Two Longer Corrections to Elliptic Curves from Langlands

First Correction

Difficulty. The use of Proposition 5.5 to obtain Proposition 5.6 is inadequate if the reduction map r_{p} on the set of distinct points among $\{P, Q, P Q\}$ is not oneone. For example, if P, Q, and $P Q$ are distinct and $r_{p}(P)=r_{p}(Q)=r_{p}(P Q)$, then Proposition 5.5 shows that the intersection multiplicity for $r_{p}(P)$ is ≥ 1, but it does not produce either a second or a third point on r_{p} of the line. Thus we cannot obtain the desired conclusion that $r_{p}(P) r_{p}(P)=r_{p}(P)$, i.e., that $r_{p}(P)$ has intersection multiplicity 3 . What is needed is an improved version of Proposition 5.5 and then a little extra argument in Proposition 5.6 to show that all cases have been handled. The improved version below is actually more than is needed; only the cases $k \leq 2$ are needed with elliptic curves, and a page of matrix calculations are unncessary for such cases. However, the principle is a little clearer with the version of Proposition 5.5 given below.

Correction. Change Proposition 5.5, its proof, and the proof of Proposition 5.6 as follows.

Proposition 5.5. Suppose $F \in \mathbb{Q}[x, y, w]_{m}$ is a plane curve, $L \in \mathbb{Q}[x, y, w]_{1}$ is a line, and $P_{0}, P_{1}, \ldots, P_{k}$ are $k+1 \geq 1$ distinct points on L having the same reductions modulo p. If F_{p} and L_{p} are reductions of F and L modulo p, then the intersection multiplicities satisfy

$$
\begin{equation*}
\min \left(m, i\left(P_{0}, L, F\right)+k\right) \leq i\left(r_{p}\left(P_{0}\right), L_{p}, F_{p}\right) \tag{5.6}
\end{equation*}
$$

Proof. Without loss of generality, we may assume for $0 \leq i \leq k$ that $\left(x_{i}, y_{i}, w_{i}\right)$ is a p-reduced representative of P_{i}. Scaling by a common denominator prime to p, we may assume for each $i \geq 0$ that x_{i}, y_{i}, w_{i} are all integers. The condition that $r_{p}\left(P_{0}\right)=r_{p}\left(P_{i}\right)$ means for each $i \geq 1$ that there is an integer a_{i} prime to p with $\left(x_{0}, y_{0}, w_{0}\right) \equiv a_{i}\left(x_{i}, y_{i}, w_{i}\right) \bmod p$. Changing notation, we may assume for $i \geq 0$ that $\left(x_{i}, y_{i}, w_{i}\right)$ is a p-reduced representative of P_{i} with integer entries and that $\left(x_{i}, y_{i}, w_{i}\right) \equiv\left(x_{0}, y_{0}, w_{0}\right) \bmod p$ for $i \geq 1$.

Fix a point P^{\prime} of L with $r_{p}\left(P^{\prime}\right) \neq r_{p}\left(P_{0}\right)$, and let $\left(x^{\prime}, y^{\prime}, w^{\prime}\right)$ be a p-reduced representative of it with integer coordinates. In preparation for p reduction, we may assume that F has been scaled so that all its coefficients are integers and at least one of its coefficients is prime to p. Form the polynomial in $\mathbb{Z}[t]$ given by

$$
\psi(t)=F\left(x_{0}+t x^{\prime}, y_{0}+t y^{\prime}, w_{0}+t w^{\prime}\right)=t^{r} \widetilde{F}_{r}+\cdots+t^{m} \widetilde{F}_{m}
$$

with $\widetilde{F}_{r} \neq 0$. By Proposition 2.9 the intersection multiplicity $i\left(P_{0}, L, F\right)$ equals r. Recomputing $\psi(t)$ modulo p (i.e., in $\mathbb{Z}_{p}[t]$) and applying Proposition 2.9 again, we see that we are done if $k=0$ and that it is enough to show that p divides the integers $\widetilde{F}_{r}, \ldots, \widetilde{F}_{\min (m, r+k-1)}$ if $k \geq 1$. For the remainder of the proof, there is no loss of generality in assuming that $1 \leq k \leq m-r+1$.

