] defined
topological groups and proved the existence of universal covering groups of global
Lie groups, and von Neumann [1927] and [1929] investigated smoothness prop-
erties of matrix groups and of homomorphisms between them. Cartan [1930a]
underlined the importance of global groups by giving a direct proof of a global
version of Lie’s third theorem—that every finite-dimensional real Lie algebra is
the Lie algebra of a Lie group.

Cartan [1930b] wrote the first book on global Lie theory, in effect proving
theorems about locally Euclidean groups, Lie groups, compact Lie groups, and
various homogeneous spaces of Lie groups. This 60-page book is remarkable
for transforming the emphasis in the subject. The first chapter axiomatizes locally
Euclidean groups and makes them an object of study. The second chapter sketches
proofs for at least three theorems of note: that a local Lie group can be always be
extended to a global Lie group, that a subgroup of a Lie group is a Lie group if it
is the one-one continuous image of a locally Euclidean group, and that a closed
subgroup of a Lie group is a Lie group. The third chapter expounds in Cartan’s own
way the structure theory of Weyl [1925–26] for compact connected Lie groups.
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Weyl [1934] gave a course on these matters, elaborating on Cartan [1930b]
and including a segment on “foundations of a general theory of Lie algebras.”
Pontrjagin [1939] provided a systematic exposition of topological groups, care-
fully distinguishing local and global results for Lie groups and proving global
results where he could. Finally Chevalley [1946] established a complete global
theory, introducing analytic subgroups and establishing a one-one correspondence
between Lie subalgebras and analytic subgroups.

The term “Lie group” was introduced in Cartan [1930b], and the term “Lie
algebra” appeared in the lecture notes Weyl [1934], which were written by
N. Jacobson. In retrospect much early work in Lie theory was on Lie algebras
because of Lie’s three theorems that in effect reduced properties of local Lie groups
to properties of Lie algebras.

Introduction

The theory of closed linear groups may be said to have begun with von Neu-
mann [1927] and [1929], who proved Theorem 0.15 and showed that continuous
homomorphisms from closed linear groups into matrix groups are smooth. Car-
tan [1930b] went on to define and discuss Lie groups generally, regarding von
Neumann’s work as a special case.

The treatment here is based in part on Chapter I of Knapp [1988]. The proof
of Theorem 0.15 was worked out with D. Vogan. For a different approach to this
theorem, see Howe [1983].

Some other books that treat closed linear groups before defining general Lie
groups are Freudenthal and de Vries [1969], Curtis [1979], Godement [1982],
Sattinger–Weaver [1986], Ise–Takeuchi [1991], Baker [2002], and Rossmann
[2002]. These books have various audiences in mind and are not all written with
the same degree of rigor.

Chapter I

The beginning properties of finite-dimensional Lie algebras in Chapter I are all
due to Lie (see Lie–Engel [1888–90–93]). Lie classified the complex Lie algebras
of dimension≤ 4, introduced solvable Lie algebras (calling them “integrable”),
proved Proposition 1.23, and proved Lie’s Theorem (Theorem 1.25 as Satz 2 on
p. 678 of Vol. III and Corollary 1.29 as Satz 9 on p. 681 of Vol. III). Lie defined
simple Lie algebras and showed that the complex classical Lie algebrassl(n, C),
so(n, C), andsp(n, C) are simple for the appropriate values ofn.

The original form of Engel’s Theorem is thatg is solvable if adX is nilpotent
for all X ∈ g. Application of Lie’s Theorem yields Corollary 1.38. The form of
Engel’s Theorem in Theorem 1.35 is given in Chevalley [1947]; it contains the idea
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of expanding powers of adH = L(H) − R(H) by the binomial theorem, an idea
that will be modified and adapted for other purposes later in time. The result of
Engel’s Theorem came out of an incomplete discussion in Killing [1888–89–90].
Engel had his student Umlauf make in his thesis (Umlauf [1891]) a number of
Killing’s results rigorous, and this was one of them. Cartan had access to Umlauf’s
thesis but gave Engel principal credit for the theorem (see Cartan [1894], p. 46),
and “Engel’s Theorem” has come to be the accepted name.

Killing [1888–89–90] proved the existence of the radical and defined a Lie
algebra to be semisimple if it has radical 0. Theorem 1.54, relating semisimplicity
to simplicity, is due to Killing. Concerning the relationship between solvable and
nilpotent, Killing announced and Cartan [1894] proved that the radical of[g, g] is
always nilpotent. This implies Proposition 1.39 and the inclusion[g, radg] ⊆ n

of Corollary 1.41. The proofs in the text of Proposition 1.40 and Corollary 1.41,
dealing with the largest nilpotent ideal, are from Harish-Chandra [1949].

The Killing form defined in (1.18) came after Killing (see Weyl [1925–26],
Kapitel III, §3). Killing used no bilinear form of this kind, and Cartan [1894]
used a variant. Ifdimg = n, Cartan definedψ2(X) to be the coefficient of
λn−2 in the characteristic polynomialdet(λ1− adX). Thenψ2(X) is a quadratic
form in X given byψ2(X) = 1

2

(
(Tr(adX))2 − Tr((adX)2)

)
. The formψ2(X)

reduces to a multiple of the Killing form if Tr(adX) = 0 for all X, as is true when
[g, g] = g. Cartan [1894] established the criteria for solvability and semisimplicity
(Proposition 1.46 and Theorem 1.45), but the criteria are stated in terms ofψ2 rather
than the Killing form.

Most of the results on Lie algebras in§§1–7 are valid whenever the underlying
field has characteristic 0; occasionally (as in Lie’s Theorem) it is necessary to
assume also that the field is algebraically closed or at least that some eigenvalues
lie in the field. Some proofs are easier when the underlying field is a subfield of
C, and the goal for this book of working with Lie groups has led to including in
the text only the easier proofs in such cases. An example occurs with Cartan’s
Criterion for Solvability. The part of the proof where it is easier to handle subfields
of C rather than general fields of characteristic 0 is that[g, g] ⊆ radB implies
g solvable. One general proof of this assertion regards the base field as a vector
space overQ and works withQ linear functions on the base field in a complicated
way; see Varadarajan [1974] for this proof. Another general proof, which was
pointed out to the author by R. Scott Fowler, uses the theory of real closed fields
to generalize the argument in the text.

The simple Lie algebras overR were classified in Cartan [1914], and Cartan
must accordingly be given credit for the discovery of any of the classical simple Lie
algebras that were not known from geometry. The irreducible finite-dimensional
complex linear representations ofsl(2, C)as in Theorem 1.66 are implicit in Cartan
[1894] and explicit in Cartan [1913]. Complete reducibility of finite-dimensional
complex linear representations ofsl(2, C) (Theorem 1.67) was proved by E. Study,
according to Lie–Engel [1888–90–93]. The expression1

2h2+h+2 f ethat appears
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in Lemma 1.68 is called the “Casimir operator” forsl(2, C); see the Notes for
Chapter V.

The name “Schur’s Lemma” is attached to many results like Lemma 1.69.
Burnside [1904] proved in the language of matrix representations that a linear
map carrying one irreducible representation space for a finite group to another and
commuting with the group is 0 or is nonsingular. I. Schur [1905] proved in the
same language that if the linear map carries one irreducible representation space
for a finite group to itself and commutes with the group, then the map is scalar.

The origins of the theory of Lie groups in§10 have been discussed above. The
modern global theory stems from Chevalley [1946], who introduced the key notion
of “analytic subgroup” and proved for the first time the correspondence between
analytic subgroups and Lie subalgebras. The text weaves together this general
theory with its concrete interpretation for Lie groups of matrices as given in the
Introduction. Chevalley’s proof of the correspondence used a global version of
the Frobenius theorem on “involutive distributions.” Another approach may be
found in Helgason [1962] and [1978]. Several books on elementary Lie theory
that imitate Chevalley’s approach leave a gap in the proof of the correspondence:
They succeed in constructing a subgroupH of G corresponding to a given Lie
subalgebra, they observe that multiplication is smooth fromH × H into G, and
they incorrectly deduce that multiplication is smooth intoH . Continuity intoH
is not trivial, and in Chevalley’s treatment it is built into the global Frobenius
theorem.

The exponential mapping in§10 was already part of the work in Lie–Engel
[1888–90–93], and Lie understood the exponential’s behavior through quadratic
terms (in a form equivalent with Lemma 1.90). Higher-order terms are related
to the Campbell–Baker–Hausdorff Formula and are discussed in the Notes for
Appendix B. The adjoint representation is due to Lie.

The treatment in§10 usesC∞ functions rather than real analytic functions,
and it is remarked that the Lie groups under discussion are the same in the two
cases. This fact had already been noticed by Lie. A proof of this equivalence
using Ado’s Theorem, which came much later historically, appears in the text
in §13. F. Schur [1893] gave a proof essentially that aC2 Lie group could be
made into a real analytic group, and Schur’s proof appears in Duistermaat–Kolk
[2000]. Hilbert in 1900 raised the question whether Lie’s transformation groups
might be approached without the assumption of differentiability (Hilbert’s fifth
problem). In defining locally Euclidean groups and underlining what the problem
was saying for this special kind of transformation group, Cartan [1930b] proved
that a subgroup of a Lie group is a Lie group if it is the one-one continuous image
of a locally Euclidean group. Thus the potential candidates for a counterexample
were severely limited; they could not be matrix groups or projective groups or
conformal groups, among others. Yamabe [1950] and Kuranishi (unpublished)
proved that a pathwise connected subgroup of a Lie group is an analytic subgroup;
an improved proof appears in Goto [1969]. An affirmative answer to the question
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whether every locally Euclidean group is Lie was provided in the compact case
by von Neumann [1933] and in general by Gleason, Montgomery, and Zippin.
An exposition appears in Montgomery–Zippin [1955]. See Yang [1976] for a
discussion of progress on the full question of Hilbert’s.

At a certain stage in Lie theory, analyticity plays a vital role, but not really
in this book. A remark with Proposition 1.86 mentions one place where real
analyticity gives a slightly better result, and the Campbell–Baker–Hausdorff For-
mula of Theorem B.22 is another. In infinite-dimensional representation theory
real analyticity is crucial. The groupR = {r ∈ R} acts continuously by unitary
transformations onL2(R) when it acts by translations, and this action is reflected
on the Lie algebra level on smooth functions, the members of the Lie algebra
acting by multiples ofd/dr . The subspace of smooth functions with support in
the unit interval is carried to itself by the Lie algebra of differentiations, but not
even the closure of this subspace is carried to itself by the group of translations.
Harish-Chandra [1953] showed how to avoid this pathology in many situations by
using real analyticity. Nelson [1959] proved a generalization that avoided using
any structure theory.

The discussion at the beginning of§11 through Corollary 1.96 is based in part
on notes from lectures by R. Fox in 1962. Propositions 1.100 and 1.101 appear
in Cartan [1930b]. So do some of the earlier results in§11, but they were known
before 1930.

For more on complex structures as discussed in§12, see Wells [1973]. Proofs of
the representation-theoretic results in§§12–13 without the use of Ado’s Theorem
may be found in Chapter 1 of Duistermaat–Kolk [2000].

The results of§15 are implicit in Cartan [1930a], who proves the existence
of a Lie group corresponding to each real Lie algebra. Cartan [1927b] lists the
classical groups of§17, and the geometric methods of that paper yield the polar
decomposition of Proposition 1.143 for those groups. The actual method of proof
used in the text for Proposition 1.143 is taken from Mostow [1949]. Problem 20
is taken from Lemma 1.1.4.1 of Warner [1972a] and ultimately from Kunze–Stein
[1967].

A number of books treat elementary Lie theory. The ones more recent than
Chevalley [1946] include Adams [1969], Baker [2002], Bourbaki [1960] and
[1972], Cohn [1957], Curtis [1979], Duistermaat–Kolk [2000], Freudenthal and
de Vries [1969], Godement [1982], Helgason [1962] and [1978], Hochschild
[1965], Hsiang [2000], Ise–Takeuchi [1991], Rossmann [2002], Sattinger–
Weaver [1986], Serre [1965], Spivak [1970], Tits [1965], Varadarajan [1974],
and F. Warner [1971]. See S´eminaire “Sophus Lie” [1955] for a treatment using
Chevalley [1946] as a prerequisite. The books Dixmier [1974], Humphreys [1972],
and Jacobson [1962] treat Lie algebras.
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Chapter II

Although the four families of classical complex simple Lie algebras in§1 were
known to Lie, the general theory and classification of complex simple Lie algebras
are largely due to Killing [1888–89–90] and Cartan [1894]. Many of the results
in §§1–5 and§7 were announced by Killing, but Killing’s proofs were often
incomplete or incorrect, and sometimes proofs were absent altogether. Umlauf
[1891] in his thesis under the direction of Engel undertook to give rigorous proofs
of some of Killing’s work. Cartan had access to Umlauf’s thesis, and Cartan
[1894] gives a rigorous treatment of the classification of complex simple Lie
algebras. Cartan [1894] repeatedly gives page references to both Killing’s work
and Umlauf’s work, but Cartan’s thesis gives principal credit to Engel for Umlauf’s
work. Cartan was generous to Killing both in 1894 and later for the contributions
Killing had made, but others were less kind, dismissing Killing’s work completely
because of its gaps and errors.

The characteristic polynomialdet(λ1 − adX) had already been considered
by Lie, and Killing [1888–89–90] investigated its roots systematically. Umlauf
[1891] was able to take the crucial step of dropping all special assumptions about
multiplicities of the roots. Umlauf’s work contains a proof of the existence of
Cartan subalgebras in the style of Theorem 2.9′: g0,X is a Cartan subalgebra
if the lowest-order nonzero term of the characteristic polynomial is nonzero on
X. Elementary properties of roots and root strings were established by Umlauf
without the assumption of semisimplicity, and Cartan [1894] reproduces all this
work. Then Cartan [1894] brings in the assumption of semisimplicity and makes
use of Cartan’s Criterion (Theorem 1.45). Cartan [1894] defines Weyl group
reflections (§IV.6) and uses “fundamental roots” rather than simple roots. AnR
basis of roots isfundamental if when the reflections in these roots are applied to
the basis and iterated, all roots are obtained.

Killing’s main result had been a classification of the complex simple Lie alge-
bras. Killing [1888–89–90] correctly limited the possible exceptional algebras to
ones in dimensions 14, 52, 78, 133, 248. He found two possibilities in dimension
52, and he did not address the question of existence. Engel [1893] constructed the
14-dimensional Lie algebra that is now calledG2.

Cartan [1894] redid the classification, pointing out (p. 94) a simple isomorphism
between Killing’s two 52-dimensional exceptional cases. Effectively Cartan also
showed that the passage to roots is one-one in the semisimple case, and he proved
existence. Since Cartan’s definition of what is now called a Cartan subalgebra for
a giveng involved regular elements, Cartan knew that all such subalgebras had a
common dimension, namely the number of low-order 0 terms in the characteristic
polynomial. Thus to show that the passage to roots is one-one, Cartan had only to
investigate cases of equal rank and dimension, showing how the Lie algebras can
be distinguished. This he did case by case. He proved existence case-by-case as
well, giving multiplication tables for the root vectors. He omitted the details of
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these computations on the grounds of their length.
The proof of the classification was simplified over a period of time. Simple

roots do not appear in Cartan [1894] and [1913]. Weyl [1925–26], Kapitel IV,§5,
introduces lexicographic orderings and positive roots as a tool in working with
roots. Van der Waerden [1933] simplified the proof of classification, and then
Dynkin [1946] and [1947] used the diagrams bearing his name and simplified
the proof still further. Dynkin diagrams are instances of Coxeter graphs (Coxeter
[1934]), and Witt [1941] makes use of these graphs in the context of complex
semisimple Lie algebras. The second Dynkin paper, Dynkin [1947], acknowledges
this work of Coxeter and Witt. For a fuller discussion of Coxeter graphs, see
Bourbaki [1968], Chapitre IV, and Humphreys [1990]. The proof of classification
given here is now standard except for minor variations; see Jacobson [1962] and
Humphreys [1972], for example.

Abstract root systems occur implicitly in Witt [1941] and explicitly in Bourbaki
[1968], and the Weyl group makes appearances as a group in Weyl [1925–26] and
Cartan [1925b]. Chevalley’s Lemma (Proposition 2.72) appears without proof in
a setting in Harish-Chandra [1958] where it is combined with Theorem 6.57, and
it is attributed to Chevalley.

