
Corrections to
Basic Real Analysis

Short Corrections

Page 4, last two lines of proof of Corollary 1.5. Replace with
“ n+1

N < y. Thus x < n+1
N < y, and the rational number r = n+1

N has the required
properties. ”

Page 9, first display. Change “for only finitely many a ” to
“for only finitely many n ”.

Page 12, line −7 of proof. Change “ 0 ≤ k ≤ 2−n ” to “ 0 ≤ k ≤ 2n ”.

Page 12, line −2 of proof. Change “k ≤ 2−n ” to “k ≤ 2n ” and “p2−n = b ” to
“p2n = b ”.

Page 16, three lines before second display. Change “parameter (j in our case) ” to
“parameter (i in our case) ”, and change “the variable i ” to “the variable j ”.

Page 17, line 7. Change “supx∈E ” to “ supx∈S .”

Page 18, lines 10–12. Change the two sentences
“By (b), choose j1 ≥ j0 such that |bij − L0j | < 6ε whenever i ∈ {1, . . . , i1−1} and
j ≥ j1. Then j ≥ j1 implies |bij − L0j | < 6ε for all i whenever j ≥ j1 ”
to
“By (ii), choose i2 ≥ i1 such that |bij − L0j | < 6ε whenever j ∈ {1, . . . , j0−1} and
i ≥ i2. Then i ≥ i2 implies |bij − L0j | < 6ε for all j whenever i ≥ i2 ”.

Page 20, line 8. Change “
Pn

k=m+1 ” to “
Pn

k=m ”.

Page 23, first display. Change “f ” to “fn ” in three places.

Page 23, second paragraph, line 3. Change “|xk−yk| < δnk(≤) ” to “|xk−yk| < 1/k ”,
and change “|fk(xk)− fk(yk)| ≥ ≤ ” to “|fnk(xk)− fnk(yk)| ≥ ≤ ”.

Page 23, second paragraph, lines 10–11. Change “fkl ” to “fnkl
” in 6 places.

Page 23, second paragraph, line 12. Change “fk ” to “fnk ” in 2 places.

Page 23, line −4. Insert the following sentence after “uniformly Cauchy.”
“Redefining our indices, we may assume that nk = k for all k ”.

Page 23, line −3. Change “exhibiting equicontinuity ” to “exhibiting uniform
equicontinuity ”.

Page 31, line 3 of Lemma 1.28. Change “[a, b]− ” to [a, b]∩ ”.

Page 33, lines 12–16. Change “If c ≥ 0, then . . . from Lemma 1.25e ” to the
following:
“If c ≥ 0, then M 0

i = cMi and m0
i = cmi, so that U(P, cf) = cU(P, f) and

L(P, cf) = cL(P, f). If c ≤ 0, then M 0
i = cmi and m0

i = cMi, so that
U(P, cf) = cL(P, f) and L(P, cf) = cU(P, f). In either case, U(P, cf)−L(P, cf) =
|c|(U(P, f)− L(P, f)), and (b) follows from Lemma 1.25e ”.

Page 34, line 4 of example. Change “6= 0 = limn

R
fn dx ” to

“6= 0 =
R

limn fn dx ”.
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Page 37, lines −10 and −8. Change “ξ ” to “ξi ”.

Page 37, lines −6 and −1. Change “MiM∗
i ∆yi ” to “

X
MiM

∗
i ∆yi ”.

Page 38, line −7. Change right side from “2≤M(B−A) ” to “2≤M(B−A) + ≤ ”.

Page 38, line −6. Change “≤ + 3≤M(B −A) ” to “2≤ + 3≤M(B −A) ”.

Page 39, last four lines and top three lines of page 40. This material contained a
subtle mathematics error. Beginning with “The sum of the terms of the second
kind,” change this material to read as follows:

“For the terms of the second kind, fix attention on one subinterval I∗ of P ∗ and
consider all the subintervals Ii of P that are of the second kind and lie within I∗.
Let |Ii| be the length of Ii, and let mi be the supremum of f , positive or negative
or zero, on Ii. Let m be the supremum of f on I∗. Then the contribution of the
intervals Ii to U(P, f) is

P
i mi|Ii|, and term by term this is ≤

P
i m|Ii| = m

P
i |Ii|.