For $i \geq 1$ it follows from the facts that $P_{i} \neq P^{\prime}$ and that P_{i} is on L that there exists a unique $t_{i} \in \mathbb{Q}$ such that $\left[\left(x_{i}, y_{i}, w_{i}\right)\right]=\left[\left(x_{0}+t_{i} x^{\prime}, y_{0}+t_{i} y^{\prime}, w_{0}+t_{i} w^{\prime}\right)\right]$. Since P_{0}, \ldots, P_{k} are distinct, the rationals t_{1}, \ldots, t_{k} are distinct and nonzero. We shall derive some properties of the numbers t_{i}. Let us write

$$
\begin{array}{r}
\left(x_{i}, y_{i}, w_{i}\right)=c\left(x_{0}+t_{i} x^{\prime}, y_{0}+t_{i} y^{\prime}, w_{0}+t_{i} w^{\prime}\right) \\
\hline
\end{array}
$$

for some nonzero $c \in \mathbb{Q}$. For each $i \geq 1$, the fact that $r_{p}\left(P_{i}\right) \neq r_{p}\left(P^{\prime}\right)$ implies that some 2 -by- 2 determinant from two of the coordinates of $\left(x_{i}, y_{i}, w_{i}\right)$ and $\left(x^{\prime}, y^{\prime}, w^{\prime}\right)$ is $\not \equiv 0 \bmod p$. Without loss of generality, suppose that these coordinates are the first two, so that $x_{i} y^{\prime}-y_{i} x^{\prime} \not \equiv 0 \bmod p$. Since $c \neq 0$, the equations $x_{i}=c\left(x_{0}+t_{i} x^{\prime}\right)$ and $y_{i}=c\left(y_{0}+t_{i} y^{\prime}\right)$ together imply that $x_{i}\left(y_{0}+t_{i} y^{\prime}\right)=y_{i}\left(x_{0}+t_{i} x^{\prime}\right)$, hence that

$$
t_{i}=\frac{y_{i} x_{0}-x_{i} y_{0}}{x_{i} y^{\prime}-y_{i} x^{\prime}}
$$

The fact that $x_{i} y^{\prime}-y_{i} x^{\prime} \not \equiv 0 \bmod p$ implies that t_{i} is a p-integral member of \mathbb{Q}, and the fact that $\left(x_{i}, y_{i}, w_{i}\right) \equiv\left(x_{0}, y_{0}, w_{0}\right) \bmod p$ implies that the numerator is divisible by p. In other words the p-adic norm satisfies $\left|t_{i}\right|_{p}<1$.

Meanwhile each t_{i} with $i \geq 1$ satisfies

$$
\begin{aligned}
0 & =F\left(x_{i}, y_{i}, w_{i}\right)=c^{m} F\left(x_{0}+t_{i} x^{\prime}, y_{0}+t_{i} y^{\prime}, w_{0}+t_{i} w^{\prime}\right) \\
& =c^{m}\left(t_{i}^{r} \widetilde{F}_{r}+t_{i}^{r+1} \widetilde{F}_{r+1}+\cdots+t_{i}^{m} \widetilde{F}_{m}\right)
\end{aligned}
$$

Since c and all t_{i} are nonzero, we therefore obtain a system of k equations

$$
\widetilde{F}_{r}+t_{i} \widetilde{F}_{r+1}+\cdots+t_{i}^{m-r} \widetilde{F}_{m}=0 \quad \text { for } 1 \leq i \leq k
$$

in the $m-r+1$ unknowns $\widetilde{F}_{r}, \ldots, \widetilde{F}_{m}$. In matrix form the system is

$$
\left(\begin{array}{ccccc}
1 & t_{1} & t_{1}^{2} & \cdots & t_{1}^{m-r} \\
& & \vdots & & \\
1 & t_{k} & t_{k}^{2} & \cdots & t_{k}^{m-r}
\end{array}\right)\left(\begin{array}{c}
\widetilde{F}_{r} \\
\vdots \\
\widetilde{F}_{m}
\end{array}\right)=0
$$

In the second paragraph of the proof, we saw that we may take $1 \leq k \leq m-r+1$.
Suppose first that $k=m-r+1$. Then the coefficient matrix is a Vandermonde matrix, up to transpose, and is invertible since the numbers t_{i} are distinct. We see in this case that $\widetilde{F}_{r}, \ldots, \widetilde{F}_{m}$ are all 0 and in particular that they are all divisible by p.

