Corrections to

Basic Algebra, Digital Second Edition

Page 32, statement of Problem 23. Change "positive integer n " to "positive integer k ".
Page 42, line 10. Change $" \operatorname{dim}\left(\left\{v_{1}, \ldots, v_{r}\right\}\right) "$ to $" \operatorname{dim}\left(\left\{v_{1}, \ldots, v_{i}\right\}\right) "$, and change "for $i \geq 0$ " to "for $i \geq 1$ ".

Page 53, statement of Proposition 2.21, display. The matrix on the right side should have a transpose symbol, superscript t, on it.

Page 53, lines 2 and 3 of the proof of Proposition 2.21. Change "Write B and A for the respective matrices in the formula in question" to "Write $B=\binom{L^{t}}{\Gamma^{\prime} \Delta^{\prime}}$ and $A=\binom{L}{\Delta \Gamma}$ ".

Page 73 , line 7. The two equations on this line are reversed from what they should be. The first should be " $A^{\text {adj }} A=(\operatorname{det} A) I$ ", and the second should be " $A A^{\text {adj }}=(\operatorname{det} A) I$ ".
Page 77, line -15 . Change this line from " $=\left(\operatorname{det} C^{-1}\right) \operatorname{det}(\lambda I-A)\left(\operatorname{det} C^{-1}\right) "$ to $"=\left(\operatorname{det} C^{-1}\right) \operatorname{det}(\lambda I-A)(\operatorname{det} C) "$.
Page 77, line -14 . Change " $\left(\operatorname{det} C^{-1}\right)\left(\operatorname{det} C^{-1}\right) "$ to $"\left(\operatorname{det} C^{-1}\right)(\operatorname{det} C) "$.
Page 83, display in Problem 10. Change "max" to "min".
Page 92, line 3 of the proof of Proposition 3.1. Change the left member of the equation from " $\left|u-\|v\|^{-2}(u, v) v\right|^{2} "$ to " $\|u-\| v\left\|^{-2}(u, v) v\right\|^{2} "$.

Page 97, line 7. Change "in S " to "in V ", and change
" $v=\sum_{j=1}^{n} u_{j} "$ to $" v=\sum_{j=1}^{n}\left(v, u_{j}\right) u_{j} "$.
Page 102, line -6 . Change " $L(u, v)$ " to " $(L(u), v)$ ".
Page 107, line 1 of statement of Corollary 3.22. Change "positive semidefinite" to "self-adjoint".

Page 109, line 3 of the proof of Corollary 3.23. Change "For each j, the commutativity of the linear maps L_{i} forces" to "The linearity and the commutativity of L_{1} with each L_{i} force".

Page 116, line -7 . Change "make use of Problem 26 " to "make use of Problem 29".
Page 123, line 7 of proof of Proposition 4.1. Change " $-c_{j}^{-1} c_{k} x^{k-j-1}$ " to $"-\cdots-c_{j}^{-1} c_{k} x^{k-j-1} "$.
Page 145, line 2 after end of the proof of Proposition 4.19. Change "just of subring" to "just a subring".

Page 157, line 2. Change " $T=R \times \cdots \times R$ " to " $T=R$ ".
Page 157, line 2. Change "Example 3" to "Example 2".
Page 157, line 3 of the proof of Proposition 4.30. Change " $a_{j_{1}, \ldots, j_{n}} t_{1}^{j_{1}} \ldots t_{n}^{j_{n}}$ " to $" \varphi\left(a_{j_{1}, \ldots, j_{n}}\right) t_{1}^{j_{1}} \ldots t_{n}^{j_{n}} "$.
Page 164, line 4 of the proof of Proposition 4.34. Change " $g_{1} p=\varphi\left(g_{1} p\right)=\varphi\left(g_{2} p\right)=g_{2} p$ " to " $g_{1} p=\varphi\left(g_{1}\right)=\varphi\left(g_{2}\right)=g_{2} p$ ".
Page 165, line 12. Change " $x g^{-1}=g^{-1}(g x) g^{-1}=g^{-1}(x g) g^{-1}=g^{-1} x$ " to $" g x^{-1}=x^{-1}(x g) x^{-1}=x^{-1}(g x) x^{-1}=x^{-1} g "$.
Page 166, line 2 of proof of Corollary 4.39. Change "If fact" to "In fact".
Page 172 , line 13. Change "fewer" to "more".

Page 175, display $(*)$ in the proof of Theorem 4.49. Change the display from

$$
\begin{gather*}
G_{m} \supseteq G_{m-1} \supseteq \cdots \supseteq G_{1} \supseteq G_{0} \\
H_{n} \supseteq H_{n-1} \supseteq \cdots \supseteq H_{1} \supseteq H_{0} \tag{*}
\end{gather*}
$$

to

$$
\begin{align*}
& G_{0} \supseteq G_{1} \supseteq \cdots \supseteq G_{m-1} \supseteq G_{m} \\
& H_{0} \supseteq H_{1} \supseteq \cdots \supseteq H_{n-1} \supseteq H_{n} \tag{*}
\end{align*}
$$