Although Cartan had proved what amounts to the Existence Theorem (Theorem
2.111), he had done so case by case. Witt [1941], Satz 15, gave what amounted
to a general argument, provided one knew existence in rank≤ 4. Chevalley
[1948a] and [1948b] and Harish-Chandra [1951] gave the first completely general
arguments, starting from a free Lie algebra and factoring out a certain ideal.
See Jacobson [1962] for an exposition. Serre [1966] improved the argument by
redefining the ideal more concretely; the Serre relations of Proposition 2.95 are
generators of this ideal. Serre’s argument is reproduced in Humphreys [1972]; the
argument here is the same but is in a different order. See Helgason [1978],§X.4,
for this kind of argument in a more general context.

The uniqueness aspect of the Isomorphism Theorem is in Cartan [1894], and the
existence aspect is in Weyl [1925–26] and van der Waerden [1933]. The argument
here is built around the Serre relations.

The result of Problem 7 is from Cartan [1894] and is used over and over in the
theory. The result in Problem 11 appears in Kostant [1955]. The length function
of Problems 21–24 is in Bourbaki [1968]. The realization ofG2 in Problem 40
is the one that Bourbaki [1968] gives and that is repeated in this text in§2 of
Appendix C. The facts aboutB3 in Problems 41 and 42 were pointed out to the
author by J.-S. Huang. A simple algebra of typeG2 can be constructed also from
automorphisms of order 3 of the systemD4.

The results about complex semisimple Lie algebras are essentially unchanged
if one replacesC by an arbitrary algebraically closed field of characteristic 0, but
a little algebraic geometry needs to be added to some of the proofs to make them
valid in this generality. See Jacobson [1962], Humphreys [1972], and Dixmier
[1974]. Humphreys develops the theory using “toral subalgebras” in place of
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Cartan subalgebras, at least at first.
Problems 43–48 are based on comments in Arthur [2000]. This realization of

the complex orthogonal Lie algebras has two initial beneficial effects. One is that
the diagonal subalgebra is a Cartan subalgebra, and the other is that the set of
real matrices in the algebra is a split real form. Jacobson [1962], pp. 135–141,
gives a way of realizing the complex orthogonal Lie algebras in a nonstandard way
using the ordinary transpose and achieving the same two beneficial effects, and
his realization has been used by a number of later authors.

Chapter III

The universal enveloping algebra in essence was introduced by Poincar´e [1899]
and [1900]. The paper [1899] announces a result equivalent with Theorem 3.8,
and Poincar´e [1900] gives a sketchy proof. Schmid [1982] gives a perspective
on this work. Garrett Birkhoff [1937] and Witt [1937] rediscovered Poincar´e’s
theorem and proved it more generally. The text has used the proofs as given in
Humphreys [1972] and Dixmier [1974].

Cartan [1913] used iterated products of members of the Lie algebra in his work
on finite-dimensional representations, but this work did not require the linear
independence in the Poincar´e–Birkhoff–Witt Theorem. Apart from this kind of
use, the first element of order greater than one in a universal enveloping algebra
that arose in practice was the Casimir operator (Chapter V), which appeared in
Casimir and van der Waerden [1935]. The Casimir operator plays a key role in the
proof of the complete reducibility theorem that appears in the text as Theorem 5.29.
The universal enveloping algebra did not find further significant application until
Gelfand and Harish-Chandra in the 1950s showed its importance in representation
theory.

The connection with differential operators (Problems 11–13) is stated by Gode-
ment [1952] and is identified on p. 537 of that paper as an unpublished result of
L. Schwartz; a published proof is in Harish-Chandra [1956a] as Lemma 13. No
generality is gained by adjusting the definition of left-invariant differential operator
so as to allow an infinite-order operator that is of finite-order on each compact
subset of a chart.

For further discussion of the universal enveloping algebra and its properties,
see Helgason [1962], pp. 90–92, 97–99, 386, and 391–393. Also see Jacobson
[1962], Chapter V, and Dixmier [1974]. The Poincar´e–Birkhoff–Witt Theorem is
valid over any field.

Symmetrization in§3 is due to Gelfand [1950] and Harish-Chandra [1953].
Problems 14–22 concerning the Weyl algebra are in effect an introduction to the

Heisenberg commutation relations. See Mackey [1978],§16, for a discussion of
mathematical approaches to these relations and to their connection with quantum
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mechanics. For connections between Weyl algebras and symplectic groups, see
Appendix 2 of Howe [1995].

Chapters IV and V

Historically representations of complex semisimple Lie algebras were consid-
ered even before group representations of finite groups were invented, and the
connection between the two theories was realized only much later. According to
Lie–Engel [1888–90–93], III, pp. 785–788, E. Study proved complete reducibility
for the complex-linear finite-dimensional representations ofsl(2, C), sl(3, C), and
sl(4, C). Lie and Engel then conjectured complete reducibility of representations
of sl(n, C) for arbitraryn.

Frobenius [1896] is the first paper on the representation theory of finite groups,
apart from papers about 1-dimensional representations. Frobenius at first treated
the charactersof finite groups, coming at the problem by trying to generalize
an identity of Dedekind concerning multiplicative characters of finite abelian
groups. It was only in later papers that Frobenius introduced matrix represen-
tations and related them to his theory of characters. Frobenius credits Molien
with independently discovering in 1897 the interpretation of characters in terms
of representations. Frobenius also takes note of Molien’s 1893 paper realizing
certain finite-dimensional semisimple associative algebras as algebras of matrices;
the theory of semisimple associative algebras has points of contact with the theory
of representations of finite groups. Burnside [1904] and then I. Schur [1905]
redid the Frobenius theory, taking matrix representations as the primary objects
of study and deducing properties of characters as consequences of properties of
representations. According to E. Artin [1950], p. 67, “It was Emmy Noether who
made the decisive step. It consisted in replacing the notion of matrix by the notion
for which the matrix stood in the first place, namely, a linear transformation of a
vector space.”

Much of Chapters IV and V stems from work of Cartan and Weyl, especially
Cartan [1913] and Weyl [1925–26].

Cartan [1913] contains an algebraic treatment of the complex-linear finite-
dimensional representations of complex semisimple Lie algebras, including the
Theorem of the Highest Weight essentially as in Theorem 5.5. The paper proves
existence by handling fundamental representations case by case and by generating
other irreducible representations from highest weight vectors of tensor products.
Cartan makes use of iterated products of elements of the Lie algebra, hence is
implicitly making use of the universal enveloping algebra. But he does not need to
know the linear independence that is the hard part of the Poincar´e–Birkhoff–Witt
Theorem (Theorem 3.8).

Cartan’s paper refers to the underlying transformation groups for his repre-
sentations, and differentiation leads him to the formalism of representations of
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Lie algebras on tensor products. But oddly the formal similarity between Cartan’s
theory for Lie groups and the representation theory of finite groups went unnoticed
for many years. Possibly mathematicians at the time were still thinking (with Lie
and Engel) that transformation groups were the principal objects of study. Cartan
uses language in the 1913 paper to suggest that he regards two group representations
in different dimensions as involving different groups, while he regards two Lie
algebra representations as involving the same Lie algebra if the bracket relations
can be matched.

Cartan [1914] classifies the real forms of complex simple Lie algebras, and one
sees by inspection that each complex simple Lie algebra has one and only one
compact real form. At this stage the ingredients for a theory of group representa-
tions were essentially in place, but it is doubtful that Cartan was aware at the time
of any connection between his papers and the theory of group representations.

Having a fruitful theory of representations of compact Lie groups requires
having invariant integration, and Hurwitz [1897] had shown how to integrate on
O(n) andU (n). I. Schur [1924] put this idea together with his knowledge of the
representation theory of finite groups to arrive at a representation theory forO(n)

andU (n). Invariant integration on arbitrary Lie groups (defined by differential
forms as at the start of§VIII.2) was already known to some mathematicians; it is
mentioned in a footnote on the second page of Cartan [1925a]. Weyl was aware
of this fact and of Cartan’s work, and Weyl [1924] immediately set forth, using
analysis, a sweeping representation theory for compact semisimple Lie groups.

Weyl [1925–26] gives the details of this new theory. Kapitel I is aboutsl(n, C).
After reviewing Cartan’s treatment, Weyl points out (footnote in§4) that Car-
tan implicitly assumed without proof that finite-dimensional representations are
completely reducible (Theorem 5.29) when he constructed representations with
given highest weights. Weyl then gives a proof of complete reducibility, using
his “unitary trick.” To push this argument through, he has to lift a representation
of su(n) to a representation ofSU(n). Lie’s results give Weyl a locally defined
representation, and Weyl observes in a rather condensed argument in§5 that there
is no obstruction to extending the locally defined representation to be global if
SU(n) is simply connected. Then he proves thatSU(n) is indeed simply con-
nected. He goes on in Kapitel II to use what is now called the Weyl Integration
Formula (Theorem 8.60) to derive formulas for the characters and dimensions
of irreducible representations ofSU(n). Kapitel II treatssp(n, C) andso(n, C)

similarly, taking advantage ofSp(n) andSO(n). The treatment ofSO(n) is more
subtle than that ofSp(n), because Weyl must consider single-valued and double-
valued representations forSO(n). (That is,SO(n) is not simply connected.)

Kapitel III begins by redoing briefly some of Cartan [1894] in Weyl’s own
style. The Killing form is introduced on its own, and Cartan’s Criteria are stated
and proved. Then Weyl introduces the Weyl group of the root system and derives
some of its properties. (The Weyl group appears also in Cartan [1925b].) Finally
Weyl proves the existence of a compact real form for any complex semisimple
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Lie algebra, i.e., a real form on which the Killing form is negative definite. (Later
Cartan [1929a] remarks (footnote in§6) that Weyl implicitly assumed without
proof that the adjoint group of this compact real form is compact, and then Cartan
gives a proof.) Kapitel IV begins by proving that every element of a compact
semisimple Lie group is conjugate to a member of a maximal torus (Theorem 4.36),
the proof being rather similar to the one here. Next Weyl shows that the universal
covering group of a compact semisimple Lie group is compact (Theorem 4.69).
He is then free to apply the unitary trick to lift representations from a complex
semisimple Lie algebra to a compact simply connected group corresponding to
the compact real form and to deduce complete reducibility (Theorem 5.21). The
rest of Kapitel IV makes use of the Weyl Integration Formula (Theorem 8.60).
Proceeding along the lines indicated at the end of Chapter VIII, Weyl quickly
derives the Weyl Character Formula (Theorems 5.77 and 5.113) and the Weyl
Dimension Formula (Theorem 5.84). To complete the discussion of the Theorem
of the Highest Weight, Weyl handles existence by noting on analytic grounds that
the irreducible characters are a complete orthogonal set in the space of square-
integrable functions constant on conjugacy classes. He dismisses the proof of this
assertion as in the spirit of his earlier results; Peter–Weyl [1927] gives a different,
more comprehensive argument. Weyl’s definition of “integral” is what the text
calls “algebraically integral”; there does not seem to be a proof that algebraically
integral implies analytically integral in the simply connected case (Theorem 5.107).

Consider the sections of Chapters IV and V in order. The representations in§1
were known to Cartan [1913]. Representation theory as in§2 began with a theory
for finite groups, which has been discussed above. Maschke proved Corollary 4.7
for finite groups, and Loewy and Moore independently proved Proposition 4.6 in
this context. Burnside [1904] was the one who saw that Corollary 4.7 follows
from Proposition 4.6, and Burnside [1904] proved Proposition 4.8. Although
there is a hint of Corollary 4.9 in the earlier work of Burnside, Corollary 4.9
is generally attributed to I. Schur [1905]. Schur [1905] also proved Corollary
4.10. Schur [1924] observed that the results of§2 extend toO(n) andU (n),
Hurwitz [1897] having established invariant integration for these groups. Weyl
[1925–26] understood that invariant integration existed for all compact semisimple
Lie groups, and he derived the Weyl Integration Formula (Theorem 8.60).

Topological groups and covering groups were introduced systematically by
Schreier [1926] and [1927], and it was plain that the abstract theory of§2 (and
also §3) extends to general compact groups as soon as invariant integration is
available. Existence of Haar measure for locally compact groups was proved
under a separability assumption in Haar [1933], and uniqueness was established
in von Neumann [1934a]. Von Neumann [1934b] gives a quick development of
invariant means that handles both existence and uniqueness in the compact case.
See Weil [1940] for further historical discussion.

The Peter–Weyl Theorem in§3 originally appeared in Peter–Weyl [1927]. The
text follows an argument given in Cartan [1929b], postponing any discussion of
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infinite-dimensional representations until Chapter IX. Corollary 4.22 is a byprod-
uct of von Neumann [1933].

The results of§4 are influenced by§II.6 of Helgason [1978]. Because of
Corollary 4.22, Theorem 4.29 is really a theorem about matrix groups. Goto
[1948] proved that a semisimple matrix group is a closed subgroup of matrices,
and the proof of Theorem 4.29 makes use of some of Goto’s ideas.

The first key result in§5 is Theorem 4.36, which appears as Weyl [1925–26],
Kapitel IV, Satz 1. The text follows Varadarajan [1974], and the proof is not too
different from Weyl’s. Other proofs are possible. Adams [1969] gives a proof
due to Weil [1935] that uses the Lefschetz Fixed-point Theorem. Helgason [1978]
gives a proof due to Cartan that is based on Riemannian geometry. Serre [1955]
discusses both these proofs. For variations, see the proofs in Hochschild [1965]
and Wallach [1973].

Theorem 4.34 is a consequence of the proofs by Weyl or Weil of Theorem
4.36; the quick proof here is from Hunt [1956]. Theorem 4.50 and its corollaries
are due to Hopf [1940–41] and [1942–43]; the text follows Helgason [1978] and
ultimately Serre [1955].

The results of§§6–7 are implicit or explicit in Weyl [1925–26]. In connection
with §8, see Weyl [1925–26], Kapitel IV, Satz 2, for Theorem 4.69. Helgason
[1978], p. 154, discusses a number of other proofs. The proof here of Lemma 4.70
is taken from Varadarajan [1974], p. 343, and ultimately from Cartier [1955b].

Problem 8 in Chapter IV is a result in an appendix of Weyl [1931]. There is
a converse (Weil [1940], pp. 87–88): the only continuous functionsϕ on G such
thatϕ(1) = 1 andϕ(u)ϕ(v) = ∫

G ϕ(utvt−1) dt for all u andv in G are of the
form ϕ = d−1χ , whereχ is the character of an irreducible representation and
d is its degree. In the terminology of Helgason [1962], Chapter X, this converse
amounts to the identification of the “spherical functions” for the “symmetric space”
(G × G)/diag G. The fact that irreducible characters are the only normalized
solutions of the above functional equation was what made it possible, in the case
of a finite group, for Frobenius [1896] to study irreducible characters without
introducing representations.

The results of§§1–2 of Chapter V are due to Cartan [1913]. In proving
the existence of a representation with a given highest weight, Cartan did not
give a general argument. Instead he made explicit computations to produce
each fundamental representation (Problems 28–33) and used Cartan composition
(Problem 15) to generate the other irreducible representations. Chevalley [1948a]
and [1948b] and Harish-Chandra [1951] gave the first general arguments to prove
existence. Harish-Chandra [1951] constructs semisimple Lie algebrasg and their
representations together. The paper works with an infinite-dimensional associative
algebraA, Verma-like modules for it (Lemma 12), and quotients of such modules.
Then the paper obtainsg as a Lie subalgebra ofA, and the modules ofA yield
representations ofg. A construction of modules closer to the Verma modules of
§3 appears in Harish-Chandra [1955–56], IV,§§1–6, especially Lemmas 2, 5, and
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16. Cartier [1955a], item (2) on p. 3, constructs Verma modules explicitly and
establishes properties of highest weight modules. The name “Verma modules”
seems to have been introduced in lectures and discussions by B. Kostant in the late
1960s, in recognition of the work Verma [1968] that establishes some structure
theory for these modules. Verma proved that the space ofU (g) maps between
two of these modules is at most 1-dimensional and that any nonzero such map
is one-one. Bernstein–Gelfand–Gelfand [1971] developed further properties of
these modules. Early publications in which the name “Verma modules” appears
are Dixmier [1974] and Kostant [1975a]. The proof of Lemma 5.17 applies the
binomial expansion to powers of the formulaL( f ) = ad f + R( f ); this is a subtle
variation of a step in Chevalley’s proof given for Theorem 1.35. The author learned
this variation from J. Lepowsky, who says that it is a device popularized in the
1970s by Kostant.

Complete reducibility (§4) was first proved by Weyl [1925–26], using analytic
methods. Casimir and van der Waerden [1935] gave an algebraic proof. Other
algebraic proofs were found by Brauer [1936] and Whitehead [1937]. An historical
discussion appears in Borel [2001b], Chapter II. For Proposition 5.19, see§2.6 of
Dixmier [1974]. Proposition 5.32 is from Harish-Chandra [1951].