Now suppose that $1 \leq k<m-r+1$. Let us write the matrix of coefficients in blocks as $(V(k) U(k))$, where

$$
V(k)=\left(\begin{array}{ccccc}
1 & t_{1} & t_{1}^{2} & \cdots & t_{1}^{k-1} \\
& & \vdots & & \\
1 & t_{k} & t_{k}^{2} & \cdots & t_{k}^{k-1}
\end{array}\right) \quad \text { and } \quad U(k)=\left(\begin{array}{ccc}
t_{1}^{k} & \cdots & t_{1}^{m-r} \\
& & \vdots \\
t_{k}^{k} & \cdots & t_{k}^{m-r}
\end{array}\right)
$$

Here $V(k)$ and $U(k)$ have k rows, $V(k)$ has k columns, and $U(k)$ has $m-r+k+1$ columns. Then our system of equations is

$$
\left(\begin{array}{ll}
V(k) & U(k)
\end{array}\right)\binom{\widetilde{F}^{*}}{\widetilde{F}^{* *}}=0
$$

where

$$
\widetilde{F}^{*}=\left(\begin{array}{c}
\widetilde{F}_{r} \\
\vdots \\
F_{r+k-1}
\end{array}\right) \quad \text { and } \quad \widetilde{F}^{* *}=\left(\begin{array}{c}
\widetilde{F}_{r+k} \\
\vdots \\
F_{m}
\end{array}\right)
$$

The matrix $V(k)$ is a Vandermonde matrix and is invertible; let $V(k)^{-1}$ be the inverse. If we multiply through on the left by $V(k)^{-1}$, then our system of equations becomes

$$
F^{*}+V(k)^{-1} U(k) F^{* *}=0
$$

Let us introduce the diagonal matrix D with diagonal entries t_{1}, \ldots, t_{k}, the elementary symmetric functions

$$
\sigma_{1}=t_{1}+\cdots+t_{k}, \ldots, \sigma_{k}=t_{1} \cdots t_{k}
$$

of t_{1}, \ldots, t_{n}, and the k-by- k matrix

$$
W=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & (-1)^{k+1} \sigma_{k} \\
1 & 0 & \cdots & 0 & (-1)^{k} \sigma_{k-1} \\
0 & 1 & \cdots & 0 & (-1)^{k-1} \sigma_{k-2} \\
& & \vdots & & \\
0 & 0 & \cdots & 0 & -\sigma_{2} \\
0 & 0 & \cdots & 1 & \sigma_{1}
\end{array}\right)
$$

A routine computation shows that $D V(k)=V(k) W$. Hence $V(k)^{-1} D=W V(k)^{-1}$. Meanwhile the columns of $U(k)$ are of the form

$$
C_{l}=\left(\begin{array}{c}
t_{1}^{l} \\
\vdots \\
t_{k}^{l}
\end{array}\right) \quad \text { for } k \leq l \leq m
$$

and they satisfy $C_{l+1}=D C_{l}$ for $l \geq 0$. Therefore

$$
V(k)^{-1} C_{l+1}=V(k)^{-1} D C_{l}=W V(k)^{-1} C_{l},
$$

and the result is a recursive formula for computing the columns of $V(k)^{-1} U(k)$. For $l=k-1, C_{l}$ is the last column of $V(k)$, and $V(k)^{-1} C_{k-1}$ thus yields the last column e_{k} of the identity matrix. Consequently our recursive formula gives

$$
V(k)^{-1} C_{l}=W^{l-k+1} e_{k} \quad \text { for } l \geq k-1
$$

Examining W and its powers, we see inductively that the $(i, k)^{\text {th }}$ entry of W^{l-k+1} is a homogeneous polynomial in t_{1}, \ldots, t_{k} of degree $l-i+1$. The columns of $U(k)$ come from columns C_{l} with $l \geq k$, and we conclude that each entry of $V(k)^{-1} U(k)$ is a homogeneous polynomial in t_{1}, \ldots, t_{k} of some degree ≥ 1.

