Two Longer Corrections to Elliptic Curves from Langlands

FIRST CORRECTION

DIFFICULTY. The use of Proposition 5.5 to obtain Proposition 5.6 is inadequate if the reduction map r_p on the set of distinct points among $\{P, Q, PQ\}$ is not oneone. For example, if P, Q, and PQ are distinct and $r_p(P) = r_p(Q) = r_p(PQ)$, then Proposition 5.5 shows that the intersection multiplicity for $r_p(P)$ is ≥ 1 , but it does not produce either a second or a third point on r_p of the line. Thus we cannot obtain the desired conclusion that $r_p(P)r_p(P) = r_p(P)$, i.e., that $r_p(P)$ has intersection multiplicity 3. What is needed is an improved version of Proposition 5.5 and then a little extra argument in Proposition 5.6 to show that all cases have been handled. The improved version below is actually more than is needed; only the cases $k \leq 2$ are needed with elliptic curves, and a page of matrix calculations are unncessary for such cases. However, the principle is a little clearer with the version of Proposition 5.5 given below.

CORRECTION. Change Proposition 5.5, its proof, and the proof of Proposition 5.6 as follows.

Proposition 5.5. Suppose $F \in \mathbb{Q}[x, y, w]_m$ is a plane curve, $L \in \mathbb{Q}[x, y, w]_1$ is a line, and P_0, P_1, \ldots, P_k are $k + 1 \ge 1$ distinct points on L having the same reductions modulo p. If F_p and L_p are reductions of F and L modulo p, then the intersection multiplicities satisfy

$$\min(m, i(P_0, L, F) + k) \le i(r_p(P_0), L_p, F_p).$$
(5.6)

PROOF. Without loss of generality, we may assume for $0 \le i \le k$ that (x_i, y_i, w_i) is a *p*-reduced representative of P_i . Scaling by a common denominator prime to p, we may assume for each $i \ge 0$ that x_i, y_i, w_i are all integers. The condition that $r_p(P_0) = r_p(P_i)$ means for each $i \ge 1$ that there is an integer a_i prime to p with $(x_0, y_0, w_0) \equiv a_i(x_i, y_i, w_i) \mod p$. Changing notation, we may assume for $i \ge 0$ that (x_i, y_i, w_i) is a *p*-reduced representative of P_i with integer entries and that $(x_i, y_i, w_i) \equiv (x_0, y_0, w_0) \mod p$ for $i \ge 1$.

Fix a point P' of L with $r_p(P') \neq r_p(P_0)$, and let (x', y', w') be a *p*-reduced representative of it with integer coordinates. In preparation for p reduction, we may assume that F has been scaled so that all its coefficients are integers and at least one of its coefficients is prime to p. Form the polynomial in $\mathbb{Z}[t]$ given by

$$\psi(t) = F(x_0 + tx', y_0 + ty', w_0 + tw') = t^r F_r + \dots + t^m F_m$$

with $\widetilde{F}_r \neq 0$. By Proposition 2.9 the intersection multiplicity $i(P_0, L, F)$ equals r. Recomputing $\psi(t)$ modulo p (i.e., in $\mathbb{Z}_p[t]$) and applying Proposition 2.9 again, we see that we are done if k = 0 and that it is enough to show that p divides the integers $\widetilde{F}_r, \ldots, \widetilde{F}_{\min(m, r+k-1)}$ if $k \geq 1$. For the remainder of the proof, there is no loss of generality in assuming that $1 \leq k \leq m - r + 1$.

For $i \geq 1$ it follows from the facts that $P_i \neq P'$ and that P_i is on L that there exists a unique $t_i \in \mathbb{Q}$ such that $[(x_i, y_i, w_i)] = [(x_0 + t_i x', y_0 + t_i y', w_0 + t_i w')]$. Since P_0, \ldots, P_k are distinct, the rationals t_1, \ldots, t_k are distinct and nonzero. We shall derive some properties of the numbers t_i . Let us write