The intervals Ii must fill up I∗ except possibly for a part of I∗ at each end, and
these two ends have a total length of ≤ µ(P ). Thus the contribution of the intervals
Ii of the second kind inside I∗ to U(P, f) is

≤ m
X

i

|Ii| = m(|I∗|− |left end|− |right end|)

≤ m|I∗|+ |m|2µ(P ) ≤ m|I∗|+ (sup |f |)2µ(P ) ≤ m|I∗|+ 2≤/k.

On the right side the term m|I∗| is the term of U(P ∗, f) coming from I∗. Summing
over the k intervals I∗ whose union is [a, b], we see that the contribution to U(P, f)
of all intervals of the second kind is

≤ U(P ∗, f) + 2≤.

Thus

U(P, f) ≤ ≤ + U(P ∗, f) ≤
Z b

a
f dx + 3≤.

Similarly we can produce δ2 such that µ(P ) ≤ δ2 implies

L(P, f) ≥
Z b

a
f dx− 3≤.

If δ = min{δ1, δ2} and µ(P ) ≤ δ, then

Z b

a
f dx− 3≤ ≤ L(P, f) ≤ S(P, f) ≤ U(P, f) ≤

Z b

a
f dx + 3≤,

and hence
ØØS(P, f)−

R b
a f dx

ØØ ≤ 3≤. ”

Page 42, line 12. Change “c = p + iq ” to c = r + is ”.

Page 48, line 3. Change “
1X

n=0

” to “
NX

n=0

”.

Page 49, line −8. Change “[0,+1) ” to “[1,+1) ”.
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Page 51, line 9 of proof of Corollary 1.45. Change “exactly” to “at least” in order
to allow for the fact that two of the complex numbers in(x + iy) with 0 ≤ n ≤ 3
have real and imaginary parts ≥ 0 if (x, y) = (1, 0) or (x, y) = (0, 1).

Page 51, line −6. Change “(sinx)/ cosx) ” to “(sinx)/(cosx) ”.

Page 52, line 2 of Example. Change “of f by ” to “of F by ”.

Page 55, line 2 of Example. Change “log(1 + t) ” to “log(1 + x) ”.

Page 56, line 1. Change “complex ” to “numerical ”.

Page 56, line 3. Change “C ” to “R ”.

Page 56, line 9 of Example. Change “sk =
P1

k=1 ” to “sn =
Pn

k=1 ”.

Page 58, line 4 of Section 9. Change “on a bounded interval ” to “on a bounded
interval [a, b] ”.

Page 59, line 2 of proof. Change “
R 1/

√
n

−1/
√

n (1− x2) dx ” to “
R 1/

√
n

−1/
√

n (1− x2)n dx ”.

Page 59, line 1 of caption of Figure 1.1. Change “cn

R 1
−1(1− x2)n dx ” to

“cn(1− x2)n ” and delete one occurrence of the word “for”.

Page 62, line 2, change “even ” to “odd ”.

Page 62, line 3, change “odd ” to “even ”.

Page 65, line −1. Change “
PN

n=1(sinnx)/n ” to “
Pn

k=1(sin kx)/k ”.

Page 70, line 5 of Theorem 1.57. Change “sn ” to “sN ”.

Page 70, line −8. Change “
R π
−π DN (x) dx = 1 ” to “ 1

2π

R π
−π DN (x) dx = 1 ”.

Page 72, condition (iii). Change “as n tends to infinity ” to “as N tends to
infinity ”.

Page 73, line −5 of proof of Theorem 1.59. Change “Thus a second use of (i)
shows ” to “Thus use of (i) and (ii) shows ”.

Page 75, line before Lemma 1.63. Change “M 0

2π ” to “M 0 ”.

Page 76, line −12. Change “g(t) ≥ f(t) implies I ≤ g(t) ≤ f(t) ≤ S ” to
“g(t) ≥ f(t) implies I ≤ f(t) ≤ g(t) ≤ S ”.