Applying the formula $F^{*}+V(k)^{-1} U(k) F^{* *}=0$, we obtain expressions of the form

$$
\widetilde{F}_{i}=\sum_{j=k}^{m} P_{i j}\left(t_{1}, \ldots, t_{k}\right) \widetilde{F}_{j}
$$

for $1 \leq i \leq k$; here each $P_{i j}$ is a homogeneous polynomial of degree ≥ 1. Applying $|\cdot|_{p}$ to both sides and using that $\left|t_{i}\right|_{p}<1$ for $1 \leq i \leq k$ and $\left|\widetilde{F}_{j}\right|_{p} \leq 1$ for all j, we obtain $\left|\widetilde{F}_{i}\right|_{p}<1$ for $1 \leq i \leq k$. Hence $\widetilde{F}_{i} \equiv 0 \bmod p$ for $1 \leq i \leq k$, and the proof is complete.
(The paragraph following the proof of Proposition 5.5 is unchanged, and so is the statement of Proposition 5.6.)

Proof. Since $r_{p}(0,1,0)=(0,1,0), r_{p}$ carries O to O_{p}. If L is a given line, suppose that we are given points P_{j} on L with $\sum_{j} i\left(P_{j}, L, E\right)=3$ and with $i\left(P_{j}, L, E\right) \geq 1$ in each case. The heart of the proof is to show that if P and Q are points lying on L and E, then $r_{p}(P Q)=r_{p}(P) \cdot r_{p}(Q)$. Indeed, if this identity is always valid, then

$$
\begin{aligned}
r_{p}(P+Q) & =r_{p}(O \cdot P Q)=r_{p}(O) \cdot r_{p}(P Q)=r_{p}(O) \cdot\left(r_{p}(P) \cdot r_{p}(Q)\right) \\
& =O_{p} \cdot\left(r_{p}(P) \cdot r_{p}(Q)\right)=r_{p}(P)+r_{p}(Q)
\end{aligned}
$$

and r_{p} is a group homomorphism.
We now divide matters into cases. First, if r_{p} is one-one on the set $\left\{P_{j}\right\}$, then Proposition 5.5 gives $i\left(P_{j}, L, E\right) \leq i\left(r_{p}\left(P_{j}\right), L_{p}, E_{p}\right)$ for each j. Since the sum of intersection multiplicities over L_{p} is ≤ 3 (by nonsingularity of E_{p}), we conclude that $i\left(P_{j}, L, E\right)=i\left(r_{p}\left(P_{j}\right), L_{p}, E_{p}\right)$ for each j and that no other points besides the points $r_{p}\left(P_{j}\right)$ lie on L_{p} and E_{p}. It follows that $r_{p}(P Q)=r_{p}(P) \cdot r_{p}(Q)$, as asserted.

Second, suppose that $\left\{P_{0}, P_{1}, P_{2}\right\}$ are distinct on L and that $r_{p}\left(P_{0}\right)=r_{p}\left(P_{1}\right) \neq$ $r_{p}\left(P_{2}\right)$. Applying Proposition 5.5 to $\left\{P_{0}, P_{1}\right\}$ and then to P_{2}, we obtain $i\left(r_{p}\left(P_{0}\right), L_{p}, E_{p}\right) \geq i\left(P_{0}, L, E\right)+1 \geq 2$ and $i\left(r_{p}\left(P_{2}\right), L_{p}, E_{p}\right) \geq i\left(P_{2}, L, E\right) \geq 1$. Since $i\left(r_{p}\left(P_{0}\right), L_{p}, E_{p}\right)+i\left(r_{p}\left(P_{2}\right), L_{p}, E_{p}\right) \leq 3$, we conclude that $i\left(r_{p}\left(P_{0}\right), L_{p}, E_{p}\right)=$ 2 and $i\left(r_{p}\left(P_{2}\right), L_{p}, E_{p}\right)=1$. There can be no further points on L_{p} and E_{p}, and again our identity for $r_{p}(P Q)$ is established.