The Harish-Chandra isomorphism in§5 (Theorem 5.44) is a fundamental result
in infinite-dimensional representation theory and first appeared in Harish-Chandra
[1951]. Most proofs of this theorem make use of a result of Chevalley about
invariants in the symmetric algebra. See Humphreys [1972] or Dixmier [1974] or
Varadarajan [1974], for example, for this proof. The proof in the text bypasses the
symmetric algebra, following the more direct argument that is in Knapp–Vogan
[1995].

Weyl [1925–26] gives analytic proofs of the Weyl Character Formula and Weyl
Dimension Formula of§6. The algebraic proof of the Weyl Character Formula in
this section follows Dixmier [1974]. The proof comes ultimately from Bernstein–
Gelfand–Gelfand [1971] and proves the Kostant Multiplicity Formula (Corollary
5.83) of Kostant [1959a] at the same time.

The name “Borel subalgebra” in§7 has come to be standard because of the
systematic treatment in Borel [1956] of the corresponding groups in the theory of
algebraic groups.

In §8 Theorems 5.110 and 5.117 are due to Weyl [1925–26].
The spin representations of Problems 16–27 are recalled by Weyl [1924].

Chevalley [1946] gives a concrete discussion, Cartan [1938b] has a more abstract
book-length development, and Lawson–Michelsohn [1989] gives a more recent
treatment.

There are several books with substantial sections devoted to the represen-
tation theory of compact Lie groups and/or complex semisimple Lie algebras.
Among these are the ones by Adams [1969], Bourbaki [1968] and [1975] and
[1982], Bröcher and tom Dieck [1985], Dixmier [1974], Duistermaat–Kolk [2000],
Freudenthal and de Vries [1969], Fulton–Harris [1991], Goodman–Wallach [1998],
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Helgason [1984], Humphreys [1972], Jacobson [1962], Knapp [1986], Lichten-
berg [1970], Rossmann [2002], Sattinger–Weaver [1986], S´eminaire “Sophus Lie”
[1955], Serre [1966], Tits [1965], Varadarajan [1974], Wallach [1973], Warner
[1972a], Weyl [1939], Wigner [1959], and Zhelobenko [1970]. To this list one can
add the books by Helgason [1962] and [1978], Hochschild [1965], Hsiang [2000],
and Ise–Takeuchi [1991] as including extensive structure theory of compact Lie
groups and complex semisimple Lie algebras, though essentially no representation
theory.

Chapter VI

After 1914 Cartan turned his attention to differential geometry and did not
return to Lie groups until 1925. His interest in geometry led him eventually to
introduce and study Riemannian symmetric spaces, and he found that classifying
these spaces was closely tied to the classification of simple real Lie algebras, which
he had carried out in 1914. (Many symmetric spaces turn out to be of the formG/K
with G semisimple.) He began to study the corresponding Lie groups, bringing
to bear all his knowledge and intuition about geometry, and soon the beginnings
of a structure theory for semisimple Lie groups were in place. The treatment of
structure theory in Helgason [1978] follows Cartan’s geometric approach.

In this book the approach is more Lie-theoretic. The existence of a compact
real form for any complex semisimple Lie algebra (Theorem 6.11) is proved
case by case in Cartan [1914], and Weyl [1925–26] gives a proof independent
of classification. Lemmas 6.2 through 6.4 and Theorem 6.6 appear in Weyl’s
treatment. But Weyl’s proof uses more information about the constantsCα,β of §1
than appears in these results, enough in fact to deduce the Isomorphism Theorem
(Theorem 2.108). The proof of the Isomorphism Theorem in Helgason [1978],
p. 173, follows the lines of Weyl’s argument. The text uses the Serre relations to
obtain the Isomorphism Theorem, and the result is a simpler proof of the existence
of a compact real form.

Having known all the simple real Lie algebras for many years, Cartan could see
many results case by case before he could give general proofs. Cartan [1927a],
p. 122, effectively gives the Cartan decomposition on the Lie algebra level; com-
ments in Cartan [1929a], p. 14, more clearly give the decomposition and refer
back to the spot in the paper [1927a]. Cartan [1929a] gives a general argument for
the existence of a Cartan involution and for uniqueness of the Cartan involution
up to conjugacy. Essentially this argument appears in Helgason [1978]. In§2 the
text has followed an approach in lectures by Helgason, which is built around the
variant Theorem 6.16 of Cartan’s results; this variant is due to Berger [1957].

The global Cartan decomposition of§3 appears in Cartan [1927b], proceeding
by a general argument that uses the case-by-case construction of the involution
of the Lie algebra. The group-theoretic approach followed in the text is due to
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Mostow [1949]. The computation of the differential in connection with (6.36) is
taken from Helgason [1978], pp. 254–255.

One result about structure theory that has been omitted in§3, having as yet no
fully Lie-theoretic proof, is the theorem of Cartan [1929a] that any compact sub-
group ofG is conjugate to a subgroup ofK . Borel [1998], especially pp. 128–133,
gives a proof that is much more Lie-theoretic than Cartan’s.

Cartan [1927b] shows that there is a Euclidean subgroupA of G such that any
element ofG/K can be reached from the identity coset by applying a member
of A and then a member ofK . This is the subgroupA of §4, and the geometric
result establishes Theorem 6.51 in§5 and theK AK decomposition in Theorem
7.39. Cartan [1927b] introduces restricted roots. The introduction ofN in §4 is
due to Iwasawa [1949], and the decomposition given as Theorem 6.46 appears in
the same paper. Lemma 6.44 came after Iwasawa’s original proof and appears as
Lemma 26 of Harish-Chandra [1953]. Cartan [1927b] uses the groupW(G, A) of
§5, and Theorem 6.57 is implicit in that paper.

It was apparent from the work of Harish-Chandra, Gelfand–Naimark, and
Gelfand–Graev in the early 1950s that Cartan subalgebras would play an important
role in harmonic analysis on noncompact semisimple Lie groups. The results of§6
appear in Kostant [1955] and Harish-Chandra [1956a]. Kostant [1955] announces
the existence of a classification of Cartan subalgebras up to conjugacy, but the
appearance of Harish-Chandra [1956a] blocked the publication of proofs for the
results of Kostant’s paper. Sugiura [1959] states and proves the classification.

In effect Cayley transforms as in§7 appear in Harish-Chandra [1957],§2. For
further information, see the Notes for§VII.9.

In §8 the name “Vogan diagram,” but not the concept, is new with the first edition
of this text. In the case thata0 = 0, the idea of adapting a system of positive roots
to given data was present in the late 1960s and early 1970s in the work of Schmid
on discrete series representations (see Schmid [1975], for example), and a Vogan
diagram could capture this idea in a picture. Vogan used the same idea in the
mid 1970s for general maximally compact Cartan subalgebras. He introduced the
notion of aθ stable parabolic subalgebra ofg to handle representation-theoretic
data and used the diagrams to help in understanding these subalgebras. The paper
Vogan [1979] contains initial results from this investigation but no diagrams.

Because of Theorem 6.74 Vogan diagrams provide control in the problem of
classifying simple real Lie algebras. This theorem was perhaps understood for
a long time to be true, but Knapp [1996] gives a proof. Theorem 6.88 is due to
Vogan.

The results of§9 were already recognized in Cartan [1914]. The classification
in §10, as was said earlier, is in Cartan [1914]; it is the result of a remarkable
computation made before the discovery of the Cartan involution. Lie algebras
with a given complexification are to be classified in that paper, and the signature of
the Killing form is the key invariant. The classification overR is recalled in Cartan
[1927a], andk0 is identified in each case. In this paper Cartan provided a numbering
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for the noncomplex noncompact simple real Lie algebras. This numbering has
been retained by Helgason [1978], and this text uses the same numbering for the
exceptional cases in Figures 6.2 and 6.3, as well as in Appendix C.

Cartan [1927b] improves the classification by relating Lie algebras and ge-
ometry. This paper contains tables giving more extensive information about the
exceptional Lie algebras. Gantmacher [1939a] and [1939b] approached classifica-
tion as a problem in classifying automorphisms and then succeeded in simplifying
the proof of classification. This method was further simplified by Murakami [1965]
and Wallach [1966] and [1968] independently. Murakami and Wallach made use
of the Borel and de Siebenthal Theorem (Borel and de Siebenthal [1949]), which is
similar to Theorem 6.96 but slightly different. The original purpose of the theorem
was to find a standard form for automorphisms, and Murakami and Wallach both
used the theorem that way. Helgason [1978] gives a proof of classification that is
based on classifying automorphisms in a different way. The paper Knapp [1996]
gives the quick proof of Theorem 6.96 and then deduces the classification as a
consequence of Theorem 6.74; no additional consideration of automorphisms is
needed.

The above approaches to classification make use of a maximally compact Cartan
subalgebra. An alternative line of attack starts from a maximally noncompact
Cartan subalgebra and is the subject of Araki [1962]. The classification is stated
in terms of “Satake diagrams,” which are described by Helgason [1978], p. 531.
Problem 7 at the end of the present Chapter VI establishes the facts due to Satake
[1960] needed to justify the definition of a Satake diagram.

The information in (6.107) and (6.108) appears in Cartan [1927b]. Appendix C
shows how this information can be obtained from Vogan diagrams.

Problems 28–35 introduce inner forms and their first properties. The notion of
inner form of a group comes from Galois cohomology and made an appearance
in Tits [1966]. Inner forms, together with their relationship to quasisplit groups,
played a foundational role in a letter from R. P. Langlands to A. Weil in Janu-
ary 1967 in which Langlands outlined the beginnings of a program connecting
representation theory and number theory. The publications Langlands [1970]
and [1973] expanded this theory and were the first publications on the subject.
Concerning the role of inner forms, a brief exposition appears in Borel [1976],
§7.1, and an exposition with proofs appears in Adams–Barbasch–Vogan [1992],
pp. 28–32. For simplicity the problems here deal with inner forms of Lie algebras
rather than inner forms of groups.

Chapter VII

§1. The essence of Theorem 7.8 is already in Cartan [1925b]. Goto [1948]
and Mostow [1950] investigated conditions that ensure that an analytic subgroup
is closed. The circle of ideas in this direction in§1 is based ultimately on Goto’s
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work. The unitary trick is due to Weyl [1925–26] and consists of two parts—the
existence of compact real forms and the comparison ofg andu0.

§2. The necessity for considering reductive groups emerged from the work of
Harish-Chandra, who for a semisimple groupG was led to form a series of infinite-
dimensional representations constructed from theM of each cuspidal parabolic
subgroup. The subgroupM is not necessarily semisimple, however, and it was
helpful to have a class of groups that would include a rich supply of semisimple
groupsG and would have the property that theM of each cuspidal parabolic
subgroup ofG is again in the class. Various classes have been proposed for this
purpose. The Harish-Chandra class is the class defined by axioms in§3 of Harish-
Chandra [1975], and its properties are developed in the first part of that paper.
The text uses axioms from Knapp–Vogan [1995], based on Vogan [1981]. These
axioms, though more complicated to state than Harish-Chandra’s axioms, have
the advantage of being easier to check. The present axioms yield a slightly larger
class of groups than Harish-Chandra’s, according to Problem 2 at the end of the
chapter.

§3. The existence of theK AK decomposition is in Cartan [1927b]. See the
Notes for Chapter VI.

§4. The Bruhat decomposition was announced for complex classical groups
and their real forms in Bruhat [1954a] and [1954b]. Harish-Chandra [1954], citing
Bruhat, announced a proof valid for all simple Lie groups, and Harish-Chandra
[1956b] gives the proof. Bruhat [1956] repeats Harish-Chandra’s proof.

§5. The groupM does not seem to appear in Cartan’s work, but it appears
throughout Harish-Chandra’s work. Some of its properties are developed in
Harish-Chandra [1958], Satake [1960], and Moore [1964a]. A version of Theorem
7.53 appears in Satake [1960], Lemma 9, and Moore [1964a], Lemmas 1 and 3. See
also Knapp–Zuckerman [1982],§2. Theorem 7.55 seems to have been discovered
in the late 1960s. See Loos [1969b], Theorems 3.4a and 3.6 on pp. 75–77, for the
key step that2{H ∈ i a0 | expH ∈ K } is contained in the lattice generated by
the vectors4π i |β|−2Hβ ; this step comes out of the work in Cartan [1927b]. The
proof in the text, based on Theorem 5.107, is new.

§6. Real-rank-one subgroups appear in Araki [1962]. Gindikin–Karpeleviˇc
[1962] shows that integrals

∫
N− e−(λ+ρ)H(n̄) dn̄, wherex = κ(x)eH(x)n is the

Iwasawa decomposition ofx and ρ is half the sum of the positive restricted
roots, can be computed in terms of integrals for the real-rank-one subgroups.
Theorem 7.66 was known case by case at least by the early 1950s. The proof here,
independent of classification, is from Knapp [1975].

§7. Parabolic subgroups, particularly cuspidal parabolic subgroups, play an
important role in the work of Harish-Chandra on harmonic analysis on semisimple
Lie groups. For some information about parabolic subgroups, see Satake [1960]
and Moore [1964a]. Much of the material of this section appears in Harish-
Chandra [1975]. Harish-Chandra was the person to introduce the name “Langlands
decomposition” for parabolic subgroups. For Proposition 7.110 and Corollary
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7.111, see Knapp–Zuckerman [1982],§2.
§8. Most of the material deriving properties of Cartan subgroups from Cartan

subalgebras is based on Harish-Chandra [1956a]. That paper contains an error that
is noted in theCollected Papers, but the error can be accommodated for current
purposes. Also that paper uses a definition of Cartan subgroup that Harish-Chandra
modified later. The text uses the later definition.

§9. SpacesG/K for whichG/K embeds as a bounded domain in someCn with
G operating holomorphically were studied and classified by Cartan [1935]. The
classification is summarized in (7.147). Hua [1963] develops at length properties
of the domains of this kind corresponding to classical groupsG. The proof of
Theorem 7.117 is based on material in Helgason [1962], pp. 354 and 304–322,
and Knapp [1972], as well as a suggestion of J.-i. Hano. Theorem 7.129 and
the accompanying lemmas are due to Harish-Chandra [1955–56]. Problem 41 is
based on the proof of a conjecture of Bott and Kor´anyi by Moore [1964b]. The hint
for the solution of Problem 42 shows why the Cayley transforms of Chapter VI
are so named. For more about Problems 42–44, see Kor´anyi–Wolf [1965] and
Wolf–Korányi [1965]. For further discussion, see Helgason [1994],§V.4.

§10. Problems 45–51 are a continuation of Problems 28–35 in Chapter VI. For
commentary, see the Notes for Chapter VI. The concept of triality is put into a
more general context in Baez [2002],§2.4.

Chapter VIII

§1. The development of integration of differential forms is taken from Chevalley
[1946] and Helgason [1962]. The proof of Sard’s Theorem is taken from Sternberg
[1964], pp. 47–49.

§2. Invariant integration on Lie groups, defined in terms of differential forms, is
already mentioned in a footnote on the second page of Cartan [1925a]. Existence
of a left-invariant measure on a general locally compact group was proved under
a separability assumption by Haar [1933], and uniqueness was proved by von
Neumann [1934a]. See Weil [1940], Loomis [1953], Hewitt–Ross [1963], and
Nachbin [1965] for later developments and refinements.

§3. Theorem 8.32 and its proof are from Bourbaki [1963], p. 66. The proof of
Lemma 8.35 is taken from Helgason [1962]. Knapp–Vogan [1995], pp. 661–663,
explains how the natural objects to integrate overG/H are functions onG that
are “densities” relative toH . The condition that�G|H = �H forces densities to
be right invariant underH , and then they descend to functions onG/H .