$$(x_i, y_i, w_i) = c(x_0 + t_i x', y_0 + t_i y', w_0 + t_i w')$$

for some nonzero $c \in \mathbb{Q}$. For each $i \geq 1$, the fact that $r_p(P_i) \neq r_p(P')$ implies that some 2-by-2 determinant from two of the coordinates of (x_i, y_i, w_i) and (x', y', w')is $\not\equiv 0 \mod p$. Without loss of generality, suppose that these coordinates are the first two, so that $x_iy' - y_ix' \not\equiv 0 \mod p$. Since $c \neq 0$, the equations $x_i = c(x_0 + t_ix')$ and $y_i = c(y_0 + t_iy')$ together imply that $x_i(y_0 + t_iy') = y_i(x_0 + t_ix')$, hence that

$$t_i = \frac{y_i x_0 - x_i y_0}{x_i y' - y_i x'}.$$

The fact that $x_iy' - y_ix' \not\equiv 0 \mod p$ implies that t_i is a *p*-integral member of \mathbb{Q} , and the fact that $(x_i, y_i, w_i) \equiv (x_0, y_0, w_0) \mod p$ implies that the numerator is divisible by *p*. In other words the *p*-adic norm satisfies $|t_i|_p < 1$.

Meanwhile each t_i with $i \ge 1$ satisfies

$$0 = F(x_i, y_i, w_i) = c^m F(x_0 + t_i x', y_0 + t_i y', w_0 + t_i w')$$

= $c^m (t_i^r \widetilde{F}_r + t_i^{r+1} \widetilde{F}_{r+1} + \dots + t_i^m \widetilde{F}_m).$

Since c and all t_i are nonzero, we therefore obtain a system of k equations

$$\widetilde{F}_r + t_i \widetilde{F}_{r+1} + \dots + t_i^{m-r} \widetilde{F}_m = 0$$
 for $1 \le i \le k$

in the m-r+1 unknowns $\widetilde{F}_r, \ldots, \widetilde{F}_m$. In matrix form the system is

$$\begin{pmatrix} 1 & t_1 & t_1^2 & \cdots & t_1^{m-r} \\ \vdots & \vdots & \\ 1 & t_k & t_k^2 & \cdots & t_k^{m-r} \end{pmatrix} \begin{pmatrix} \widetilde{F}_r \\ \vdots \\ \widetilde{F}_m \end{pmatrix} = 0.$$

In the second paragraph of the proof, we saw that we may take $1 \le k \le m - r + 1$.

Suppose first that k = m - r + 1. Then the coefficient matrix is a Vandermonde matrix, up to transpose, and is invertible since the numbers t_i are distinct. We see in this case that $\tilde{F}_r, \ldots, \tilde{F}_m$ are all 0 and in particular that they are all divisible by p.

Now suppose that $1 \le k < m - r + 1$. Let us write the matrix of coefficients in blocks as $(V(k) \ U(k))$, where

$$V(k) = \begin{pmatrix} 1 & t_1 & t_1^2 & \cdots & t_1^{k-1} \\ & \vdots & & \\ 1 & t_k & t_k^2 & \cdots & t_k^{k-1} \end{pmatrix} \quad \text{and} \quad U(k) = \begin{pmatrix} t_1^k & \cdots & t_1^{m-r} \\ & & \vdots \\ t_k^k & \cdots & t_k^{m-r} \end{pmatrix}.$$

Here V(k) and U(k) have k rows, V(k) has k columns, and U(k) has m - r + k + 1 columns. Then our system of equations is

$$(V(k) \quad U(k))\left(\begin{array}{c} \widetilde{F}^{*}\\ \widetilde{F}^{**}\end{array}\right) = 0,$$

where

$$\widetilde{F}^* = \begin{pmatrix} \widetilde{F}_r \\ \vdots \\ F_{r+k-1} \end{pmatrix}$$
 and $\widetilde{F}^{**} = \begin{pmatrix} \widetilde{F}_{r+k} \\ \vdots \\ F_m \end{pmatrix}$.