Page 76, line −9. Change “|f + g| ” to |f − g| ”.

Page 76, line −8. Change “ sup
t∈[xi−1,xi]

|f(t) + g(t)| ” to “ sup
t∈[xi−1,xi]

|f(t)− g(t)| ”.

Page 77, line −8. Change “sinx ” to “sinnx ”, and change “cosx ” to “cosnx ”.

Page 78, Problem 1. This problem needs an extra step so as to be manageable as
the first problem in the book. Therefore change it to read as follows:
“(a) Derive the archimedean property (Corollary 1.3) from the convergence of

bounded monotone increasing sequences (Corollary 1.6).
“(b) Using (a), derive the least-upper bound property (Theorem 1.1) from the

convergence of bounded monotone sequences (Corollary 1.6).”

Page 79, Problem 12b. Change “
R x
1 ” to “

R x
0 ”.
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Page 79, Problem 13. Change “0 < x < π ” to “−1 < x < 1 ”, and change
“0 < x < π/2 ” to “−1 < x < 1 ”.

Page 79, Problem 19, line 4. Change “for all c ” to “for all x ”.

Page 80, Problem 21, last line. Change “g0(x) = 0 ” to “g0(0) = 0 ”.

Page 80, last line. Change “for k ≥ 0 ” to “for k ≥ 1 ”.

Page 81, Problem 27, line 1. Change “sn(f ;x) ” to “sn(f ; θ) ”.

Page 84, line −1. Change “b = y − z ” to “b = z − y ”.

Page 90, line 2 of proof of Lemma 2.2. Change “0 ≤
ØØx − kyk−2(x, y)y

ØØ2 ” to
“0 ≤

∞∞x− kyk−2(x, y)y
∞∞2 ”.

Page 93, line 9. Change “limit point of X ” to “limit point of A ”.

Page 96, line −2. Change “for fixed x is continuous in y ” to “for fixed y is
continuous in x ”.

Page 99, line 10. Change displayed line to read

|fn(s)| ≤ |fn(s)− f(s)|+ |f(s)− fN (s)|+ |fN (s)| ≤ 2 + |fN (s)|

Page 99, line 11. Change “+1” to “+2”.

Page 107, line 2. Change “over ” to “open ”.

Page 107, line −4. Change “L2 into L1 ” to “R[−π,π] relative to L2 into R[−π,π]
relative to L1 ”.

Page 110, proof of Corollary 2.37, line 5. Change “convergent subsequence ” to
“subsequence convergent in Rn. By Corollary 2.23 the limit is in C ”.

Page 112, line −12. Change “|Q(z)| ≤ ” to “|Q(reiθ)| ≤ ”.

Page 114, line −6 of proof of Theorem 2.46. Change “2−m ” to “1/m ”.

Page 114, line −5 of proof of Theorem 2.46. Change “2−m ” to “1/m ”.

Page 115, line −1. Change “[c, u) ” to “[c, x) ”.

Page 116, line 1 of proof of Proposition 2.49. Change “be metric spaces ” to “be
metric spaces with X connected ”.

Page 119, line −3. Change “of a function ” to “of a function on a metric space U ”.

Page 120, statement of Lemma 2.55. The hypothesis “complete” is not needed as
long as completeness is not assumed in the definition of “oscillation”. The metric
space may therefore be taken to be (U, d) instead of (X, d).

Page 120, proof of Theorem 2.54. This proof is correct as written but can be
simplified. Theorem 2.53 is needed only when invoked the second time, not the
first. The simplification is to change the first three lines of the proof to read
“In view of Lemma 2.55 and the fact that U is open, it is enough to prove for each
≤ > 0 that

©
x ∈ U | oscf (x) ≥ ≤

™
does not contain a nonempty open subset ”

and to change on lines −8 and −7 the words “Again by Theorem 2.53 and the
remark after it, some ” to read
“Since V is open in a complete metric space, Theorem 2.53 and the remark after
it show that some ”.
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Page 121, 6 lines before Theorem 2.56. Change “t ∈ [a, b] ” to “t ∈ S ”.