§4. This section follows the lines of§V.6 of Knapp [1986]. Proposition 8.46
is due to Harish-Chandra [1958], p. 287. The technique of proof given here
occurs in Kunze–Stein [1967], Lemma 13. Use of densities (see above) makes
this proof look more natural; see Knapp–Vogan [1995], p. 663. Theorem 8.49,
called Helgason’s Theorem in the text, is from Helgason [1970],§III.3. Warner
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[1972a], p. 210, calls the result the “Cartan–Helgason Theorem.” In fact at least
four people were involved in the evolution of the theorem as it is stated in the text.
Cartan [1929b],§§23–32, raised the question of characterizing the irreducible
representations ofG with a nonzeroK fixed vector,G being a compact semisimple
Lie group andK being the fixed subgroup under an involution. His answer went in
the direction of the equivalence of (a) and (c) but was incomplete. In addition the
proof contained errors, as is acknowledged by the presence of corrections in the
version of the paper in hisŒuvres Compl̀etes. Cartan’s work was redone by Harish-
Chandra and Sugiura. Harish-Chandra [1958],§2, worked in a dual setting, dealing
with a noncompact semisimple groupG with finite center and a maximal compact
subgroupK . He proved that ifν is the highest restricted weight of an irreducible
finite-dimensional representation ofG with a K fixed vector, then〈ν, β〉/|β|2 is
an integer≥ 0for every positive restricted root. Sugiura [1962] proved conversely
that anyν such that〈ν, β〉/|β|2 is an integer≥ 0for every positive restricted root is
the highest restricted weight of some irreducible finite-dimensional representation
of G with a K fixed vector. Thus Harish-Chandra and Sugiura together completed
the proof of the equivalence of (a) and (c). Helgason added the equivalence of
(b) with (a) and (c), and he provided a geometric interpretation of the theorem.
See also Wallach [1971] and [1972] and Lepowsky–Wallach [1973]. For further
discussion of the mathematics and later history, see Helgason [1994],§II.4.

§5. The Weyl Integration Formula in the compact case is due to Weyl [1925–26].
The proof there is rather rapid. One may find a proof also in Adams [1969]. The
formula in the noncompact case is due to Harish-Chandra [1965], Lemma 41,
and [1966], Lemma 91; the proof in the noncompact case is omitted in Harish-
Chandra’s papers, being similar to the proof in the compact case.

Chapter IX

The Peter–Weyl paper about representations of compact groups appeared in
1927. As Mackey [1978] says in his§17, “As matters stood at the end of 1932,
one had all the ingredients of a complete theory of the unitary representations of
the compact Lie groups. . . . It must be confessed, however, that although the
ingredients were there, their consequences for unitary group representations had
not yet been spelled out.”

The result that every unitary representation of a compact Lie group is a discrete
direct sum of irreducibles is contained in Theorem 39 of Bochner and von Neumann
[1935], but it is well concealed. An explicit statement and proof of this result, at
least in the separable case, appears in Hurevitsch [1943].

Induced representations for finite groups are part of the original theory of
Frobenius and I. Schur. For compact groupsG and H when H has infinite
index in G, any induced representation is infinite dimensional (essentially as
a consequence of Problems 7–10), and, although Cartan [1929b] worked with
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L2(G/H), general induced representations did not directly form part of the initial
representation theory for compact groups. They do occur indirectly on pp. 82–83
of Weil [1940], however: although the infinite-dimensional space is not used, the
matrix coefficients of the induced representation are studied, a version of Frobenius
reciprocity (Theorem 9.9) is proved, and versions of the results in Problems 7–10
appear there.

The first two sections of Chapter IX prove matters only forG separable, but
the theorems are valid without this assumption. Two technical problems need to
be addressed. One is that Fubini’s Theorem fails for general Borel measurable
functions on a compact Hausdorff space; the difficulty is that the integral in
the first variable of a Borel measurable function of two variables need not be
Borel measurable in the second variable. The remedy for this problem is to use
“Baire measurable” functions. The Baire sets are those in the smallestσ -algebra
containing the compact sets that are intersections of countably many open sets,
and the Baire measurable functions are the functions measurable with respect to
the Baire sets. Fubini’s Theorem is valid for Baire measurable functions, and
continuous functions are Baire measurable. With a little effort one finds that the
use of Baire measurable functions, rather than Borel measurable functions, handles
all problems connected with Fubini’s Theorem. See Halmos [1974] for details.

The second technical problem concerns separability of the Hilbert space of
a representation. Although multiplicities present no problem when defined as
cardinal numbers in the nonseparable case, handling the measurability of Hilbert-
space-valued functions requires some care. One approach is to insist that each such
function take its values in a separable subspace, a condition that is automatically
satisfied for continuous functions.

The references for the classical branching theorems in§3 are Weyl [1931],
Murnaghan [1938], and Zhelobenko [1962]. Weyl and Murnaghan seem to have
been motivated by the breaking of symmetry in quantum mechanics. Weyl’s orig-
inal proof of Theorem 9.14 is the one suggested by Problem 1, and Murnaghan’s
original proof of Theorem 9.16 is in the same spirit as Weyl’s but is a good bit more
complicated. Murnaghan handled branching also for the spin groups, the simply
connected covers of the rotation groups. The book Boerner [1963] contains an
exposition of Theorems 9.14 and 9.16. Zhelobenko’s approach to Theorem 9.18
is completely different from the earlier arguments and is motivated by infinite-
dimensional representation theory.

Kostant did not publish a proof of his branching theorem (Theorem 9.20), but
the result was communicated to some of his students. It was understood that the
formal proof of the Kostant Multiplicity Formula given by Cartier [1961b] could
be made rigorous in the setting of Bernstein–Gelfand–Gelfand [1971] and then
could be adapted easily to prove Kostant’s branching theorem. Proofs of the result
as stated in Theorem 9.20 appear in Lepowsky [1970] and in Goodman–Wallach
[1998]. The proof in the present text follows that of Goodman and Wallach. The
generalized form of the theorem, in which no assumption is made about regular
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elements, is stated and proved in Vogan [1978]. For a different formula of the
same general nature as Kostant’s, see van Daele [1970].

For a fuller discussion of Riemannian duality in§4, see Helgason [1962] and
[1978]. The recognition of iterated branching theorems as useful in analyzing
spaces likeK/(K ∩ M0) is due to Schmid [1969] and Baldoni Silva [1979].

Goodman–Wallach [1998] gives direct proofs of the classical branching theo-
rems from Kostant’s Branching Theorem, using an appropriate passage to the limit
in the case ofSp(n). The observation in Problem 2 that the multiplicity forSp(n)

is given by
∏n

i =1(Ai + 1) appears in the Goodman–Wallach book.
Theorem 9.50 is due to Lepowsky [1970], and a published announcement

appears as Lepowsky [1971]. Lepowsky’s proof deals with restriction fromSp(n)

to Sp(1)× Sp(n−1). Although his answer has to be equal to the one in Theorem
9.50, his exact formula is a little different because he works with the partition
function built from� = {e1 ± ej | j ≥ 2} rather than� = {ei ± en | i ≤ n − 1}.
The proof in the text of Theorem 9.50 is new, including formulas (9.56) through
(9.58).

To derive Theorem 9.18 from Theorem 9.50, one wants to show that∑∞
c0=0(c0 +1)

[
P

( ∑
Aj ej −c0en

)−P
( ∑

Aj ej + (c0 +2)en
)] = ∏n

i =1(Ai +1).

The left side is easily seen to be equal to
∑∞

c0=−∞(c0 + 1)P
( ∑

Aj ej − c0en
)
,

and the proof that this equals the right side goes by induction on the number of
variables. The base case of the induction hasA1 = · · · = An−1 = 0, and the sum
has just one term. The inductive step eliminates the first nonzero variableAj by
using (9.56) withα = ej − en and then (9.58) withζ = ej + en.

Further work concerning Theorems 9.18 and 9.50 may be found in Hegerfeldt
[1967] and Lee [1974]. Lee showed how to prove Theorem 9.50 by Zhelobenko’s
methods.

Young tableaux date from the investigation of the symmetric group in Young
[1901]. Littlewood–Richardson [1934] used them on p. 119 for the statement of
the result given as Theorem 9.74 in the text. Littlewood and Richardson did not
give a proof, and an incomplete proof was published by Robinson [1938] and
reproduced in pp. 94–96 of Littlewood [1940]. Macdonald [1979] completes this
proof and credits A. Lascoux and Sch¨utzenberger [1977] and Thomas [1974] with
finding the first complete proofs. For another treatment, see Sagan [1991].

Theorem 9.75 appears on p. 240 of Littlewood [1940], and Theorem 9.76
appears on p. 295 of the 1950 edition of that book. These proofs are a little
hard to understand, and Maliakas [1991] gives an exposition. The method of
generating functions that Littlewood uses is explained in detail in Chapter 4 of
Sagan [1991]. Two research articles on character generators are Stanley [1980]
and King and El-Sharkaway [1984].

Littlewood [1940] also gives a formula for reducing tensor products of rep-
resentations ofSO(n), but this formula involves some cancellation. The 1950
edition points to an analogous formula for reducing tensor products forSp(n).
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P. Littlemann introduced a generalization of Young tableaux that applies to all
compact connected Lie groups. It is called the “path model,” and an important
result of the theory is a generalization of Theorem 9.74 to this context. An
exposition with proofs appears in Littlemann [1997].

Littlewood’s two theorems (Theorems 9.75 and 9.76) make an assumption on
the depth of the given representation of the unitary group. “Newell’s Modification
Rules,” discussed in Newell [1951] and King [1971], tell what needs to be done
when this assumption does not hold.

Theorem 9.77 deals with restriction in the case of the compact symmetric space
SO(n+m)/((SO(n)× SO(m)), for 1 ≤ n ≤ m, and the trivial representation on
SO(m). It is a special case of the main theorem of Gross–Kunze [1984] and also
appears in isolation in Knapp [2001]. Gelbart [1974] proved the combinatorial
equality that establishes the formuladimV ′ = dimV K2 in the proof of Theorem
9.77. The Gross–Kunze theorem specializes also to results analogous to Theorem
9.77 forU (n + m)/((U (n) × U (m)) andSp(n + m)/((Sp(n) × Sp(m)), again
when 1 ≤ n ≤ m with the trivial representation onU (m) or Sp(m); these
results are stated and proved explicitly in Knapp [2001]. The analysis gets re-
duced in these other two cases to an analysis for the compact symmetric spaces
(U (n) × U (n))/diagU (n) andU (2n)/Sp(n). The first of these latter spaces is
addressed by Theorem 9.74, and the second is addressed for some parameters by
Theorem 9.76.

The results in Problems 12 and 14 thatL2(K/M) decomposes with multiplic-
ity 1 for Sp(n, 1) andU (n, 1) are special cases of a result of Kostant [1975b],
proved without classification, thatL2(K/M) decomposes with multiplicity 1 for
all semisimple groups of real rank 1. Problem 17 is taken from Humphreys [1972]
and ultimately from Steinberg [1961], and Problems 19–21 are from Parthsarathy
and Ranga Rao and Varadarajan [1967]. Problems 25–30 are based on pp. 352–354
of Goodman–Wallach [1998]. Problem 28 produces the 1-dimensional subspaces
corresponding to a basis of a representation space forU (n). The basis in question
is known as aGelfand–Tsetlin basis; the paper Gelfand–Tsetlin [1950] shows
how to give a concrete realization of each irreducible representation ofU (n), and
this basis lies behind that paper.

There is a large literature on branching rules, and much of it deals with branching
for a compact symmetric space or a family of such spaces. One collection of
branching rules deals withseesaw branching, which is discussed in Howe [1995],
pp. 115–119. One starts with commuting representations of a groupG and a Lie
algebrag′ such thatG andg′ generate each other’s commutant. Suppose that
another groupK and Lie algebrak′ stand in the same relation and thatK ⊂ G and
g′ ⊂ k′. Then(G, g′) and(K , k′) are called aseesaw pair. This much information
leads to a reciprocity law for multiplicities, and often the consequence is some
relationship for multiplicities associated to two distinct compact symmetric spaces.
Goodman–Wallach [1998] works out a case that relatesU (k+m)/(U (k)×U (m))

to (U (n)×U (n))/diagU (n), for example. Howe [1995] summarizes another case
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that relatesSO(k + m)/(SO(k) × SO(m)) to (Sp(n) × Sp(n))/diagSp(n).
In at least one case seesaw branching leads to a relationship between finite-

dimensional representations in one setting and infinite-dimensional representations
in the Riemannian dual of the other setting, specificallyU (m)/SO(m) and the
noncompact Riemannian dual ofSp(n)/U (n). Howe [1995] discusses this case
on p. 117, and the papers Deenen–Quesne [1983] and Quesne [1984] contain
details.

The literature on branching rules for compact symmetric spaces is not limited to
classical groups. Two papers dealing with branching rules for one of the compact
symmetric spaces associated toE8 are Bélanger [1983] and Wybourne [1984].
Gaskell–Sharp [1981] deals withG2/(SU(2)×SU(2)), which is another compact
symmetric space for an exceptional group.

Some work on branching theorems has aimed to get useful algorithms that apply
to many cases. Navon–Patera [1967] began such a study in the equal-rank case.
Patera–Sharp [1989] gave two algorithms that together allow the determination of
general branching rules. Thoma–Sharp [1996] applied this work to the cases of
Sp(m+ n)/(Sp(m)× Sp(n)), SO(2m+ 2n + 1)/(SO(2m)× SO(2n + 1)), and
SO(2m + 2n)/(SO(2m) × SO(2n)). For a book of tables, see McKay–Patera
[1981].

Chapter X

The notion of “prehomogeneous vector space” was introduced by Mikio Sato
in 1969, and Takuro Shintani published course notes from Sato in Japanese in
1970. An English translation of part of these notes ultimately appeared as Sato
[1990]. The word “prehomogeneous” is apparently intended to convey a notion
of “almost homogeneous”; Sato knew that as soon as there is an open orbit, the
open orbit must be dense, a fact that appears as Proposition 10.1 in the text;
thus a prehomogeneous vector space in a sense just misses being a homogeneous
space of the group. Shintani [1972] includes an introduction to the theory of
prehomogeneous vector spaces.

Shintani [1972] gives some insight into the original reasons for studying these
spaces, saying, “M. Sato constructed a systematic theory of prehomogeneous
vector spaces, and as an application of his results, attached certain ‘distribution
valued zeta-functions’ to prehomogeneous vector spaces satisfying several addi-
tional conditions. It was also pointed out by Sato that there would exist certain
Dirichlet series with functional equations which are intimately related to them,
when [the group] is defined over an algebraic number field.” See Sato–Shintani
[1974] for more work of this kind. Chapters 2 and 3 of Rubenthaler [1992] give an
exposition of these zeta functions. Sato–Kimura [1977] contains a classification,
up to a certain kind of equivalence, of prehomogeneous vector spaces that are
irreducible in the sense that the representation on the vector space is irreducible.
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Rubenthaler [1980] gives some properties of the irreducible spaces, including what
is in Problems 5 and 6. Rubenthaler [1992] in his Introduction tells more early
history of prehomogeneous vector spaces.

The concrete information about an open orbit in Example 3 of§1 is based on
Korányi–Wolf [1965]. The study of Example 4 is motivated by Gross–Wallach
[1994] and [1996], and the techniques in the example are special cases of those in
Theorem 10.10 of the text. Although Proposition 10.1 is part of the original work
of Sato and appears in Sato–Kimura [1977], the proof predates the statements of
the result and is taken from Kostant [1959b]. Proposition 10.2 is an observation
of Greenleaf [2000].

Morozov [1942a] stated Theorem 10.3 and gave an incomplete proof; Jacobson
[1951] streamlined and completed the proof. Kostant [1959b] discusses this
historical fact and some related history. For the text’s Lemma 10.4, Jacobson
[1935] proved as Lemma 2 that[ A, B] is nilpotent if [ A, B] commutes withA.
The rest of Lemma 10.4 is from Kostant [1959b], Lemma 3.2. Except for the part
of the proof of Theorem 10.3 that imitates the proof of the text’s Lemma 5.17, the
proof in the text follows Bourbaki [1975], which follows Kostant [1959b].

The terminology “sl2 triple” is, apart from translation, that of Bourbaki [1975].
Kostant [1959b] does not refer so much to triples and instead uses the term “TDS”
for the span of a triple, i.e., a 3-dimensional simple subalgebra.

Malcev [1944] proved that the spans of twosl2 triples(h, e, f ) and(h, e′, f ′)
in a semisimple Lie algebra are necessarily conjugate by an inner automorphism.
Dynkin [1952] restated this theorem and went on to classify the conjugacy classes
of sl2 triples. Theorem 10.10 is due to Kostant [1959b], who wrote that the
theorem was implicit in Malcev [1944]; Kostant’s proof includes the argument
that the text gives for Proposition 10.1. Proposition 10.12 is in Dynkin [1952].
As was pointed out in Kostant [1959b] and is noted in Problem 4, it follows from
Theorem 10.10 and Proposition 10.11 that there are only finitely many conjugacy
classes of nilpotent elements in a complex semisimple Lie algebra. Bourbaki
[1975] gives an exposition of some of this material in Chapitre VIII,§11.

