Corrections to

 Advanced Real Analysis, Digital Second EditionPage 42, lines $2-5$ of the proof of Theorem 2.4. Change "Choose a sequence ... since K_{n} is simple" to "We shall choose a sequence of simple functions K_{n} square integrable on $X \times X$ such that each operator T_{n} defined by $T_{n} f(x)=\int_{X} K_{n}(x, y) f(y) d \mu(y)$ has finitedimensional image and such that $\lim _{n}\left\|K-K_{n}\right\|_{2}=0$. The linear operator T_{n} is bounded with $\left\|T_{n}\right\| \leq\left\|K_{n}\right\|_{2}$. Proposition 2.1a shows that the finite-dimensionality of the image T_{n} implies that T_{n} is compact. Since $\left\|T-T_{n}\right\| \leq\left\|K-K_{n}\right\|_{2}$ and since the right side tends to $0, T$ will be exhibited as the limit of T_{n} in the operator norm and will be compact by Proposition 2.1b.

Page 42, after the text of line 8 of the proof of Theorem 2.4 and before the end-of-proof symbol. Insert a new paragraph as follows:
"We need to define K_{n}. For each integer $n \geq 1$, we can choose a measurable rectangle R_{n} in $X \times X$ of finite measure for which $\left\|K-R_{n} K\right\|_{2} \leq 1 / n$. Application of Proposition 5.11 of Basic to the positive and negative parts of the real and imaginary parts of K yields a sequence $\left\{s_{n}\right\}$ of square integrable simple functions on $X \times X$ such that $\left\|s_{n}-K\right\| \leq 1 / n$, hence so that $\left\|s_{n} R_{n}-K\right\|_{2} \leq 2 / n$. Say that $s_{n}=\sum_{k=1}^{N(n)} c_{n, k} I_{E_{n, k}}, c_{n, k}$ being a nonzero constant and $I_{E_{n, k}}$ being the indicator function of a subset of $R_{n} \subseteq X \times X$ of finite measure. We now make use of details in the proof of the Extension Theorem (Theorem 5.5 of Basic). Fix n. On R_{n}, the Extension Theorem shows how to extend the product measure $\mu \times \mu$ from the algebra of all finite disjoint unions of rectangles in R_{n} to the σ-algebra of measurable sets. Combining Lemma 5.32 of Basic with the definitions shows for each pair (n, k) that we can choose a subset $F_{n, k}$ of R_{n} that is in the given algebra of finite disjoint unions of rectangles within R_{n} and whose $\mu \times \mu$ measure is as close as we please to the measure of $E_{n, k}$. Since for fixed n, only finitely many integers k are involved, we can arrange that the simple function $K_{n}=\sum_{k=1}^{N(n)} c_{n, k} I_{F_{n, k}}$ has $\left\|K_{n}-t_{n}\right\|_{2} \leq 1 / n$. Define an operator T_{n} using K_{n} in the same way that T was defined by using K. Since K_{n} is a simple function based on finitely many sets that are finite disjoint unions of rectangles, it has finite-dimensional image. Then the sequence $\left\{K_{n}\right\}$ has the required properties."

Page 51, line -8. Change " $\left|\left(L u_{i}, v_{i}\right)\right| \leq\|L\|$ " to " $\left(L u_{i}, v_{j}\right) \mid \leq\|L\|$ ".
Page 115, line 1. Change " $g=1$ " to " $g>0$ ".
Page 115, line 3. Change " $g \neq 0$ " to " $g=0$ ".
Page 120, line -11 . Change " $c p_{x}(f)=p_{x}(c f)$ " to " $c p_{x}(f)=p_{c x}(f)$ ".
Page 124, line 8. Change "on" to "in".
Page 125 , line -4 . Change " a_{n+1} " to " t_{n+1} ".
Page 128 , line 6. Change " $a f\left(x_{0}\right)$ " to " $a \rho\left(x_{0}\right)$ ".
Page 129, line -2 . Change " $-i f(i x)$ " to " $-f(i x)$ ".
Page 141, lines -20 and -19 . Change "this linear functional takes the value" to "this linear functional takes its maximum value".