The matrix V(k) is a Vandermonde matrix and is invertible; let $V(k)^{-1}$ be the inverse. If we multiply through on the left by $V(k)^{-1}$, then our system of equations becomes

$$F^* + V(k)^{-1}U(k)F^{**} = 0$$

Let us introduce the diagonal matrix D with diagonal entries t_1, \ldots, t_k , the elementary symmetric functions

$$\sigma_1 = t_1 + \dots + t_k, \ \dots, \ \sigma_k = t_1 \cdots t_k$$

of t_1, \ldots, t_n , and the k-by-k matrix

$$W = \begin{pmatrix} 0 & 0 & \cdots & 0 & (-1)^{k+1} \sigma_k \\ 1 & 0 & \cdots & 0 & (-1)^k \sigma_{k-1} \\ 0 & 1 & \cdots & 0 & (-1)^{k-1} \sigma_{k-2} \\ & \vdots & & \\ 0 & 0 & \cdots & 0 & -\sigma_2 \\ 0 & 0 & \cdots & 1 & \sigma_1 \end{pmatrix}.$$

A routine computation shows that DV(k) = V(k)W. Hence $V(k)^{-1}D = WV(k)^{-1}$. Meanwhile the columns of U(k) are of the form

$$C_l = \begin{pmatrix} t_1^l \\ \vdots \\ t_k^l \end{pmatrix} \quad \text{for } k \le l \le m,$$

and they satisfy $C_{l+1} = DC_l$ for $l \ge 0$. Therefore

$$V(k)^{-1}C_{l+1} = V(k)^{-1}DC_l = WV(k)^{-1}C_l,$$

and the result is a recursive formula for computing the columns of $V(k)^{-1}U(k)$. For l = k - 1, C_l is the last column of V(k), and $V(k)^{-1}C_{k-1}$ thus yields the last column e_k of the identity matrix. Consequently our recursive formula gives

$$V(k)^{-1}C_l = W^{l-k+1}e_k$$
 for $l \ge k-1$.

Examining W and its powers, we see inductively that the $(i, k)^{\text{th}}$ entry of W^{l-k+1} is a homogeneous polynomial in t_1, \ldots, t_k of degree l-i+1. The columns of U(k) come from columns C_l with $l \ge k$, and we conclude that each entry of $V(k)^{-1}U(k)$ is a homogeneous polynomial in t_1, \ldots, t_k of some degree ≥ 1 .

Applying the formula $F^* + V(k)^{-1}U(k)F^{**} = 0$, we obtain expressions of the form

$$\widetilde{F}_i = \sum_{j=k}^m P_{ij}(t_1, \dots, t_k)\widetilde{F}_j$$

for $1 \leq i \leq k$; here each P_{ij} is a homogeneous polynomial of degree ≥ 1 . Applying $|\cdot|_p$ to both sides and using that $|t_i|_p < 1$ for $1 \leq i \leq k$ and $|\widetilde{F}_j|_p \leq 1$ for all j, we obtain $|\widetilde{F}_i|_p < 1$ for $1 \leq i \leq k$. Hence $\widetilde{F}_i \equiv 0 \mod p$ for $1 \leq i \leq k$, and the proof is complete.

(The paragraph following the proof of Proposition 5.5 is unchanged, and so is the statement of Proposition 5.6.)

PROOF. Since $r_p(0,1,0) = (0,1,0)$, r_p carries O to O_p . If L is a given line, suppose that we are given points P_j on L with $\sum_j i(P_j, L, E) = 3$ and with $i(P_j, L, E) \ge 1$ in each case. The heart of the proof is to show that if P and Q are points lying on L and E, then $r_p(PQ) = r_p(P) \cdot r_p(Q)$. Indeed, if this identity is always valid, then

$$\begin{aligned} r_p(P+Q) &= r_p(O \cdot PQ) = r_p(O) \cdot r_p(PQ) = r_p(O) \cdot (r_p(P) \cdot r_p(Q)) \\ &= O_p \cdot (r_p(P) \cdot r_p(Q)) = r_p(P) + r_p(Q), \end{aligned}$$

and r_p is a group homomorphism.

We now divide matters into cases. First, if r_p is one-one on the set $\{P_j\}$, then Proposition 5.5 gives $i(P_j, L, E) \leq i(r_p(P_j), L_p, E_p)$ for each j. Since the sum of intersection multiplicities over L_p is ≤ 3 (by nonsingularity of E_p), we conclude that $i(P_j, L, E) = i(r_p(P_j), L_p, E_p)$ for each j and that no other points besides the points $r_p(P_j)$ lie on L_p and E_p . It follows that $r_p(PQ) = r_p(P) \cdot r_p(Q)$, as asserted.