Page 122, displayed definition of δn(≤). Change “|f(x)− f(y)| ” to
“|fn(x)− fn(y)| ”.

Page 122, paragraph “Thus we are to prove”, line 3. Change “δnk(≤) ” to “1/k ”,
and change “fk ” to “fnk ” twice.

Page 122, lines −9 and −8. Change “fkl ” to “fnkl
” six times.

Page 122, line −7. Change “fk ” to “fnk ” twice.

Page 123, line 1. Insert the following sentence after “uniformly Cauchy.”
“Redefining our indices, we may assume that nk = k for all k ”.

Page 126, line 11. Change “dense in AR ” to “ dense in C(S, C) ”.

Page 126, Example 3, line 3. Change “Sm−1 ” to “Sn−1 ”.

Page 128, line 6. Change “relation ∼ on X ” to “relation ∼ on Cauchy(X) ”.

Page 130, Problem 2. Change “an open set that is at most countable ” to “a
countable open set ”. (This change is not logically necessary but may help avoid
confusion, since “countable” and “at most countable” mean the same thing in this
book.)

Page 132, Problem 21, line 5. Change “Acl ” to “A ”.

Page 136, line −7. Change “ inf
x∈Fn

” to “ inf
M≥0

”.

Page 136, line −5. Change “|T (cx)| = |c||x| ” to “|T (cx)| = |c||T (x)| ”.

Page 138, line −1. Change “
≥ nX

j=1

|x · ej |
¥

” to “
≥ nX

j=1

|x · ej |2
¥

”.

Page 141, line 15. Change “(h1, . . . , hm) ” to “(h1, . . . , hn) ”.

Page 143, line 12. Change “(t, b + h) ” to “(t, b + k) ”.

Page 148, display in first paragraph of proof of Proposition 3.12. Change “Mn ”
to “MN ” at the right end.

Page 156, line −3. For clarity, insert “ϕ : Rn+m → Rn+m ” after the word
“function”.

Page 157, after large displayed matrix. For clarity, insert the sentence
“The upper left block of ϕ0(a, b) is the n-by-n identity matrix, and the lower right
block is of size m-by-m. ”

Page 171, item (3), lines 5-6. Change “discontinuities . . . as a function of x ” to
“discontinuities for each fixed x, and (fIU )x(y) is therefore Riemann integrable as
a function of y ”.

Page 171. line −3 of text. Change “ [a, b] ” to “ [A,B] ”.

Page 176, line 6. Change “√0(0)−1 ” to “√0j(0)−1 ”.
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Page 177, middle of page. Change the sentence “By the chain rule . . . nonsingular”
to
“By the chain rule (Theorem 3.10), we have η0(x) = ϕ0(x)(√−1)0(y), and this is
nonsingular for x close enough to 0 ”.

Page 234, statement of Proposition 5.1a. Change “
SN

n−1 En ” to “
SN

n=1 En ”.

Page 235, line −10. Change “nonzero constant functions” to “constant functions”.

Page 237, line 3. Change “ R ” to “R ”.

Page 237, line −17. Change “more than way” to “more than one way”.

Page 238, line −7. Change “ [−1,−c] ” to “ [−1, c] ”.

Page 238, line −5. Change “ [−c,+1] ” to “ [c,+1] ”.

Page 239, line 5. Change “Problem 11 at the end ” to “Problem 33 at the end ”.

Page 244, line 9. For clarity, change “absolutely convergent ” to “absolutely
convergent; this is a stronger condition since the sum has to be in R ”.

Page 250, line 13. Change “pointwise f ” to “pointwise limit f ”.

Page 263, line −4. Change “5.1f ” to “5.1e ”.

Page 276, line 6. Change “shows that ” to “shows for each standard basis vector
uj that ”.

Page 277, line −1. Change “
Pn

j=1 ” to “
Pm

j=1 ”.

Page 278, line −8. Change “integrable ” to “measurable on X with |f | integrable
on E ”.