Third, suppose that $\left\{P_{0}, P_{1}, P_{2}\right\}$ are distinct on L and that $r_{p}\left(P_{0}\right)=r_{p}\left(P_{1}\right)=$ $r_{p}\left(P_{2}\right)$. Proposition 5.5 shows that $i\left(r_{p}\left(P_{0}\right), L_{p}, E_{p}\right) \geq i\left(P_{0}, L, E\right)+2 \geq 1+2=3$, and therefore $i\left(r_{p}\left(P_{0}\right), L_{p}, E_{p}\right)=3$. There can be no further points on L_{p} and E_{p}, and again our identity for $r_{p}(P Q)$ is established.

Finally, suppose that $\left\{P_{0}, P_{1}\right\}$ are distinct on L, that $i\left(P_{0}, L, E\right)=2$, and that $r_{p}\left(P_{0}\right)=r_{p}\left(P_{1}\right)$. Proposition 5.5 shows that $i\left(r_{p}\left(P_{0}\right), L_{p}, E_{p}\right) \geq i\left(P_{0}, L, E\right)+1 \geq$ $2+1=3$, and therefore $i\left(r_{p}\left(P_{0}\right), L_{p}, E_{p}\right)=3$. There can be no further points on L_{p} and E_{p}, and again our identity for $r_{p}(P Q)$ is established. All cases have been handled, and the proof is complete.

Second Correction

Difficulty. The proof on pages 299-300 of (10.21) that extends from the statement of (10.21) to the end of the paragraph has a gap. In effect it assumes that the numerator and denominator of (10.20) are relatively prime, and such an assertion requires proof.

Correction. Replace the last 4 lines of page 299 and the first 8 lines of page 300 by the following.
up to a \mathbb{Z}_{p} factor. Write $\frac{(Q x-P)^{2}}{B D}=\frac{R}{S}$ with R and S relatively prime in $\mathbb{Z}_{p}[x]$. Then (10.20) gives

$$
\begin{align*}
& R A C=S\left[(P x-a Q)^{2}-4 b Q(Q x+P)\right] \tag{10.22a}\\
& R B D=S(Q x-P)^{2} \tag{10.22b}
\end{align*}
$$

and (10.19) gives

$$
\begin{equation*}
R(A D+B C)=2 S\left[P Q x^{2}+P^{2} x+a x Q^{2}+2 b Q^{2}+a P Q\right] \tag{10.22c}
\end{equation*}
$$

Let F be a prime factor of S. Since $\operatorname{GCD}(R, S)=1,(10.22 \mathrm{~b})$ shows that $F \mid B D$. Without loss of generality, suppose $F \mid B$. Then $F \nmid A$ since $\operatorname{GCD}(A, B)=1$. Since (10.22a) shows that $F|A C, F| C$. Thus $F \mid B C$. By (10.22c), $F \mid(A D+B C)$. So $F \mid A D$. Since $F \nmid A, F \mid D$. Then $F \mid C$ and $F \mid D$, in contradiction to $\operatorname{GCD}(C, D)=1$. We conclude that S is a scalar. Now consider R. If G is a prime factor of R, then (10.22b) shows that $G \mid(Q x-P)$. The expressions in brackets on the right sides of (10.22a) and (10.22c) must therefore be divisible by G when we substitute $Q x$ for P. On the other hand, G does not divide Q since otherwise it would divide $P=Q x-(Q x-P)$, in contradiction to the condition $\operatorname{GCD}(P, Q)=1$. Thus the divisibility by G for the expressions in brackets implies that G divides both $U(x)=\left(x^{2}-a\right)^{2}-8 b x$ and $V(x)=x^{3}+a x+b$. Consequently G divides $\operatorname{GCD}(U, V)$. A little computation shows that $\operatorname{GCD}(U, V)=1$ unless $4 a^{3}+27 b^{2}=0$. Since $4 a^{3}+27 b^{2}$ is, up to sign, the discriminant of our cubic and is by assumption nonzero, we conclude that R has no prime factors and is scalar. This proves (10.21).

5/2/05