Second, suppose that $\{P_0, P_1, P_2\}$ are distinct on L and that $r_p(P_0) = r_p(P_1) \neq r_p(P_2)$. Applying Proposition 5.5 to $\{P_0, P_1\}$ and then to P_2 , we obtain $i(r_p(P_0), L_p, E_p) \geq i(P_0, L, E) + 1 \geq 2$ and $i(r_p(P_2), L_p, E_p) \geq i(P_2, L, E) \geq 1$. Since $i(r_p(P_0), L_p, E_p) + i(r_p(P_2), L_p, E_p) \leq 3$, we conclude that $i(r_p(P_0), L_p, E_p) = 2$ and $i(r_p(P_2), L_p, E_p) = 1$. There can be no further points on L_p and E_p , and again our identity for $r_p(PQ)$ is established.

Third, suppose that $\{P_0, P_1, P_2\}$ are distinct on L and that $r_p(P_0) = r_p(P_1) = r_p(P_2)$. Proposition 5.5 shows that $i(r_p(P_0), L_p, E_p) \ge i(P_0, L, E) + 2 \ge 1 + 2 = 3$, and therefore $i(r_p(P_0), L_p, E_p) = 3$. There can be no further points on L_p and E_p , and again our identity for $r_p(PQ)$ is established.

Finally, suppose that $\{P_0, P_1\}$ are distinct on L, that $i(P_0, L, E) = 2$, and that $r_p(P_0) = r_p(P_1)$. Proposition 5.5 shows that $i(r_p(P_0), L_p, E_p) \ge i(P_0, L, E) + 1 \ge 2 + 1 = 3$, and therefore $i(r_p(P_0), L_p, E_p) = 3$. There can be no further points on L_p and E_p , and again our identity for $r_p(PQ)$ is established. All cases have been handled, and the proof is complete.

SECOND CORRECTION

DIFFICULTY. The proof on pages 299-300 of (10.21) that extends from the statement of (10.21) to the end of the paragraph has a gap. In effect it assumes that the numerator and denominator of (10.20) are relatively prime, and such an assertion requires proof.

CORRECTION. Replace the last 4 lines of page 299 and the first 8 lines of page 300 by the following.

up to a \mathbb{Z}_p factor. Write $\frac{(Qx-P)^2}{BD} = \frac{R}{S}$ with R and S relatively prime in $\mathbb{Z}_p[x]$. Then (10.20) gives

$$RAC = S[(Px - aQ)^{2} - 4bQ(Qx + P)]$$
(10.22a)

$$RBD = S(Qx - P)^2,$$
 (10.22b)

and (10.19) gives

$$R(AD + BC) = 2S[PQx^{2} + P^{2}x + axQ^{2} + 2bQ^{2} + aPQ].$$
 (10.22c)

Let F be a prime factor of S. Since $\operatorname{GCD}(R, S) = 1$, (10.22b) shows that $F \mid BD$. Without loss of generality, suppose $F \mid B$. Then $F \nmid A$ since $\operatorname{GCD}(A, B) = 1$. Since (10.22a) shows that $F \mid AC, F \mid C$. Thus $F \mid BC$. By (10.22c), $F \mid (AD + BC)$. So $F \mid AD$. Since $F \nmid A, F \mid D$. Then $F \mid C$ and $F \mid D$, in contradiction to $\operatorname{GCD}(C, D) = 1$. We conclude that S is a scalar. Now consider R. If G is a prime factor of R, then (10.22b) shows that $G \mid (Qx - P)$. The expressions in brackets on the right sides of (10.22a) and (10.22c) must therefore be divisible by G when we substitute Qx for P. On the other hand, G does not divide Q since otherwise it would divide P = Qx - (Qx - P), in contradiction to the condition $\operatorname{GCD}(P, Q) = 1$. Thus the divisibility by G for the expressions in brackets implies that G divides both $U(x) = (x^2 - a)^2 - 8bx$ and $V(x) = x^3 + ax + b$. Consequently G divides $\operatorname{GCD}(U, V)$. A little computation shows that $\operatorname{GCD}(U, V) = 1$ unless $4a^3 + 27b^2 = 0$. Since $4a^3 + 27b^2$ is, up to sign, the discriminant of our cubic and is by assumption nonzero, we conclude that R has no prime factors and is scalar. This proves (10.21).

5/2/05