Morozov [1942b] stated that the centralizer of a semisimple subalgebra of a
semisimple Lie algebra is reductive, and he gave a proof when the subalgebra is
3-dimensional. Springer–Steinberg [1970], pp. 238–239, gave another proof in
this case. Jacobson [1951] gave a general proof.

Vinberg [1975b] stated Theorem 10.19 and sketched a proof. Actually Vin-
berg’s proof gives more, providing a parametrization of the orbits ofG0 on g1.
The exposition in§3 in the text is based in part on Chapitre 4 of Rubenthaler
[1992]. Hints of the parametrization appear also in Bala–Carter [1974] and [1976]
and in Pommerening [1977].

Rubenthaler [1992] in addition studies “regular” prehomogeneous vector spaces
of parabolic type in detail. Some of this work is in Sato–Kimura [1977], and some
of it is in the announcement Rubenthaler [1980]. Aregular prehomogeneous
vector spaceV is one for which there exists a “relative invariant,” a member of
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the symmetric algebra ofV that transforms under the group according to a multi-
plicative character and that satisfies a nondegeneracy property. When the group is
reductive, a prehomogeneous vector space is regular exactly when the complement
of the open orbit is a hypersurface. When in addition the prehomogeneous vector
space is of parabolic type, regularity is equivalent with the condition that the Lie
algebra elementH of Lemma 10.15 be theh of somesl2 triple (h, e, f ); Problem 7
is the easy direction of this equivalence. Thus, for example, the prehomogeneous
vector spaces in Example 4 of§1 are regular; a relative invariant appears in§4 as
an occurrence of a 1-dimensional representation ofL.

Vinberg [1976] gives a completely different approach to proving Theorem
10.19. The approach is based on an idea in Richardson [1967]; Richardson was
interested in giving a direct proof of Kostant’s result on the finiteness of the number
of conjugacy classes of nilpotent elements.

The construction at the end of§3 is meant to tie the subject of the chapter into the
topic of “cohomological induction” in infinite-dimensional representation theory.
Analysis of the action of the compact groupL onS(u∩p)gives detailed information
about the effect of cohomological induction, as is indicated in Theorems 5.35 and
5.64 of Knapp–Vogan [1995]. Wallach [1979] and Gross–Wallach [1996] illustrate
the technique.

Theorem 10.23 is classical. Howe [1995], p. 17, gives a little history that
begins with a combinatorial identity known to Cauchy. The spaceMmn(C) may be
regarded as HomC(Cn, Cm) or (Cn)∗ ⊗Cm, and the theorem then naturally fits into
the subject of invariant theory, which is discussed under “Further Topics” in these
Notes. The first part of the argument for Theorem 10.23 is taken from Goodman–
Wallach [1998], and the second part is based on a suggestion by D. Vogan. The
text mentions the Borel–Weil Theorem, which is discussed in these Notes under
“Further Topics.” Rigorous proofs of the full Theorem 10.23 may be found in
Howe [1995] and Goodman–Wallach [1998].

Theorem 10.25 is due to Schmid [1969] and generalizes Theorem 10.23. In
Schmid’s treatment the upper bound on multiplicities amounts to a rigorous ver-
sion of what, in the case of Theorem 10.23, the text calls the second part of the
argument. The paper relies heavily on the identification in Kor´anyi–Wolf [1965],
by means of Cayley transforms, of the Silov boundary of the standard realization
of a bounded symmetric domain. Schmid proves the lower bound on multiplicities
by an elaborate computation with character identities. Wallach [1979] gives an
application of the Schmid theorem to infinite-dimensional representation theory.

Theorem 10.26 forSO(2m, 2n)0 is in Greenleaf [2000]. The tensor-product
decomposition in Theorem 10.27 is due to Gross–Wallach [1994] and [1996],
who prove this theorem in order to apply it to infinite-dimensional representation
theory. Proposition 10.28 is new and is based on an idea in Greenleaf [2000],
where a Cayley transform helps in analyzing the action ofL on S(V) in cases
other than the Hermitian cases.
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Appendix A

The material in§§1–3 of this appendix is taken from Knapp [1988], Chapter II.
The proofs of Lemma A.46 and Proposition A.47 are taken from Bourbaki [1960],
p. 18.

Appendix B

Representations on vector spaces overR were considered by Cartan but not by
Weyl, and the question of their complete reducibility does not seem to have been
addressed. Lemma B.1 and its proof are taken from Helgason [1984], pp. 601–602,
and Helgason [1978] in turn quotes Freudenthal and de Vries [1969] on this point.

The decomposition now called the Levi decomposition (Theorem B.2) was
announced by Killing [1888–89–90]. In one of the announcements preceding
Cartan [1894], Cartan notes errors in Killing’s argument but affirms that the result
is true. The first published correct proof appears to be the one in Levi [1905],
valid overC. Whitehead [1936] gives a proof valid overR as well; see Jacobson
[1962] for an exposition. The semisimple subalgebra is unique up to conjugacy,
according to Malcev [1945]. The proof of Theorem B.2 is from Bourbaki [1960],
pp. 89–90, and Fulton–Harris [1991]. A proof of the Malcev theorem also appears
in Bourbaki [1960].

The global form of Lie’s third theorem in Theorem B.7 is in Cartan [1930a].
The proof here is taken from lectures by Kostant.

Lie believed but could not prove that every finite-dimensional Lie algebra (over
C) can be realized as a Lie algebra of matrices. Ado [1935] and [1947] finally
proved that Lie’s conjecture was correct, at least overC. Ado’s Theorem, stated
precisely in Theorem B.8 as being valid overR or C, is actually valid over any
field of characteristic 0. A proof overR or C using differential forms was given by
Cartan [1938a]; in the solvable case it actually shows that the Lie algebra can be
realized as the linear Lie algebra of a simply connected matrix group. But more is
true: as Hochschild [1965], p. 220, shows, ifG is a solvable Lie group andG′ is its
commutator subgroup, thenG has a one-one matrix representation if and only if
G′ is closed inG and has no nontrivial compact subgroup. The proof of Theorem
B.8 in the text is adapted from Harish-Chandra [1949]. For other interpretations
of Harish-Chandra’s proof, see S´eminaire Sophus Lie [1955], Jacobson [1962],
and Bourbaki [1960].

The Campbell–Baker–Hausdorff Formula in Theorem B.22 has a long history
and may be regarded as an effort to sharpen the result in Lemma 1.90a. F. Schur
[1891] and [1893] studied the map(X, Y) → exp−1(expX expY) in connection
with proving that a group with a manifold structure in which multiplication and
inversion areC2 automatically has a real analytic structure in which the operations
are real analytic. The image of any sufficiently small(X, Y) under this map is
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Z(1), whereZ = Z(t) solvesd Z/dt = adZ
eadZ−1(X) with Z(0) = Y. An exposition

of this work of Schur appears in Duistermaat–Kolk [2000],§§1.5–1.6. Campbell
[1897] and [1898] conjectured that the value of this mapping should be the sum of
X +Y and iterated brackets ofX andY. There were two problems in proving such
a conjecture. One was to find a suitable context in which one could decompose
[X, Y] as XY − Y X, and the other was to obtain a formula involving iterated
brackets. The second of these problems was solved in Baker [1905], and the first
was solved in Hausdorff [1906]. Campbell solved neither of them. Campbell’s
formula accurately tells what the iterated brackets ofX andY are if one suppresses
all terms in whichX appears more than once. Bernoulli numbers, which are
critical to the correct answer, show up explicitly in Campbell’s expression, but
their presence is not a surprise in view of F. Schur’s formula mentioned above.
Lemma B.26 is due to Campbell; the proof in the text is considerably shorter
than Campbell’s and is based on the trick used here in proving Lemma 5.17.
In the text the problem of finding a suitable context for proving Theorem B.22
is solved in a stroke by using Ado’s Theorem. The manipulations to get the
actual formula, starting with Lemma B.27, are essentially those in Baker [1905],
except that Baker’s infinite series have been truncated and the argument in the text
proceeds modulo high-order terms. Dynkin [1950] gave a new proof of the theorem
that results in an explicit formula rather than an existence statement. Dynkin’s
formula essentially writes out the result of applying the text’s Proposition B.43,
which is taken from Hochschild [1965]. In Hochschild’s book this proposition
is part of a fairly short algebraic proof of the whole theorem that conceals the
historical agonies. One may also consult Bourbaki [1972]. An analytic derivation
of Dynkin’s formula may be found in§1.7 of Duistermaat–Kolk [2000]. With
all the effort that has gone into the Campbell–Baker–Hausdorff Formula over the
years, one might be surprised to find that the result has been largely peripheral to
the subject of Lie groups. Even Duistermaat and Kolk, who make a direct line
to Dynkin’s formula in their first chapter, acknowledge the peripheral nature of
the formula by calling the section on its proof an “intermezzo.” Rossmann [2002]
was able to make the formula more central to the theory, deriving from it the
correspondence of an analytic subgroup to each Lie subalgebra.

Appendix C

The information in§§1–2 was all known to Cartan, most of it as early as 1913.
For tables giving this information and more, see Bourbaki [1968].

Compact forms of the five exceptional simple Lie algebras overC may all be
described in terms of the octonions. Theoctonions, also known as the Cayley
numbers, form an 8-dimensional nonassociative division algebra overR. Baez
[2002] gives a detailed exposition of the octonions and their connection with Lie
theory.
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Much of the information in§§3–4 appears in Cartan [1927b]. Tables in that
paper givek0, a set of simple roots fork0, the real rank, the system of restricted roots,
and the multiplicities of each restricted root. Cartan’s way of obtaining simple
roots fork0 is different from what has been used here; see Murakami [1965] for
an exposition. In addition, Cartan [1927b] tells the order of the center of a simply
connected group with each Lie algebra.

Wolf [1965] classified those simple real Lie algebrasg0 for which G/K has a
reasonable quaternionic structure. In§§3–4 a notation is made whichg0’s have
this property. Any suchg0 has rankG = rankK . There is one such real form
g0 for each complex simple Lie algebra of rank≥ 2. The structure can be built
from a simple system in which the noncompact simple roots are exactly those
simple roots that are nonorthogonal to the largest root. Except in typeAn, the
result is that there is exactly one noncompact simple root. In all cases the largest
root, together with its negative, generates ansu(2) summand ofk0. For further
discussion of this matter, see Alekseevskii [1968], Sudbery [1979], Besse [1987],
and Gross–Wallach [1996].

Further Topics

Realizations of representations of compact Lie groups. Borel and Weil, working
together, and also Tits [1955], pp. 112–113, independently discovered an explicit
construction of the irreducible representations of compact connected Lie groups.
The realizations are geometric ones, in terms of spaces of holomorphic sections
of holomorphic line bundles, and the result goes under the nameBorel–Weil
Theorem. Borel and Weil did not publish their results at the time of their discovery,
which was about the end of 1953. However, Borel’s collected works contain some
notes on the subject written in March 1954 (see Borel [1954]), and Serre lectured
on the Borel–Weil Theorem in the S´eminaire Bourbaki in May 1954 (see Serre
[1954]). An exposition of the theorem appears in Knapp [1986],§V.7, and a
different exposition appears in Helgason [1994],§VI.4.3.

At about the same time as the work of Borel–Weil and Tits, Harish-Chandra
[1955–56] independently introduced “holomorphic discrete series” representations
of semisimple Lie groupsG as generalizations of some known representations
of SL(2, R). Harish-Chandra’s construction, although intended for noncompact
groups, works under the assumption of§VII.9 that Zg(c) = k, which is valid in par-
ticular wheneverG is compact. In this special case Harish-Chandra’s construction
reduces to the Borel–Weil Theorem.

Bott [1957] generalized the construction in the Borel–Weil Theorem to al-
low other realizations in spaces of sheaf cohomology sections (or equivalently
Dolbeault cohomology sections). This generalization goes under the nameBorel–
Weil–Bott Theorem, and an exposition appears in Baston–Eastwood [1989]. This
theorem is more or less equivalent with an algebraic theorem of Kostant’s (see
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Kostant [1961] and Cartier [1961a]). See Knapp–Vogan [1995],§§IV.9–11, for
an exposition of Kostant’s Theorem and for further discussion.

Linear algebraic groups. The possibility of defining matrix groups over fields
other thanR andC has led to a large theory of linear algebraic groups. Some
books on this subject are Chevalley [1951] and [1955a], Borel [1969], Hochschild
[1971], Humphreys [1975], and Springer [1981]. Borel [2001b] contains several
historical essays on algebraic groups.

Representations of reductive Lie groups. The theory in this book leads naturally
to the infinite-dimensional representation theory of reductive Lie groups. For
orientation, see Knapp [1986]. The first book on the subject was Gelfand–Naimark
[1950]. Some other books in this field are Warner [1972a] and [1972b], Vogan
[1981], Wallach [1988] and [1992], and Knapp–Vogan [1995]. A book giving a
sense of ongoing research is Vogan [1987].

Analysis on symmetric spaces and related spaces. The theory in this book leads
naturally also to a field of analysis in settings that involve semisimple or reductive
groups. Some of this work, but not all, makes use of some infinite-dimensional
representation theory. Some books on the subject are Wallach [1973], Helgason
[1984] and [1994], Schlichtkrull [1984], and Varadarajan [1989].

Invariant theory. Classical invariant theory began in the nineteenth century as an
attempt to understand functions of various kinds in projective geometry invariant
under all homogeneous linear transformations. Weyl [1939] was interested in
understanding irreducible representations concretely, and he transformed invariant
theory into a testing ground for this concrete knowledge. IfG is a group of linear
transformations on a complex vector spaceV , one obtains a representationσ of
G on the algebraP(V) of polynomial functions onV by (σ (g)p)(v) = p(g−1v).
The basic problem is to describe the subalgebraP(V)G of G invariant polynomial
functions (or, equivalently, the algebraS(V)G of G invariants in the symmetric
algebra). A related problem is as follows: ifVk and(V∗)l denote direct sums of
copies ofV and its dual, describe, for allk andl , how(V∗)l ⊗Vk decomposes into
irreducible representations. The First Fundamental Theorem of invariant theory
for G for Weyl was an explicit description of generators ofP((V∗)l ⊗ Vk)G, and
the Second Fundamental Theorem was an explicit description of relations. An
early publication on the subject is Weyl [1935]. For a recent overview, with some
sketches of proofs, see Howe [1995]. Howe shows on pp. 18–19 how Theorem
10.23 in the text can be used as a starting point in obtaining the First Fundamental
Theorem forG = GL(V), and he goes on to give other formulations of the
First Fundamental Theorem that are more or less equivalent; in later pages he
discusses the fundamental theorems for the other complex classical groups. The
book Goodman–Wallach [1998] is a concrete treatment of representation theory
in the spirit of Weyl [1939] using more recent language than Weyl and expanding,
in many instances, on Howe [1995].

Automorphic forms. The classical theory of automorphic forms deals with
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functions associated with the quotientSL(2, R)/SL(2, Z). When a linear alge-
braic groupG can be defined by equations with coefficients inZ, the quotient
G(R)/G(Z) of the set of real solutions of those equations by the set of integer
solutions becomes a fertile area for studying number-theoretic questions that are
at once of great significance and great difficulty. The subject brings to bear
linear algebraic groups, algebraic geometry, and representation theory of reductive
groups. Borel [1966] is an introductory article. The book Bailey–Knapp [1997] is a
collection of expository articles that introduce some of the goals and early methods.
In part these articles describe the Langlands program, a vast array of conjectures
and theorems that relate representation theory and Diophantine equations. For
more detail one may consult some of the articles in Borel–Mostow [1966] and
Borel–Casselman [1979].
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(1957), 85-177.

Bernstein, I. N., I. M. Gelfand, and S. I. Gelfand, Structure of representations generated
by vectors of highest weight,Funktsional’nyi Analiz i Ego Prilozheniya5 (1971),
No. 1, 1–9 (Russian). English translation:Functional Analysis and Its Applications
5 (1971), 1–8. (= Gelfand, I. M.,Collected Papers, Vol. II, pp. 556–563.)

Besse, A. L.,Einstein Manifolds, Springer-Verlag, New York, 1987.
Bianchi, L., Lezioni sulla Teoria dei Gruppi Continui Finiti di Transformazioni, Enrico

Spoerri, Pisa, 1903.
Birkhoff, Garrett, Representability of Lie algebras and Lie groups by matrices,Annals of

Math.38 (1937), 526–533.
Bochner, S., and J. von Neumann, Almost periodic functions in groups II,Trans. Amer.

Math. Soc.37 (1935), 21–50. (= Bochner,Collected Papers, Vol. II, American
Mathematical Society, Providence, R.I., 1992, pp. 255–285.) (= von Neumann,
Collected Works, Vol. II, pp. 528–557.)