Page 285, line 4 of Remarks. Change “an almost-everywhere convergent subse-
quence ” to “a subsequence that converges pointwise almost everywhere ”.

Page 285, lines −8 and −7. Change so that these lines read:
“subsequence

©
fnk

™
has the property that kfnk − fnlk ≤ 2−min{k,l} for all k ≥ 1

and l ≥ 1. This proves the first conclusion of the theorem.”

Page 286, line 2. Change “
° R

X gn dµ
¢1/p ” to “

° R
X gp

n dµ
¢1/p ”.

Page 286, line 4. Change “
° R

X g dµ
¢1/p ” to “

° R
X gp dµ

¢1/p ”.

Page 286, line 7. Change “redefining the functions fk ” to “redefining the functions
fk as 0 ”.

Page 286, line −8. Change “The redefined functions are ” to “The sequence of
redefined functions is ”.

Page 287, line 1. Change “Section 9 ” to “Section 8 ”.

Page 289, line 3. Change “= kFk1 ” to “≤ kFk1 ”.

Page 290, line −3. Change “exists a Lebesgue ” to “exists a bounded Lebesgue ”.

Page 300, line 25. Delete “ of C ”.

Page 301, line −3. Change “Proposition 5.55d ” to “Propositions 5.55c and 5.55d ”.
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Page 302, line 1. Change “n-tuple ” to “N -tuple ”.

Page 313, line −2. Change “= 2η ” to “≤ 2η ”.

Page 314, line −1. Change “Fn0 ” to “∅ ”.

Page 317, line −17. Change “|g(x) = h(x)| ” to “|g(x)− h(x)| ”.

Page 317, line−15. Change “is a vector subspace” to “contains a vector subspace”.
(This change is for clarity only; the closure actually is a vector subspace, but it is
not necessary to prove this fact.)

Page 334, line 13. Change “with be” to “will be”.

Page 339, line 1. Change “FN (x) ” to “fN (x) ”.

Page 363, line 3. Change “F 0(k) ” to “F 0k(x) ”.

Page 365, line 6. Change “ f 0(t) ” to “ f(t) ”.

Page 366, second display on page. Change conditions at right side and one sum-
mation index on second line so that the display reads:

“S(x) =
Ω P

x0≤xn≤x cn +
P

x0≤xn<x dn if x ≥ x0,

−
P

x<xn≤x0
cn −

P
x≤xn≤x0

dn if x ≤ x0, ”.

Page 368, line 5 of proof of Theorem 7.9. Change “The function f is the derivative
of F ” to “The function f can be taken as the derivative of F ”.

Pages 368–369, Corollary 7.10 and Proposition 7.11. It is advisable to change the
text’s notation here, writing “µcs ” in place of “µs ”. Then on page 420, µs will
be the sum µs = µcs + µd, and there will be no confusion about the meaning of µs

in Section IX.4.

Page 370, line −2 of Section 2. Change
“By Corollary 7.4, g = F 0 = f . Hence F (b)− F (a) =

R b
a f(t) dt ” to

“By Corollary 7.4, g = F 0 = f almost everywhere. Hence F (b)−F (a) =
R b

a g(t) dt =
R b

a f(t) dt ”.

Page 383, line 5 of proof of Theorem 8.9. Change “carried to L2 ” to “carried to
f ”.

Page 388, line −4. Change “and F(Afj) → F(Af) ” to “and F(fj) → F(f) and
F(Afj) → F(Af) ”.

Page 389, line −1. Change “
1

2L

Z L

−L
” to “

1
L

Z L/2

−L/2
”.

Page 392, first display on page. Include the term “+
@2

@t2
” on the right side.

Page 417, line −4. Change “ τt+hf − τt ” to “ τt+hf − τtf ”.

Page 420, first paragraph of Section 4. If the notation has been changed in Corollary
7.10 and Proposition 7.11 in the way suggested above, then it can now be explained
that µs = µcs + µd.
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Page 424, line −7. Change “σ-finite ” to “σ-finite and 1 ≤ p ≤ 1 ” for clarity.