Page 184 , line -6 . Change $" \mathbb{Z} / p^{l_{M^{\prime}-j}} \mathbb{Z} "$ to $" \mathbb{Z} / p^{l_{M^{\prime}-j-1}} \mathbb{Z} "$.
Page 184, line -4 . Change

$$
\left(\mathbb{Z} / p^{l_{t^{\prime}-j-1}} \mathbb{Z}\right) /\left(\mathbb{Z} / p^{l_{t^{\prime}-j}} \mathbb{Z}\right) \oplus \cdots \oplus\left(\mathbb{Z} / p^{l_{M^{\prime}-j-1}} \mathbb{Z}\right) /\left(\mathbb{Z} / p^{l_{M^{\prime}-j}} \mathbb{Z}\right)
$$

to

$$
\left(\mathbb{Z} / p^{l_{t^{\prime}-j}} \mathbb{Z}\right) /\left(\mathbb{Z} / p^{l_{t^{\prime}-j-1}} \mathbb{Z}\right) \oplus \cdots \oplus\left(\mathbb{Z} / p^{l_{M^{\prime}-j}} \mathbb{Z}\right) /\left(\mathbb{Z} / p^{l_{M^{\prime}-j-1}} \mathbb{Z}\right)
$$

Page 188, line 1. Change "subgroup of H " to "subgroup H ".
Page 188, line 2 of the proof of Lemma 4.62. Change " $H_{p} H_{q}$ in the proof of Proposition 4.60 " to " $H_{1} H_{2}$ in the second paragraph of the proof of Theorem 4.14".

Page 193, line 8. Change " $=g \circ F(f)=F(g) F(f) "$ to " $=g \circ F(f)(L)=F(g) F(f)(L)$ ".
Page 218, line -16 . Change "has thus be redone" to "has thus been redone".
Page 436, statement of Proposition 8.52. Change "commutative ring" to "integral domain".

Pages 619-620, solution of Problem 14. Replace the existing text with the following:
"Let $\left\{v_{n}\right\}_{n=1}^{\infty}$ be a countably infinite basis of the vector space V. Write \mathcal{A} for the set of all subsets of the set of positive integers. Certainly \mathcal{A} is uncountable. For each such subset S, define v_{S}^{\prime} to be the member of the dual space V^{\prime} such that $v_{S}^{\prime}\left(v_{n}\right)$ is 1 if n is in S and is 0 if not. Let W be the linear span in V^{\prime} of all the linear functionals v_{S}^{\prime} with S in \mathcal{A}. Choose by Theorem 2.42a a subset \mathcal{B} of \mathcal{A} such that $\left\{v_{S}^{\prime} \mid S \in \mathcal{B}\right\}$ is a basis of the linear span W of all v_{S}^{\prime} for $S \in \mathcal{A}$. Then the set $\left\{v_{S}^{\prime} \mid S \in \mathcal{B}\right\}$ is linearly independent, and we shall prove that it is uncountable.
"Arguing by contradiction, suppose that \mathcal{B} is countable. Number the sets S in $\left\{v_{S}^{\prime} \mid S \in \mathcal{B}\right\}$ as S_{1}, S_{2}, \ldots Since each v_{S}^{\prime} with S in \mathcal{A} lies in the span of S_{1}, S_{2}, \ldots, each member S of \mathcal{A} has an associated (nonunique) integer $k \geq 1$ such that v_{S}^{\prime} has a unique expansion as $v_{S}^{\prime}=c_{1} v_{S_{1}}^{\prime}+\cdots+c_{k} v_{S_{k}}^{\prime}$ with coefficients in \mathbb{F}. In this case let us say that v_{S}^{\prime} is expandable for this k.
"Fix k, and fix a set S for which v_{S}^{\prime} is expandable for this k. Then fix a subset E of $\{1, \ldots, k\}$. If m and n are two integers from 1 to k with the property that both are in S_{j} for each j in E and both are not in S_{j} for each j in $\{1, \ldots, k\}-E$, then $v_{S_{j}}^{\prime}\left(v_{m}\right)=v_{S_{j}}^{\prime}\left(v_{m}\right)$ and hence $v_{S}^{\prime}\left(v_{m}\right)=v_{S}^{\prime}\left(v_{n}\right)$. Thus with k fixed, the number of members S of \mathcal{A} for which v_{S} is expandable for this k is $\leq 2^{k}$, the number of subsets of $\{1, \ldots, k\}$. In particular it is finite. Consequently the set of S in \mathcal{A} for which v_{S}^{\prime} is expandable for some k is contained in the countable union of finite sets and is a countable set. This conclusion contradicts the known fact that \mathcal{A} is uncountable and allows us to conclude that \mathcal{B} is uncountable."

Page 638, solution to Problem 67. Change "has weight 3 " to "has weight 3 or 4 ".
Page 639 , line 13. Change "occur is positions" to "occur in positions".
Page 639, solution of Problem 71, line 1. Change " $\frac{1}{2}\left((X+Y)^{n}+\frac{1}{2}(X-Y)^{n}\right)$ " to $" \frac{1}{2}(X+Y)^{n}+\frac{1}{2}(X-Y)^{n} "$.
Page 639, solution of Problem 71, line 2. Change " $X^{6}+7 X^{3} Y^{3}$ " to
" $X^{6}+4 X^{3} Y^{3}+3 X^{2} Y^{4}$ ".

Acknowledgment. The author is grateful to Jiazhen Xia of Zhejiang University, who communicated most of the corrections above.

3/16/2023