Page 141, lines -22 to -18 . Change "continuous linear functional whose real part... arrive at a contradiction" to
"continuous linear functional ℓ such that $\sup _{x \in E} \operatorname{Re} \ell(x)<\operatorname{Re} \ell\left(x_{0}\right)$. Let m be the maximum value of $\operatorname{Re} \ell(x)$ for x in K. The first paragraph of the proof shows that the subset of K where $\operatorname{Re} \ell$ takes the value m is a face of K, and the second part of the proof shows that this face has an extreme point x_{1}. Since x_{1} is in $E, m=\operatorname{Re} \ell\left(x_{1}\right) \leq \sup _{x \in E} \operatorname{Re} \ell(x)<$ $\operatorname{Re} \ell\left(x_{0}\right) \leq \sup _{x \in K} \operatorname{Re} \ell(x)=m$, and we arrive at the contradiction $m<m "$

Page 153, line 2 at the end. Insert footnote mark with a footnote saying, "Another way of proceeding is to use the remarks after the statement of the present corollary to identify λ as the composition of the continuous quotient mapping of \mathcal{A} onto \mathcal{A} / I, followed by the isomorphism of the Banach space \mathcal{A} / I with \mathbb{C}."
Page 158 , line -3 . Change " \mathcal{A} " to " \mathcal{A}_{m}^{*} ".
Page 162, lines 7 to 10. Change "suppose that B lies in $\mathcal{A}^{\prime} \ldots$ This proves (iv)" to "suppose that B lies in \mathcal{A}^{\prime}. Since \mathcal{A}^{*} is stable under $(\cdot)^{*}, B+B^{*}$ and $i B-i B^{*}$ lie in \mathcal{A}. Then $B+B^{*}$ and \mathcal{A} together generate a C^{*} subalgbera that is commutative and contains \mathcal{A}. By maximality, $B+B^{*}$ lies in \mathcal{A}. Similarly $i B-i B^{*}$ and \mathcal{A} together generate a C^{*} subalgebra that is commutative and contains \mathcal{A}. Again by maximality, $i B-i B^{*}$ lies in \mathcal{A}. Consequently the linear combination B of $B+B^{*}$ and $i\left(B-B^{*}\right)$ lies in \mathcal{A}. This proves (iv)".

Page 162 , lines -3 and -2 . Change "Since $E^{*}=E$ and since \mathcal{A} is stable under $(\cdot)^{*}$," to "This conclusion applied to A^{*} gives".

Page 162, line -2 . Change "Consequently" to "Since $E^{*}=E$ ".
Page 164, line -1 . Change " $\ell\left(A^{*} A\right)$ " to " $\ell\left(\widehat{A^{*} A}\right)$ ".
Page 215, lines $8-12$. Change "This descends to ... and this is open" to
"The mapping $1 \times q$ descends to a well-defined one-one continuous mapping $\widetilde{q}:(G \times G)(H \times H) /(1 \times H)$ given by $(g, a)(1 \times H) \mapsto(g, a H)$. In symbols, $\widetilde{q} \circ r=1 \times q$, where r is the quotient mapping $R: G \times G \rightarrow(G \times G) /(1 \times H)$ given by $r\left(g_{1}, g_{2}\right)=\left(g_{1}, g_{2}\right)(1 \times H)$. If U is open in $(G \times G) /(1 \times H)$, then $r^{-1}(U)$ is open in $G \times G$, and the equality of sets $\widetilde{q}(U)=\widetilde{q}\left(r r^{-1}(U)\right)=(1 \times q)\left(r^{-1}(U)\right)$ shows that $\widetilde{q}(U)$ is open".

Page 216, line 9. Change " X_{x} " to " V_{x} "
Page 219, line 3 of the proof of Corollary 6.7. Change " $\sup _{x \in G} \mid f\left(g x-f\left(g_{0} x\right) \mid<\epsilon\right.$ " to $" \sup _{x \in G}\left|f(g x)-f\left(g_{0} x\right)\right|<\epsilon "$.
Page 222 , line -10 of the text. Change " $\left(f^{L_{h}}\right)^{L_{g}}$ " on the left end of the line to " $\left(f^{L_{g}}\right)^{L_{h}}$ ". Page 231, lines 7 and 10. Change " $K \operatorname{support}(f)$ " to " $K^{-1} \operatorname{support}(f)$ " at both occurrences.

Page 234, line -6 (with the display counted as one line). Change " \widetilde{K}^{\prime} " to " \widetilde{K} ".
Page 238, line 12. Change "Proposition 6.8 " to "Proposition 6.8 of Basic".
Page 238, line 13. Change " $f\left(x y^{-1}\right) g(y)$ " to " $f\left(x y^{-1}\right) h(y)$ ".
Page 259, line -5 . Change "sum" to "algebraic direct sum".
Page 260, line 1. Change "for every N and every $u \in U$ " to "for every N ".
Page 262, last four lines. Change " $\chi_{\tau}(x)$ " to " $\overline{\chi_{\tau}(x)}$ " in three places.
Acknowledgment. The author is grateful to Arjun Sudan, who communicated most of the corrections above.

12/12/2022