Page 452, line 20. Change “Thus c is in S(x0), and we ” to
“Since c is in S(x0), we ”.

Page 460, line −16. Change “covers X ” to “covers Xs ”.

Page 466, line −5. Change “limit ” to “limits ”.

Page 469, line −13. Change “ C ×D ” to “E = C ×D ” for clarity.

Page 469, line −12. Change “at the beginning of ” to “earlier in ”.

Page 469, line −8. Change “domain value (A,β) ” to
“member (X,β) of E = C ×D ”.

Page 472, line 9. Change “X/ ∼, and the property of ” to
“X/ ∼. Property (ii) of ”.

Page 476, line −12. Change “distinct points of x ” to “distinct points of X ”.

Page 478, line −17. Change “closure ” to “closed set ”.

Page 478, line −5. Change “contain all its limit points ” to “have no limit point
in C ”.

Page 478, line −2. Change “Thus S has a limit point f not in S ” to
“Thus S has a limit point f in C ”.

Page 480, line 1. Change “supy∈S ” to “supy∈X ”.

Page 481, Problem 7b, line 2. Change “supm∈D, m≥n ” to “supm∈D, m≥n tm ”.

Page 481, Problem 7b, line 3. Change “lim supn tn ≥ t ” to “lim supn tn ≤ t ”.

Page 488, line 23. For the words “elementary sets”, use boldface instead of quota-
tion marks.

Page 488, line −3. in the subscript, change “ 0 ≤ f ≤ IK ” to “ IK ≤ f ”.

Page 491, line 2 of Lemma 11.2. Change “ of V ” to “V of X ”, and change
“L ⊆ K ⊆ V ” to “L ⊆ K ”.

Page 493, line 19. Change “10.23 ” to “10.22 ”.

Page 495, line before display of f and g at the bottom. Change “having with
values ” to “having values ”.

Page 498, line −11. Change “L ∪ L0 ⊆ K ∪ L0 ” to “L ∩ L0 ⊆ K ∩ L0 ”.

Page 499, first display. Change “ik+1 ” to “ik ” in two places.

Page 507, lines −7 and −6. Change “ RN ” to “X ” in three places.

Page 508, lines 5 and 6. Change “ RN ” to “X ” in two places.

Page 511, line 4. Change “f(0) ” to “`(0) ”.

Page 514, line −5. Change “−N ” to “−1 ”.
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Page 516, proof of Theorem 11.28. replace the third paragraph of the proof with
the following:

“We shall define disjoint open sets Ui with Ki ⊆ Ui for all i. We do so by
constructing inductively on i for 1 ≤ i ≤ n disjoint open sets U1, . . . , Ui, Vi such
that Kj ⊆ Uj for j ≤ i and Ki+1 ∪ · · · ∪ Kn ⊆ Vi. Taking i = n produces
the required open sets U1, . . . , Un. For i = 1, Corollary 10.22 produces disjoint
open sets U1 and V1 with K1 ⊆ U1 and K2 ∪ · · · ∪ Kn ⊆ V1. Suppose that the
construction has been carried out for stage i with 1 ≤ i < n. Using Corollary 10.22
for the locally compact Hausdorff space Vi, we choose disjoint open sets Ui+1 and
Vi+1 of Vi with Ki+1 ⊆ Ui+1 and Ki+2 ∪ · · · ∪Kn ⊆ Vi+1. Then the disjoint open
sets U1, . . . , Ui+1, Vi+1 have Kj ⊆ Uj for j ≤ i+1 and Ki+2∪ · · ·∪Kn ⊆ Vi+1. The
inductive step is complete, and we have constructed disjoint open sets U1, . . . , Un

with Ki ⊆ Ui for all i. ”

Page 541, line 11. Change “X = L1(S, µ) ” to “the dual X∗ of X = L1(S, µ) ”.

Page 556, lines 8–9. Change “whenever y ∈ B and z ∈ B are such that (x, y) and
(y, z) are in f , then y = z ” to
“there is exactly one y ∈ B such that (x, y) is in f ”.