Boerner, H.,Representations of Groups, North-Holland, Amsterdam, 1963. Second English
edition: 1970.

Borel, A., Représentations lin´eaires et espaces homog`enes kähleriens des groupes simples
compacts, unpublished notes, 1954. (= Oeuvres, Vol. I, pp. 392–396.)

Borel, A., Groupes lin´eaires alg´ebriques,Annals of Math.64 (1956), 20–82. (= Oeuvres,
Vol. I, pp. 490–552.)

Borel, A., Introduction to automorphic forms,Algebraic Groups and Discontinuous Sub-
groups, Proceedings Symposia in Pure Mathematics, Vol. 9, American Mathemati-
cal Society, Providence, R.I., 1966, pp. 199–210. (= Oeuvres, Vol. II, pp. 685–696.)

Borel, A., Linear Algebraic Groups, W. A. Benjamin, New York, 1969. Second edition:
Springer-Verlag, New York, 1991. Second edition reprinted: 1997.

Borel, A., Formes automorphes et s´eries de Dirichlet (d’apr`es R. P. Langlands), Expos´e 466,
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See also the list of Standard Notation on page xviii. In the list below, Latin,
German, and script letters appear together and are followed by Greek symbols,
special superscripts, and nonletters.

ad, 24, 30, 291
adg(k), 248
A, 374, 455, 481
Ai j , 157
AM , 481
An, 150, 155, 161, 180, 182, 205,

414, 684
Ap, 474
Asplit, 466
Ad, 3, 79, 291
Adg, 79
Aut g, 100
a, 370
a0, 386, 455, 478, 511
aM,0, 478
ap, 474
ap,0, 474
B, 506
B( · , · ), 36, 140, 251, 293, 369,

446
Bn, 150, 155, 161, 180, 182, 205,

414, 684
Bθ , 355, 448
(BC)n, 151, 185
b, 284, 325, 506
cλ
µν, 600

char(V ), 316
cβ, 389, 391
Cliff (Rn), 341
C∞(M), 69
Cn, 150, 155, 161, 180, 182, 205,

414, 685

Cα,β, 350
Cλ−δ, 285
c0, 501
d, 318
dl x, 532
dr x, 532
d(α), 242
dπ, 16
d�p, 69
dα, 390, 392
Dn, 150, 155, 161, 180, 182, 205,

414, 685
Derk b, 38
e, 29
ei , 187
ej , 124, 127, 129, 183
ei j , 70
eX , 6, 76, 77
eλ, 315
e∗, 81
expX, 6, 75, 76, 77
E I, 420, 423, 425, 707
E II, 416, 425, 708
E III , 416, 425, 513, 709
E IV, 420, 423, 425, 710
E V, 416, 425, 711
E VI, 416, 425, 712
E VII , 416, 425, 429, 513, 713
E VIII , 416, 425, 714
E IX, 416, 425, 715
E6, 180–182, 205, 208, 687
E7, 180–182, 205, 208, 688
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E8, 180–182, 205, 208, 689
Ei j , 53, 124
Eα, 140, 379
Eτ , 560
ẽ, 189
f, 29
fi , 187
F I, 416, 425, 429, 716
F II, 416, 425, 426, 429, 717
F, 466
F4, 177, 180, 182, 205, 207, 691
F(T ), 497
F, 189, 228
f̃, 189
gr A, 222, 223, 655
grϕ, 655
G, 416, 425, 718
G, 2, 69, 361, 446
G ′, 490
Ĝ, 562
G0, 623
0G, 453
G2, 151, 161, 176, 180, 182, 205,

209, 345, 692
Gc, 493
G ′

c, 493
GC, 437, 466
G/H, 77
(G, K , θ, B), 446
Gsplit, 466
Gss, 250, 442, 446
G̃, 88
GL(n, C), 1, 26, 616
GL(n, H), 111, 575
GL(n, R), 1, 26, 121, 553, 575
g, 3, 24, 69, 251
g0, 35, 251, 356, 446
g0,X , 134
(g0)λ, 455
(g0)(η), 480, 481
(g0)

C, 35
(g0, h0, �

+), 397
g j , 31, 617

gj , 31
gR, 35
gα, 140, 253, 370
[g, g], 30
g/a, 30
gl(n, C), 5
gl(n, H), 58, 61
gl(n, k), 26
gl(n, R), 5
h, 29
(h, e, f ), 620
hi , 187
H, 488
H(g), 542
Hc, 493
Hα, 140, 260
H, 57
H, 300
Hn, 308
HW , 301
HW

n , 308
h, 133, 140
h0, 147, 386, 457
h̃, 189
i ≤ I, 218
indG

H σ, 565
I, 223, 645
I ′, 651
I = (i1, . . . , ip), 218
Im,n, 59
Int g, 101
Intg(k), 248
J, 59, 214
Jn,n, 59
Jp, 93, 501
K , 116, 318, 362, 446
K C, 506
KM , 481
Ksplit, 466
k, 24, 33, 640
K, 33
k0, 359, 446
l, 155, 557, 563, 564
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l(w), 168, 206
lg(V ), 134
L , 338, 618
L(λ), 287
L2(G), 242
L2(G, V ), 563
L2(G, V, σ ), 564
l, 327, 330, 617
l0, 338
mω, 329
mλ(µ), 572, 611
M, 381, 456, 481
MM , 481
Mnm(C), 499
Mp, 474
Msplit, 466
M AN , 456, 474, 481
m, 376
m0, 455, 478, 486
mp, 474
mp,0, 474
N , 374, 455, 481
N−, 456
Ng(s), 29
NM , 481
Np, 474
Nα,β, 351
N , 301
n, 284, 325, 373
n−, 284
n0, 455, 478, 486
n

−
0 , 456

nM,0, 478
np, 474
np,0, 474
O(m, n), 115
O(n), 113, 235
p, 144, 153
P+, 506
P−, 506
P, 301
P(λ), 315, 572
P �, 588

P �
α1,...,αk

, 588
p+, 505
p−, 505
p0, 359, 446
q, 144, 153
Q, 474, 481
Q+, 315
q, 325
q−, 329
q0, 475, 478, 486
qp,0, 475
radC, 49
radg, 32
r, 557
Rg(V ), 134
R, 189
sα, 148, 260
sgnµ, 611
S(g), 222, 616, 645
Sn(E), 224, 616, 646
S̃n(E), 650
SL(n, C), 2, 111, 369, 371, 382,

475
SL(n, H), 115, 371, 382, 475
SL(n, R), 2, 115, 371, 382, 475
SO(m, n), 115, 372, 382, 575,

617, 635
SO(n), 2, 111, 235, 252, 253,

270–272, 277, 339, 570, 575,
581, 603, 606

SO(n, C), 113
SO∗(2n), 115, 517, 518, 575
Sp(m, n), 115, 575
Sp(n), 111, 113, 571, 575, 584,

605, 610
Sp(n, C), 113, 616
Sp(n, C) ∩ U (2n), 113, 253, 271
Sp(n, R), 115, 517, 518, 575
SU (m, n), 115, 371, 382, 499,

517, 632
SU (n), 2, 111, 234, 252, 271,

276, 340
SU (n, n) ∩ Sp(n, C), 517, 518
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SU ∗(2n), 115
sl(n, C), 5, 59, 124, 150, 280,

325, 340, 344, 684
sl(n, H), 59, 61, 417, 418, 423,

424, 697
sl(n, k), 27
sl(n, R), 5, 59, 398, 417, 418,

424, 428, 695, 696
slα, 281, 289
so(m, n), 59, 414, 419, 424, 513,

699, 700, 703, 704
so(n), 5, 58, 413
so(n, C), 59, 127, 129, 150, 209,

280, 339, 340, 343, 344, 684,
685

so∗(2n), 59, 414, 424, 426, 513,
705

sp(m, n), 59, 62, 414, 424, 701
sp(n), 58, 62, 413
sp(n, C), 59, 128, 150, 209, 685
sp(n, R), 59, 414, 424, 513, 702
su(m, n), 59, 398, 414, 422, 424,

513, 698
su(n), 5, 59, 413
su∗(2n), 61
T, 253, 466, 497
T (g), 214, 643
T k(g), 214, 643
Tn(g), 214
Tp(M), 69
t, 376
t0, 253, 386, 464, 497
tR, 260
tp,0, 475
U, 493
U (m, n), 575
U (n), 2, 113, 234, 569, 575, 577,

603, 605, 611, 632
U (g), 214
Un(g), 214
u, 327, 330, 617
u(m, n), 60
u(n), 5, 58

u∗(2n), 61
u−, 329, 330
u0, 353
V, 149
Vλ, 130, 276
V (λ), 285
V n, 298
V u, 331
w(eλ), 316
w0, 206
W, 163
W (G, A), 381, 456, 484
W (G, H), 489
W (G, T ), 261
W (g, h), 163
W (�), 163
W (�(g, t)), 261
W (�), 381, 456
Z , 361
Z(g), 290
ZG, 250
Zvec, 453
Zg, 30
Zg(s), 29
Zh∗

, 315
Z[h∗], 315
Z〈h∗〉, 315
α, 140
α1, . . . , αl , 155
β, 140
γ, 303
γ1, . . . , γs, 511
γ ′

n, 302
γα, 468, 469, 497
δ, 168, 284, 683, 686
δ( · ), 329
�, 140, 236
�+, 164
�(g, h), 140
�(t), 532
�( · ), 329
�K , 505
�n, 505
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ε(w), 316
θ, 354, 355, 360, 446
�, 362, 443, 449
ι, 214, 228, 640, 644, 646, 651,

652
κ(g), 542
λ, 279
λw, 300
µ ⊆ λ, 600
µ(g), 542
ξλ, 254, 264, 334
π1, 81
�j , 344, 683, 686
�, 157, 164
ρA, 540
σ, 225, 650
σ ′, 653
σn, 225
�, 370, 455
�+, 373, 455
τm
λ , 632

τn, 303
ϕλ, 279
�∗ω, 524
χλ, 303, 312
χ�, 242
ωj , 164, 409

�, 229, 293, 313, 499, 506
( · )∗, 57 (and xviii)
( · )c, 236, 238
( · )k, 34, 640
( · )K, 34
( · )t , 216
( · )⊥, 49
∗, 557
∂ϕ, 323
∂(p), 270
[ : ] , 561
[ · , · ] for elements, 4, 24
[ · , · ] for subsets, 24
〈 · , · 〉, 49, 144, 149, 260
⊕, 38, 103
⊕π , 39
×τ , 103
⊗k, 640
⊗, 237, 641
⊗̂, 576
| · |2, 148, 149
‖ · ‖, 238, 556, 600
‖ · ‖2, 243∫

M , 525, 526∧
(E), 651∧n
(E), 235, 651∧̃n
(E), 653
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abelian Lie algebra, 24, 91
abstract Cartan matrix, 158

irreducible, 159
reducible, 159

abstract Dynkin diagram, 162
abstract root system, 149

irreducible, 150
reduced, 149
reducible, 150

abstract Vogan diagram, 403
acts by automorphisms, 103
adjoint representation, 3, 24, 79, 291
Ado’s Theorem, 95, 99, 663
algebra, 24

associated graded, 222
Clifford, 341
exterior, 651
filtered associative, 656
graded associative, 656
Lie, 4, 24
linear Lie, 4, 26
quotient, 30
symmetric, 632, 645
tensor, 214, 644
universal enveloping, 214, 215
Weyl, 231

algebraically integral form, 265, 278
almost-complex structure, 94
alternating-tensor representation, 278, 340
analytic group, 12, 69
analytic manifold, 69
analytic mapping, 69
analytic subgroup, 71
analytically integral form, 264, 334
antisymmetrized tensors, 653
antisymmetrizer, 653
ascending chain condition, 656
associated graded algebra, 222
associated graded map, 225, 655
associated graded vector space, 655
associated split semisimple subgroup, 466
atlas, 12, 92
automorphic form, 780

automorphism, 100

backwards transpose, 209
base space, 82
bilinear form

invariant, 36, 446
nondegenerate, 49

Borel and de Siebenthal Theorem, 409
Borel subalgebra, 325, 345
Borel–Weil Theorem, 779
Borel–Weil–Bott Theorem, 779
bracket, 24

Lie, 4
branching system, 613
branching theorem, 568

Kostant’s, 572
Littlewood, 603, 605
Littlewood–Richardson, 601
rotation groups, 570, 581, 582, 606
seesaw, 773
Steinberg’s Formula, 611
tensor product, 597, 601
unitary groups, 569, 577, 609
unitary groups over quaternions, 571,

584, 609
Bruhat decomposition, 461

Campbell–Baker–Hausdorff Formula,
669

canonical coordinates
first kind, 76
second kind, 76

canonical generator, 286
canonical homomorphism, 189
canonical map, 214
Cartan composition, 341
Cartan decomposition, 360, 446

global, 362, 447
Cartan involution, 355, 446

global, 362, 449
Cartan matrix, 157

abstract, 158
irreducible abstract, 159
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reducible abstract, 159
Cartan subalgebra, 133, 254, 376, 457, 624

maximally compact, 386, 393
maximally noncompact, 386, 393

Cartan subgroup, 487
maximally compact, 488
maximally noncompact, 488

Cartan’s Criterion for Semisimplicity, 50
Cartan’s Criterion for Solvability, 50
Cartan–Helgason Theorem, 770
Casimir element, 64, 229, 293
Cauchy–Riemann equations, 92
Cayley number, 778
Cayley transform, 389, 390, 740
center of Lie algebra, 30
centralizer, 29
character, 242, 316

infinitesimal, 290, 312, 313
multiplicative, 254

chart, 11, 92
smoothly compatible, 12

Chevalley’s Lemma, 169
classical Lie algebra, 56
classical Lie group, 56, 110
classification, 180, 421
Clifford algebra, 341
closed linear group, 2, 69
cohomological induction, 776
commutator ideal, 30
commutator series, 31
compact dimension, 386
compact group, 234
compact Lie algebra, 248
compact real form, 353, 413
compact root, 390
compact symmetric space, 574, 575
compactly embedded, 248
completely reducible, 64, 296, 659
complex Lie algebra, 59
complex Lie group, 95
complex manifold, 92
complex orthogonal group, 113
complex root, 390
complex semisimple Lie group, 436
complex structure, 92

almost, 94
complexification, 34, 35, 407, 437, 466
conjugate representation, 234
conjugation, 35
contragredient representation, 234, 236, 238,

275, 339

convolution, 557
coset space, 77, 84
covering group, 85

universal, 88
Covering Homotopy Theorem, 82
covering map, 82
covering space, 82

universal, 83
critical point, 527
critical value, 527
cuspidal parabolic subgroup, 485

deck transformation, 83
decomposition

Bruhat, 461
Cartan, 360, 446
global Cartan, 362, 447
Harish-Chandra, 506
Iwasawa, 373, 374, 455
Jordan, 52
K AK , 459
Langlands, 478, 481
Levi, 660
polar, 117
restricted-root space, 370
root-space, 125, 140, 254
weight-space, 130

degree, 242
depth of a highest weight, 599
derivation, 24, 40, 100, 645, 663
determinant of Cartan matrix, 206,

267, 335
determinant of complex matrix, 60
determinant of quaternion matrix, 112
diagonable, xviii
diagram, 599

abstract Dynkin, 162
abstract Vogan, 403
Dynkin, 160
Ferrers, 599
Satake, 767
Vogan, 397

differential, 69
differential form

left invariant, 530
positive, 526
right invariant, 530

differential operator, left invariant, 230
dimension, 12, 92
direct product of Lie groups, 103
direct sum, external, 38
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direct sum, internal, 38
direct sum of Lie algebras, 38
Dixmier, 290
dominant, 168
double line, 176
dual vector space, 641
Dynkin diagram, 160

abstract, 162

elementary sequence, 41
end of branching system, 613
Engel’s Theorem, 46
enveloping algebra, 214, 215
equal rank, 574
equivalent, 62, 81, 82, 235, 239

unitarily, 559
evaluation, 323
evenly covered, 82
exact sequence, 317
Existence Theorem, 199, 403
exponential map, 75
exponential of matrix, 6, 76
exterior algebra, 651
extreme weight, 280

Ferrers diagram, 599
fiber-preserving map, 82
filtered associative algebra, 656
filtered vector space, 654
finite-dimensional representation, 234, 238
flag, invariant, 44
form

algebraically integral, 265, 278
analytically integral, 264, 334
compact real, 353, 413
inner, 430, 519
invariant bilinear, 36, 446
Killing, 36
left-invariant differential, 530
nondegenerate bilinear, 49
nonnegative integral, 599
positive differential, 526
quasisplit real, 430, 519, 694
real, 35
real split, 426
right-invariant differential, 530
split real, 352, 377

free Lie algebra, 188, 228
Frobenius reciprocity, 565
Fubini’s Theorem, 558, 564, 771
fundamental basis, 757

fundamental group, 81
fundamental representation, 344
fundamental weight, 344, 683, 686