Page 557, lines 10–11. Change “range an unnamed set T , and
S

x∈S Ax is the set
of all y ∈ T such that y is in Ax for some x ∈ S ” to
“range the set of all subsets of an unnamed set T , and

S
x∈S Ax is the set of all

y ∈ T such that y is in Ax for some x ∈ S ”.

Pages 574–576. The proof starting just below the middle of page 574 has a gap in
its last paragraph, as was kindly pointed out by Qiu Ruyue. In addition, the order
of the proof can be improved. The entire proof is to be replaced with the material
listed under “A Long Correction” at the end of these pages.

Page 579, line −5. Change “A 7→ {A} ” to “x 7→ {x} ”.

Page 581, number 1, line 1. Change “Let E ” to
“The derivation for (a) is similar to the proof of Corollary 1.3. For (b), let E ”.

Page 581, number 1, line 8. Add at the end: “Doing so makes uses of (a).”

Page 583, number 13, lines 3 and 5. Change “(0,π/2) ” to “(−1, 1) ”.

Page 589, number 21, line 1. Change “If x and y are given ” to “If x and y are
given with x 6= y ”.

Page 599, number 1 of Chapter V, line 1. Change “0 ≤ k ≤ n ” to “1 ≤ k ≤ n ”.

Page 600, number 13. Replace with the following:
“13. Let B be the set of all subsets E of X × X such that there exists a set

SE in A with Ex = SE for all but countably many x in X. Every rectangle in
A ×A is in B. In fact, there are two kinds of sets to check, sets E = A × B with
A countable, in which case Ex is empty except for x in the countable set A, and
sets Ac × B with A countable, in which case Ex = B except for x in A. Also B
is a σ-algebra. In fact, let sets En in B be given with associated sets SEn . Then°S

En

¢
x

=
S

((En)x) =
S

SEn except when x is in the countable exceptional set
for some n; also if E and SE are given, then (Ec)x = (Ex)c = (SE)c except when x
lies in the exceptional set for E. Finally the diagonal D is not in B and therefore
cannot be in A×A. In fact, Dx = {x} for each x, and there can be at most one x
with Dx = SD, whatever SD is.”
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Page 607, line 5. Change “V I ” to “|V I| ”.

A Long Correction

Pages 574–576. Replace the proof starting just below the middle of page 574 with
the following:

Proof. A nonempty subset E of X wil be called admissible for purposes of
this proof if f(E) ⊆ E and if the least upper bound of each nonempty chain in
E, which exists in X by assumption, actually lies in E. By assumption, X is an
admissible subset of X. If x is in X, then the intersection of admissible subsets of
X containing x is admissible. Let Ax be the intersection of all admissible subsets
of X containing x. This is admissible, and since the set of all y in X with x ≤ y
is admissible and contains x, it follows that x ≤ y for all y ∈ Ax. By hypothesis,
X is nonempty. Fix an element a in X, and let A = Aa. The main step will be to
prove that A is a chain.

To do so, consider the subset C of members x of A with the property that there
is a nonempty chain Cx in A containing a and x such that

• a ≤ y ≤ x for all y in Cx,
• f(Cx − {x}) ⊆ Cx, and
• the least upper bound of any nonempty subchain of Cx is in Cx.

The element a is in C because we can take Ca = {a}. If x is in C, so that Cx exists,
let us use the bulleted properties to see that

A = Ax ∪ Cx. (∗)

We have A ⊇ Cx by definition; also A ∩ Ax is an admissible set containing x and
hence containing A, and thus A ⊇ Ax. Therefore A ⊇ Ax ∪ Cx. For the reverse
inclusion it is enough to prove that Ax∪Cx is an admissible subset of X containing
a. The element a is in Cx, and thus a is in Ax∪Cx. For the admissibility we have to
show that f(Ax ∪Cx) ⊆ Ax ∪Cx and that the least upper bound of any nonempty
chain in Ax ∪ Cx lies in Ax ∪ Cx. Since x lies in Ax, Ax ∪ Cx = Ax ∪ (Cx − {x})
and f(Ax ∪Cx) = f(Ax)∪ f(Cx− {x}) ⊆ Ax ∪Cc, the inclusion following from the
admissibility of A and the second bulleted property of Cx.