Gelfand–Tsetlin basis, 773
general linear group, 1, 26
generalized weight space, 130, 276
generalized weight vector, 130, 276
global Cartan decomposition, 362, 447
global Cartan involution, 362, 449
good ordering, 505
graded associative algebra, 656
graded Lie algebra, 617, 626
graded vector space, 654
Gram–Schmidt process, 369
Greenleaf, 635
Gross–Wallach, 636

Haar measure, 239, 240, 531, 532, 535
Harish-Chandra class, 447
Harish-Chandra decomposition, 506
Harish-Chandra integration formula,

552
Harish-Chandra isomorphism, 303, 304
harmonic, 271, 339
Heisenberg Lie algebra, 28, 120, 121,

231
Helgason’s Theorem, 544, 596, 769
HermitianG/K , 499, 513, 617
highest weight, 279
highest weight module, 284
highest weight vector, 284
Hilbert Basis Theorem, 657
Hilbert’s fifth problem, 755
holomophically compatible, 92
holomorphic function, 92
holomorphic induction, 634
homogeneous ideal, 646
homogeneous space, 77
homogeneous tensor, 643
homomorphism, 18, 24, 72

local, 73

ideal, 24
commutator, 30
largest nilpotent, 48, 119
largest solvable, 32

imaginary root, 390
increasing tuple, 218
induced representation, 565

holomorphic, 634
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induction in stages, 567
infinitesimal character, 290, 312, 313
inner automorphism, 446
inner form, 430, 519
integral curve, 75
integral form

algebraically, 265, 278
analytically, 264, 334
nonnegative, 599

interleaves, 613
invariant bilinear form, 36, 446
invariant flag, 44
invariant inner product, 249
invariant subspace, 44, 62, 234, 239, 559
invariant theory, 780
invariants undern, 298
invariants underu, 331, 339
involution, 354

Cartan, 355, 446
global Cartan, 362, 449

irreducible abstract Cartan matrix, 159
irreducible abstract root system, 150
irreducible prehomogeneous vector space,

774
irreducible representation, 62, 239, 559

multiplicity of, 243, 561
isomorphic abstract Cartan matrices, 158
isomorphic abstract root systems, 150
Isomorphism Theorem, 196, 399
Iwasawa decomposition, 373, 374, 455

Jacobi identity, 4, 24
Jacobson–Morozov Theorem, 620
Jordan decomposition, 52

K AK decomposition, 459
Killing form, 36, 50, 249
Kostant Multiplicity Formula, 322
Kostant partition function, 315, 572
Kostant’s Branching Theorem, 572

Langlands decomposition, 478, 481
Langlands program, 767, 781
largest nilpotent ideal, 48, 119
largest solvable ideal, 32
lattice, 266
leading term, 657
left Noetherian, 227, 657
left-invariant differential form, 530
left-invariant differential operator, 230
left-invariant vector field, 25, 69

left-regular representation, 556, 563, 564
length function, 168, 206
Lepowsky, 585
level of a root, 155
level of branching system, 613
Levi decomposition, 660
Levi factor, 328
lexicographic ordering, 155
Lie algebra, 4, 24

1-dimensional, 27
2-dimensional, 27
3-dimensional, 28, 121
abelian, 24, 91
center, 30
classical, 56
compact, 248
complex, 59
direct sum, 38
free, 188, 228
graded, 617, 626
Heisenberg, 28, 120, 121, 231
linear, 4, 26
nilpotent, 28, 31, 46
of a Lie group, 25, 69, 70
of a Lie group of matrices, 4, 26
quasisplit, 430, 519, 694, 706
reductive, 56, 57, 249
semidirect product, 39
semisimple, 32, 50, 54
simple, 28, 32
solvable, 28, 31, 40, 50
split solvable, 28, 45

Lie bracket, 4, 24
Lie group, 12, 69, 751

classical, 56, 110
complex, 95
complex semisimple, 436
direct product, 103
nilpotent, 105, 107
reductive, 105, 446
semidirect product, 103
semisimple, 105, 110
solvable, 105
unimodular, 535

Lie subalgebra, 24
Lie’s Theorem, 42, 44
Lie’s Third Theorem, 662
linear algebraic group, 780
linear extension, 640
linear group

closed, 2, 69
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general, 1, 26
special, 2, 27, 111, 113

linear Lie algebra, 4, 26
Littlewood, 603, 605, 635
Littlewood–Richardson coefficients, 600
local homomorphism, 73
locally simply connected, 83
loop, 81
lower central series, 31
lower-dimensional set, 529

Malcev–Kostant, 623
manifold

analytic, 69
complex, 92
oriented, 523
real analytic, 99
smooth, 12, 69

Map-lifting Theorem, 82
matrix

abstract Cartan, 158
Cartan, 157
coefficient, 242
irreducible abstract Cartan, 159
orthogonal, 113
reducible abstract Cartan, 159
rotation, 2
skew Hermitian, 58
skew symmetric, 26, 58
symplectic, 113
trace zero, 27, 59
unitary, 2, 113

maximal compact subgroup, 362, 446
maximal torus, 252, 255
maximally compact Cartan subalgebra, 386,

393
maximally compact Cartan subgroup, 488
maximally noncompact Cartan subalgebra,

386, 393
maximally noncompact Cartan subgroup, 488
maximum condition, 656
measure zero, 527
minimal parabolic subalgebra, 475
minimal parabolic subgoup, 481
modular function, 532
multiplication-by-i mapping, 93
multiplicative character, 254
multiplicity

of a weight, 322, 612
of an irreducible representation, 243, 561

Murnaghan, 570

n-fold tensor product, 643
natural, 642
Newell’s Modification Rules, 603
nilpotent element, 620
nilpotent Lie algebra, 28, 31, 46
nilpotent Lie group, 105, 107
nilpotent radical, 328
Noetherian, 227, 657
noncompact dimension, 386
noncompact Riemannian dual, 575
noncompact root, 390
nondegenerate bilinear form, 49
nonnegative integral form, 599
normalizer, 29

octonion, 778
Operation #1, 171
Operation #2, 171, 173
order of Weyl group, 207
ordering

good, 505
lexicographic, 155
simple, 155, 217, 648

orientation preserving, 529
oriented, 523
orthogonal group, 26, 113

complex, 113
orthogonal matrix, 113
oscillator group, 120
outer tensor product, 576

parabolic subalgebra, 325, 475
minimal, 475

parabolic subgroup, 481
cuspidal, 485
minimal, 481

parabolic type, 628
partition function, 315, 572, 588
path, 81
Path-lifting Theorem, 82
pattern of Young tableau, 613
Peter-Weyl Theorem, 245
Poincaré–Birkhoff–Witt Theorem, 188,

217
polar decomposition, 117
polydisc, 92
polynomial representation, 599
positive chart, 524
positive differential form, 526
positive number, xviii
positive root, 125, 154, 481
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positivity, 154
prehomogeneous vector space, 616

irreducible, 774
parabolic type, 628
regular, 775

Principal-axis Theorem, 210
pullback, 524

quasisplit Lie algebra, 430, 519, 694, 706
quasisplit real form, 430, 519, 694
quaternion, 57
quaternionicG/K , 694, 706, 779
quotient algebra, 30
quotient group, 77
quotient map, 77, 84
quotient representation, 44
quotient space, 77, 84

radical, 32, 49
nilpotent, 328

rank, 138, 254, 376, 490
equal, 574
real, 424, 470

real form, 35
compact, 353, 413
quasisplit, 430, 519, 694
split, 352, 377, 426

real rank, 424, 470
real-analytic function, 98
real-analytic manifold, 99
reduced abstract root system, 149
reduced root, 152, 185
reducible abstract Cartan matrix, 159
reducible abstract root system, 150
reductive Lie algebra, 56, 57, 249
reductive Lie group, 105, 446
reflection, root, 148, 260
regular element, 134, 490, 547
regular prehomogeneous vector space, 775
representation, 41, 130, 274

1-dimensional, 250
adjoint, 3, 24, 79, 291
alternating-tensor, 278, 340
completely reducible, 64, 296
conjugate, 234
contragredient, 234, 236, 238, 275, 339
finite-dimensional, 234, 238
fundamental, 344
induced, 565
irreducible, 62, 239, 559
left regular, 556, 563, 564

multiplicity of an irreducible, 243,
561

of sl(2, C), 62, 64, 120
polynomial, 599
quotient, 44
right regular, 557
spin, 343
standard, 234, 235
trivial, 234
unitary, 239, 556

restricted root, 370, 455
simple, 427

restricted weight, 544
restricted-root space, 370
restricted-root space decomposition,

370
restricted-root vector, 370
restricted-weight space, 544
restricted-weight vector, 544
restriction in stages, 566
Riemannian dual, noncompact, 575
right-invariant differential form, 530
right-regular representation, 557
root, 124, 140, 191, 254, 481

compact, 390
complex, 390
imaginary, 390
noncompact, 390
of (g, a), 370, 455, 481
positive, 125, 154
real, 390
reduced, 152, 185
reflection, 148, 260
restricted, 370, 455
simple, 155
simple restricted, 427
space, 191, 481
string, 144, 152
system

abstract, 149
irreducible abstract, 150
reduced abstract, 149
reducible abstract, 150

vector, 140, 254
root-space decomposition, 125, 140, 254
rotation group, 2, 111
rotation matrix, 2

Sard’s Theorem, 527
Satake diagram, 767
Schmid, 634
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Schur orthogonality relations, 241
Schur’s Lemma, 65, 240, 275
Second Isomorphism Theorem, 31
seesaw branching, 773
seesaw pair, 773
semidirect product

external, 39
internal, 38
of Lie algebras, 39
of Lie groups, 103

semisimple Lie algebra, 32, 50, 54
semisimple Lie group, 105, 110

complex, 113, 436
separable topological group, 12, 83
Serre relations, 188, 189
simple Lie algebra, 28, 32
simple ordering, 155, 217, 648
simple restricted root, 427
simple root, 155
simple system, 164, 381
simply connected, 74, 81

locally, 83
singular element, 490
skew-Hermitian matrix, 58
skew-symmetric matrix, 26, 58
sl2 triple, 620
smooth curve, 2
smooth function, 12
smooth manifold, 12, 69
smooth mapping, 69
smooth vector field, 25, 69

left invariant, 25, 69
smoothly compatible, 12
solvable Lie algebra, 28, 31, 40, 50
solvable Lie group, 105
special linear group, 2, 27, 111, 113
special unitary group, 2, 111
spherical function, 763
spin representation, 343
split component, 453
split real form, 352, 377, 426
split-solvable Lie algebra, 28, 45
standard generators, 187
standard representation, 234, 235
Steinberg’s Formula, 611
string containing, 144, 152
strong continuity, 556
strongly orthogonal, 396
subalgebra, 24

Borel, 325, 345
Cartan, 133, 254, 376, 457, 624

maximally compact Cartan, 386, 393
maximally noncompact Cartan, 386,

393
minimal parabolic, 475
parabolic, 325, 475

subgroup
analytic, 71
associated split semisimple, 466
Cartan, 487
cuspidal parabolic, 485
maximal compact, 446
maximally compact Cartan, 488
maximally noncompact Cartan, 488
minimal parabolic, 481
parabolic, 481

support, 315
symbols of a highest weight, 601
symmetric algebra, 632, 645
symmetric space, 763, 780

compact, 574, 575
symmetrization, 225
symmetrized tensors, 650
symmetrizer, 650
symplectic group, 27, 113
symplectic matrix, 113

tangent space, 69
tangent vector, 69
Taylor’s theorem, 77
tensor algebra, 214, 644
tensor product

of linear maps, 34
of polynomial representations, 600, 601
of representations, 237, 274, 597, 611

outer, 576
of vector spaces, 33, 640

n-fold, 643
triple, 641

Theorem of the Highest Weight, 279, 335
topological group, 2

compact, 234
separable, 12, 83

torus, 91, 251
maximal, 252, 255

trace zero matrix, 27, 59
transformation group, 751
transpose, xviii, 216
triality, 520, 769
triple line, 176
triple point, 176
triple tensor product, 641
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trivial representation, 234

unimodular Lie group, 535
unital, 216, 656
unitarily equivalent, 559
unitary group, 2, 113

over quaternions, 112, 113
special, 2, 112

unitary matrix, 2, 113
unitary operator, 556
unitary representation, 239, 556
unitary trick, 314, 443
universal covering group, 88
universal covering space, 83
universal enveloping algebra, 214, 215
universal mapping property, 33, 215, 228,

286, 640, 641, 644, 645, 646, 651

Vandermonde determinant, 340, 621, 730
Vandermonde matrix, 311, 730
vector field

left invariant, 25, 69
smooth, 25, 69

Verma module, 285, 341
Vinberg’s Theorem, 628
Vogan diagram, 397

abstract, 403

weight, 130, 159, 177, 276, 284
extreme, 280
fundamental, 344, 683, 686
highest, 279
multiplicity of, 322, 612
restricted, 544
space, 276, 284

generalized, 130, 276
vector, 276, 284

generalized, 130, 276
highest, 284

weight-space decomposition, 130
Weyl, 569
Weyl algebra, 231
Weyl Character Formula, 319, 338, 551
Weyl denominator, 318
Weyl Denominator Formula, 319
Weyl dimension formula, 323
Weyl group, 163, 261, 456, 484, 489

order of, 207
Weyl Integration Formula, 550
Weyl’s Theorem, 268
Weyl’s unitary trick, 314, 443

Young tableau, 613

Zhelobenko, 571



Corrections as of June 30, 2023, to
Lie Groups Beyond an Introduction, Second Edition

The following is a list of all corrections and appropriate remarks reported by June
30, 2023, concerning Lie Groups Beyond an Introduction, Second Edition. Among
them are a number of significant ones pointed out by Sigurdur Helgason and Meyer
Landau. The list is in three parts: “Short Corrections,” “An Addition” for page
248, and “A Long Correction” for pages 769–770.

These corrections have not been implemented in pages 1–812 of Lie Groups Beyond
an Introduction, Digital Second Edition.

Short Corrections

Page 6, line �2. Change “
1X

n=0

” to “
1X

N=0

”.

Page 7, line �1. Change “
1X

N=0

” to “
1X

N=1

” in two places.

Page 42, line 13. Change “Proposition 1 ” to “Proposition 1.10 ”.

The next correction is optional, since it amounts to the insertion of two remarks
that are otherwise not needed in the text.

Page 50, insert the following after the proof of Proposition 1.43:

“Remark. Whether or not C is nondegenerate, it is still true that

dimU + dimU?
� dimV.

In fact, going over the proof of Proposition 1.43 shows that the equality ker = U?

is still valid. Hence

dimV = dim(domain( )) = dim(ker( )) + dim(image( ))

 dimU? + dimU⇤ = dimU? + dimU,

and the inequality follows.”

Also insert the following after the proof of Corollary 1.44:

“Remark. Whether or not C is nondegenerate, it is still true that V = U �U?

if and only if C|U⇥U is nondegenerate. In fact, if V = U�U?, then U\U? = 0 and
the equality U \ U? = rad(C|U⇥U ) of (1.42) shows that C|U⇥U is nondegenerate.
Conversely if C|U⇥U is nondegenerate, then U \ U? = 0 by (1.42). From the
previous remark we see that

dim(U + U?) = dimU + dimU?
� dim(U?

\ U) � dimV � 0 = dimV,

and thus U + U? = V . Hence V = U � U?.”
813
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Page 56, line 12. Change “of the maximum possible dimension ” to “with the
maximum possible dimension ”.

Page 64, line 2. Change “⇡(sl(2,C) ” to “⇡(sl(2,C)) ”.

Page 72, line �7. Change “the image of � ” to “the image of the identity
component of G under � ”.

Page 90, last line of statement of Proposition 1.101. Change “D of G ” to
“D of eG ”.

The next correction is optional, since it amounts to the insertion of a remark that
is otherwise not needed in the text.

Page 110, insert the following after the end of the proof of Proposition 1.43:

“The above argument, starting with the words To complete the proof of the theorem
proves that the exponential map is everywhere regular when the Lie algebra is
nilpotent. An alternative approach to this question is to establish the following
general formula for the di↵erential of the exponential map:

(d exp)X = d(LexpX)1 �
1� e�adX

adX
.