To complete the proof of (∗), take a nonempty chain in Ax ∪Cx, and let u be its
least upper bound in X; it is enough to show that u is in Ax ∪ Cx. The element u
is necessarily in A since A is admissible. Observe that

y ≤ x and x ≤ z whenever y is in Cx and z is in Ax. (∗∗)

If the chain has at least one member in Ax, then (∗∗) implies that x ≤ u, and hence
the set of members of the chain that lie in Ax forms a nonempty chain in Ax with
least upper bound u. Since Ax is admissible, u is in Ax. Otherwise the chain has
all its members in Cx, and then u is in Cx by the third bulleted property of Cx.

This completes the proof of (∗). Let us now prove that if Cx and Cx0 exist with
x ≤ x0 and x 6= x0, then

Cx ⊆ Cx0 . (∗ ∗ ∗)
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In fact, application of (∗) to x0 gives A = Ax0 ∪ Cx0 . Intersecting both sides with
Cx shows that Cx = (Cx ∩ Ax0) ∪ (Cx ∩ Cx0). On the right side, the first member
is empty by (∗∗), and thus Cx = Cx ∩ Cx0 . This proves (∗ ∗ ∗).

Let C be the set of all members x of A for which Cx exists. We have seen that
a is in C. If we apply (∗) and (∗∗) first to a member x of C and then to a member
x0 of C, we see that either x ≤ x0 or x0 ≤ x. That is, C is a chain.

Let us see that f(C) ⊆ C. If x is in C, then the set D = Cx∪{f(x)} certainly has
a as a member. The second bulleted property of Cx shows that f carries Cx − {x}
into D, and also f carries x into D. Thus f carries D − {f(x)} into D, and D
satisfies the ssecond bulleted property of Cf(x). If {xα} is a chain in D with least
upper bound u, there are two possibilities. Either u is f(x), which is in D by
construction, or u is in C, which contains the least upper bound of any nonempty
chain in it. Thus u is in D, D satisfies the third bulleted property of Cf(x), and
Cf(x) exists. In other words, f(x) is in C, and f(C) ⊆ C.

Finally let us see that the least upper bound u of an arbitrary chain {xα} in C,
which exists in X by assumption, is a member of C. If xα = u for some α, then
Cu = Cxα exists, and u is in C. So assume that xα 6= u for all α. Our candidate
for Cu will be D = (

S
α Cxα) ∪ {u}. This certainly contains a. We check that

D satisfies the second bulleted property of Cu. For each α, we can find a β with
xα ≤ xβ and xα 6= xβ , since u is the least upper bound of all the x’s. Then (∗ ∗ ∗)
gives Cxα ⊆ Cxβ − {xβ}, and f(Cxα) ⊆ f(Cxβ − {xβ}) ⊆ Cxβ ⊆ D. Taking the
union over α shows that D satisfies the second bulleted property of Cu.

To see that D satisfies the third bulleted property of Cu, let v be the least upper
bound in A of a chain {yβ} in Cu. If v 6= u, then v cannot be an upper bound of
{xα}. So we can choose some xα0 such that v ≤ xα0 . Each yβ is ≤ v, and thus each
yβ is ≤ xα0 . Referring to (∗), we see that all yβ ’s lie in Cxα0

. By the third bulleted
property of Cxα0

, v is in Cxα0
. Thus v is in D, and D satisfies the third bulleted

property of Cu. Consequently the least upper bound u of an arbitrary chain in C
lies in C.

In short, C is an admissible set containing a, and it also is a chain. Since A is
a minimal admissible set containing a, C = A and also A is a chain. Let u be the
least upper bound of A. We have seen that f(A) ⊆ A, and thus f(u) ≤ u. On the
other hand, u ≤ f(u) by the defining property of f . Therefore f(u) = u, and the
proof is complete.

2/15/2015