When the Lie algebra is nilpotent, each adX is nilpotent. Consequently 1�e�adX

adX
is everywhere nonsingular, and the di↵erential is everywhere one-one onto.”

Page 150, table (2.43). With An, change the condition “
P

aiei = 0” to “
P

ai = 0”.

Page 153, line �4. Change “strict equality ” to “strict inequality ”.

Page 172, line 15. Change subscript “↵i+1 ” to subscript “↵j ”.

Page 232, line 13. Change “H(V ) of ” to “H(V ) on ”.

Page 237, line 10. Change “which another element ” to “which is another
element ”.

Page 241, line 10. Change “V ” to “V 0 ” at the end of the line.

Page 248, line 13. Conrado Lacerda has pointed out that the words “It follows
from Theorem 4.20 that” need some elaboration. Thus change “Theorem 4.20 ”
on line 13 to “Corollary 4.21a ”, and insert the statement and proof of Corollary
4.21a, which are given in the section “An Addition” later in this list of corrections,
between lines 3 and 4 on page 248.

Page 259, line �5. Change “of A0, some ” to “of A, some ”.

Page 267. Replace the proof of Proposition 4.67 by the following:
“Proof. Let ' : eG ! G be the quotient homomorphism, let Z be the kernel, let

eT be a maximal torus of eG, and let T = '( eT ). Corollary 4.47 shows that '
��eT has

kernel Z. Consequently the mapping '⇤ of the group bT of multiplicative characters

of T into the group
beT given by '⇤(�) = � � ' is a one-one homomorphism such

that the index of '⇤(T ) in
beT is at most the order |Z| of Z. On the other hand,
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if � is any member of the group bZ of multiplicative characters of Z, then some
multiplicative character ⌧ of eT has ⌧

��
Z

= �. (This can be seen as follows: The

set of restrictions ⌧
��
Z

is a subgroup bZ1 of bZ. If bZ1 is a proper subgroup, then its
linear span is a set of functions on Z of dimension < |Z|. However, the members

of
beT separate points of eT , and the Stone–Weierstrass Theorem implies that their

linear span, when restricted to any finite subset of eT , yields all functions on that

set.) Consequently the index of '⇤( bT ) in
beT is at least |Z|. Therefore it equals

|Z|. Application of Proposition 4.58 translates this conclusion into the desired
conclusion about analytically integral forms.”

Page 278, line 5. Change “(x2j�1 ± x2j) ” to “(x2j�1 ± ix2j) ”.

Page 283, line 5. Change “'(U(g)) ” to “('� '0)(U(g)) ”.

Page 283, line 6. Change “' ” to “'� '0 ”.

Page 292, proof of Proposition 5.21. At the end of the second display, change the
period to a comma. Change “Then (a) follows from Proposition 1.91, and (b)
follows from Corollary 1.85 ” to “the second inequality following from Proposition
1.91. This proves (a), and (b) follows from Corollary 1.85 ”.

Page 295, line �5. Change “(Proposition 5.1) ” to “(in the formulation of
Corollary 5.2) ”.

Page 300, line �5. Change “�w(H) = �(Hw�1

)) ” to “(w�)(H) = �(w�1H)) ”.

Page 305, line 6. Change “is related in ” to “is related to ”.

Page 306, line 2. Change the displayed line from
“Hm

� Er1
�1

· · ·Erk
�k mod Um+

P
rj�1(g) ” to “Hm

� Er1
�1

· · ·Erk
�k

mod Um+
P

rj�1(g) ”.

Page 306, line �4. Change “��n ” to “��k ”.

Page 311, line �4. Change “nHn�1
⌫ H⌫0 to “nHn�1

⌫ H⌫0 + CHn
⌫0 , ”, and insert on

the next line at the left margin the line “where C is the constant
Pn

j=0 cjj
n ”.

Page 312, line �1. Change “HW ” to “Z(g) ”.

Page 313, line �6. Change “|�� �|2 � |�|2 ” to “|�+ �|2 � |�|2 ”.

Page 314, line �10. Change “1.65 ” to “1.66 ”.

Page 316, line 8. Change “⌫ � �0 � µ0 ” to “�0 + µ0 � ⌫ ”.

Page 316, line 10. Change “P(⌫ � �0 � µ0) ” to “P(�0 + µ0 � ⌫) ”.

Page 318, display (5.70). Change “(V1 ⌦ V2) ” to “char(V1 ⌦ V2) ”.

Page 321, line 11. Change “image' ” to “'(V (µ)m)µ�� ”.

Page 323, line 5. Change “For H 2 h⇤ ” to “For H 2 h ”.

Page 336, paragraph 5, line 1. Change “Let eG be the universal covering group of
G ” to Let eG be the universal covering group of G, and identify the Lie algebra of
eG with the Lie algebra g0 of G via the di↵erential of the covering map.”

Page 355, line 4. Change “Let B be ” to “Let g0 be a real semisimple Lie algebra,
and let B be ”.
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Page 355, line 11. Change period to comma at the end of the display, and add
afterward the text “the inequality being strict if X 6= 0.”

Page 366, line 2. Change “Because of (6.37) ” to “Because of (6.38) ”.

Page 379, between the statement of Proposition 6.52 and the proof. Insert the
following:

“Remark. In (b) the existence of a restricted root is actually equivalent with
the existence of a Lie subalgebra of g isomorphic to sl(2,R). Indeed, if there is
no restricted root, then a = 0. Thus p = 0 and g = k. By Proposition 6.28, g
is isomorphic to a Lie subalgebra of some so(n). An analytic subgroup of SO(n)
whose Lie algebra is isomorphic to sl(2,R) would have to be a closed subgroup of
the compact group SO(n) by Proposition 7.9 in the next chapter, and there is no
such subgroup.”

Page 455, line 4 of statement of Proposition 7.29. Change “k 2 Kss ” to
“k 2 (K \Gss) ”.

Page 463, line 8 of “Proof of Existence in Theorem 7.40.” Change “ a0 �m0 ” to
“ a0 � n0 ”.

Page 488, proof of Proposition 7.90a. Change this so as to read:
“(a) If h0 is maximally noncompact, then a0 is a maximal abelian subspace of
p0, and h0 = a0 � t0, where t0 = Zk0(a0). If M = ZK(a0) as in Section 5, then
Proposition 7.33 gives G = MG0, and Proposition 7.49 gives M = ZM (t0)M0. The
Cartan subgroup H is reductive and thus has the form H = ZG(a0) \ ZG(t0) =
MA\ZG(t0). Intersecting both sides with K gives H\K = M \ZK(t0) = ZM (t0).
Substituting for ZM (t0) into the formula for M and using the result in the formula
for G gives G = MG0 = ZM (t0)M0G0 = (H \K)G0, and (a) follows.”

Page 495, last paragraph. Replace this with:
“We are left with proving that any regular element X0 of h has ZGc(X0) = Hc.
Let x 2 Gc satisfy Ad(x)X0 = X0. The Bruhat decomposition of Gc given
in Theorem 7.40 shows that there exists an element s in NK(a) with x in the
MAN double coset MANsMAN within G. Write x = (m1a1n1)s(n2a2m2).
Then Ad(m1a1n1)Ad(s)Ad(n2a2m2)X0 = X0, and Ad(s)Ad(n2a2m2)X0 =
Ad(m1a1n1)�1X0. Since Gc is complex, M and A fix X0, and thus Ad(n�1

1 )X0 =
Ad(s)Ad(n2)X0. Theorem 1.127 shows that exp carries n0 onto N , and hence
Ad(n1)�1X0 is a member of X0 + n0. Similarly Ad(s)Ad(n2)X0 is a member of
Ad(s)X0 + Ad(s)n0. Equating the h components of these two expressions gives
Ad(s)X0 = X0. The regularity of X0 implies that no root vanishes on X0, and it
follows that Ad(s) acts as the identity on X0. In other words, x is in MAN . Say
that x = n0a0m0. From Ad(x)X0 = X0, we obtain Ad(n)X0 = X0. On the left side
we write n as an exponential and expand Ad(n) in series. Every root is nonzero on
X0 by regularity, and thus the exponential series collapses to its constant term. In
other words, n = 1, and x is in the subgroup MA = H, as required.”

Page 526, line 16. Change “
R
M f(x) du!(x) ” to “

R
M f(x) dµ!(x) ”.

Page 573, equation (9.21). Change “
X

�2⌃

” to “
Y

�2⌃

”.
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Page 573, equation (9.23). Change “
X

�2⌃

” to “
Y

�2⌃

”.

Page 615, lines 2–3. Change “finite-dimensional vector V ” to “finite-dimensional
vector space V ”.

Page 615, line �6. Change “respresentations” to “representations”.

Page 641, line 11. Change “Hom(k, F ) ” to “Homk(k, F ) ”.

Page 641, line 13. Change “spaces, Suppose ” to “spaces. Suppose ”.

Page 703, formula for ⌃. Change “Bp ” to “B2p+1 ”, and change “Dp ” to
“D2p+1 ”.

Page 704, formula for ⌃. Change “Bp ” to “B2p ”, and change “Dp ” to “D2p ”.

Page 763, line 4–6. Change the sentence “Goto [1948] proved that a semisimple
matrix group is a closed subgroup of matrices, and the proof of Theorem 4.29 makes
use of some of Goto’s ideas ” to
“Goto [1948] proved that a semisimple matrix group is a closed subgroup of matri-
ces, and the proof of Theorem 4.29 makes use of some of Goto’s ideas; this theorem
had been proved earlier in a slightly di↵erent way by Yosida [1938] ”.

Page 767, lines 13–14. Change “Helgason [1978] gives a proof of the classification
that is based on classifying automorphisms in a di↵erent way ” to
“Helgason [1978] gives a proof of the classification of real semisimple Lie algebras
that establishes and applies the classification of automorphisms of finite order for
complex semisimple Lie algebras as given by Kac [1969] ”.

Pages 769–770. A long correction to the Historical Notes appears below in the
section “A Long Correction.”

Add the following two items to the section of References:

Kac (Kats), V. G., Automorphisms of finite order of semisimple Lie algebras,
Funktsional’nyi Analiz i Ego Prilozheniya 3 (1969), No. 3, 94–96 (Russian).
English translation: Functional Anal. and Its Appl. 3 (1969), 252–254.

Yosida, K., A theorem concerning the semi-simple Lie groups, Tohoku Math. J. 44
(1938), 81–84.
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An Addition

On page 248, between lines 3 and 4, insert the following corollary, remarks, and
proof.

Corollary 4.21a (Approximation Theorem). If G is a compact group, then
the linear span of all matrix coe�cients for all finite-dimensional irreducible repre-
sentations of G is uniformly dense in the set C(G) of continuous complex-valued
functions on G.

Remarks. In the set C(G), let us write khksup for the maximum value of |h(x)|
for x 2 G. The set C(G) becomes a metric space if we define the distance between
two continuous functions h1 and h2 to be kh1�h2ksup. Convergence of a sequence in
C(G) is uniform convergence of the sequence of functions. The uniform continuity
of a member h of C(G) amounts to the fact that the function y 7! h(y�1x) of G
into C(G) is continuous.

Proof. If h is in C(G) and f is in L1(G), then the function

F (x) =
R
G h(xy�1)f(y) dy

is continuous as a consequence of the estimate

|F (x1)� F (x2)|  sup
y

|h(x1y
�1)� h(x2y

�1
|

and the uniform continuity of h. It is called the convolution of h and f , and we
write h ⇤ f for it.

Let ✏ > 0 and h continuous be given. For each neighborhood N of the identity,
let fN be the characteristic function of N divided by the measure |N | of N . Since
fN is nonnegative and has integral 1, |(h ⇤ fN )(x)� h(x)| is

=
��|N |

�1
R
N h(xy�1) dy � h(x)

�� = |N |
�1

�� R
N (h(xy�1)� h(x)) dx

��

 |N |
�1

R
N |h(xy�1)� h(x)| dx  supy2N |h(xy�1)� h(x)|.

The uniform continuity of h implies that the right side can be made small for all x
by choosing N large enough. We can thus choose N such that kh ⇤ fN � hksup  ✏.

With N fixed and satisfying this condition, choose by the Peter-Weyl Theorem
a finite linear combination m of matrix coe�cients such that km� fNk2  ✏/khk2.
Then

kh ⇤m� hksup  kh ⇤ (m� fN )ksup + kh ⇤ fN � hksup

 khk2km� fNk2 + ✏  2✏,

the next-to-last inequality following from the Schwarz inequality.
Going over the proofs of Lemmas 4.18 and 4.19 and replacing k · k2 everywhere

by k · ksup, we see that if the given L2 function in the lemmas is continuous, then
the lemmas remain valid with uniform convergence in place of L2 convergence.

The left translates of m all lie within a finite-dimensional vector subspace V
of C(G), and the modified Lemma 4.19 says that h ⇤ m is the uniform limit of a
sequence of functions in V . Since V is finite-dimensional, this limit is in V . Thus
h ⇤m is a finite linear combination of matrix coe�cients that is uniformly within
2✏ of h, and Corollary 4.21a is proved.
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A Long Correction

Page 769, last two lines, and page 770, lines 1–18. Change

“Theorem 8.49, called Helgason’s Theorem in the text, is from Helgason [1970],
§III.3. Warner [1972a], p. 210, calls the result the “Cartan–Helgason Theorem.”
In fact at least four people were involved in the evolution of the theorem as it is
stated in the text. Cartan [1929b], §§23–32, raised the question of characterizing the
irreducible representations of G with a nonzero K fixed vector, G being a compact
semisimple Lie group and K being the fixed subgroup under an involution. His
answer went in the direction of the equivalence of (a) and (c) but was incomplete.
In addition the proof contained errors, as is acknowledged by the presence of
corrections in the version of the paper in his Œuvres Complètes. Cartan’s work
was redone by Harish-Chandra and Sugiura. Harish-Chandra [1958], §2, worked in
a dual setting, dealing with a noncompact semisimple group G with finite center
and a maximal compact subgroup K. He proved that if ⌫ is the highest restricted
weight of an irreducible finite-dimensional representation ofG with aK fixed vector,
then h⌫,�i/|�|2 is an integer � 0 for every positive restricted root. Sugiura [1962]
proved conversely that any ⌫ such that h⌫,�i/|�|2 is an integer � 0 for every positive
restricted root is the highest restricted weight of some irreducible finite-dimensional
representation of G with a K fixed vector. Thus Harish-Chandra and Sugiura
together completed the proof of the equivalence of (a) and (c). Helgason added the
equivalence of (b) with (a) and (c), and he provided a geometric interpretation of
the theorem. ”

to

“Theorem 8.49, called Helgason’s Theorem in the text, is from Helgason [1970],
§III.3, and the proof in the text is substantially unchanged from Helgason’s. Inspec-
tion of the proof shows that a version of the theorem remains valid for the compact
form U of G relative to GC, as described in Proposition 7.15: if a finite-dimensional
representation of U is given, then the equivalence of (a), (b), and (c) in Theorem
8.49 is still valid; however, the converse assertion that produces a representation
requires a further hypothesis, such as simple connectivity of U , as examples with
U = Adsu(3)(SU(3)) and K = Adsu(3)(SO(3)) show. As a result of the attribution
of Warner [1972a], p. 210, the direct part of the theorem, i.e., the equivalence of (a),
(b), (c) when a representation is given, is sometimes called the “Cartan–Helgason
Theorem.” The inclusion of Cartan’s name is based on work in Cartan [1929b],
§§23–32, which raised the question of characterizing the irreducible representations
of U with a nonzero K fixed vector, U being a compact semisimple Lie group and
K being the fixed subgroup under an involution. Cartan’s answer went in the
direction of the equivalence of (a) and (c) but was incomplete. In addition, the
proof contained errors, as is acknowledged by the presence of corrections in the
version of the paper in Cartan’s Œuvres Complètes. Cartan’s work was addressed
anew by Harish-Chandra and Sugiura. Harish-Chandra [1958], Lemma 1, worked
with a noncompact semisimple group G with finite center and a maximal compact
subgroup K. He proved that the highest weight of an irreducible finite-dimensional
representation of G with a K fixed vector vanishes on tp. Sugiura [1962] worked
with a simply connected compact semisimple group U and the fixed subgroup K
under an involution. He announced for that setting, on the basis of what he later
acknowledged to be an incomplete case-by-case analysis, the equivalence of (a)
and (c) for the highest weight of an irreducible finite-dimensional representation
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of U with a K fixed vector. Thus Helgason’s contribution was to introduce the
equivalence of (b) with (a) and (c), supply proofs for all the equivalences, and add
the converse result; in addition, Helgason provided a geometric interpretation of
the theorem”.
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