Corrections to Advanced Real Analysis, Digital Second Edition

Page 42, lines 2–5 of the proof of Theorem 2.4. Change "Choose a sequence ... since K_n is simple" to "We shall choose a sequence of simple functions K_n square integrable on $X \times X$ such that each operator T_n defined by $T_n f(x) = \int_X K_n(x, y) f(y) d\mu(y)$ has finite-dimensional image and such that $\lim_n ||K - K_n||_2 = 0$. The linear operator T_n is bounded with $||T_n|| \leq ||K_n||_2$. Proposition 2.1a shows that the finite-dimensionality of the image T_n implies that T_n is compact. Since $||T - T_n|| \leq ||K - K_n||_2$ and since the right side tends to 0, T will be exhibited as the limit of T_n in the operator norm and will be compact by Proposition 2.1b.

Page 42, after the text of line 8 of the proof of Theorem 2.4 and before the end-of-proof symbol. Insert a new paragraph as follows:

"We need to define K_n . For each integer $n \ge 1$, we can choose a measurable rectangle R_n in $X \times X$ of finite measure for which $||K - R_n K||_2 \le 1/n$. Application of Proposition 5.11 of *Basic* to the positive and negative parts of the real and imaginary parts of K yields a sequence $\{s_n\}$ of square integrable simple functions on $X \times X$ such that $||s_n - K|| \le 1/n$, hence so that $||s_n R_n - K||_2 \le 2/n$. Say that $s_n = \sum_{k=1}^{N(n)} c_{n,k} I_{E_{n,k}}$, $c_{n,k}$ being a nonzero constant and $I_{E_{n,k}}$ being the indicator function of a subset of $R_n \subseteq X \times X$ of finite measure. We now make use of details in the proof of the Extension Theorem (Theorem 5.5 of *Basic*). Fix n. On R_n , the Extension Theorem shows how to extend the product measure $\mu \times \mu$ from the algebra of all finite disjoint unions of rectangles in R_n to the σ -algebra of measurable sets. Combining Lemma 5.32 of *Basic* with the definitions shows for each pair (n, k) that we can choose a subset $F_{n,k}$ of R_n that is in the given algebra of finite disjoint unions of rectangles within R_n and whose $\mu \times \mu$ measure is as close as we please to the measure of $E_{n,k}$. Since for fixed n, only finitely many integers k are involved, we can arrange that the simple function $K_n = \sum_{k=1}^{N(n)} c_{n,k} I_{F_{n,k}}$ has $||K_n - t_n||_2 \le 1/n$. Define an operator T_n using K_n in the same way that T was defined by using K. Since K_n is a simple function based on finitely many sets that are finite disjoint unions of rectangles, it has finite-dimensional image. Then the sequence $\{K_n\}$ has the required properties."

Page 51, line -8. Change " $|(Lu_i, v_i)| \le ||L||$ " to " $|(Lu_i, v_j)| \le ||L||$ ".

Page 115, line 1. Change "g = 1" to "g > 0".

Page 115, line 3. Change " $g \neq 0$ " to "g = 0".

Page 120, line -11. Change " $cp_x(f) = p_x(cf)$ " to " $cp_x(f) = p_{cx}(f)$ ".

Page 124, line 8. Change "on" to "in".

Page 125, line -4. Change " a_{n+1} " to " t_{n+1} ".

Page 128, line 6. Change " $af(x_0)$ " to " $a\rho(x_0)$ ".

Page 129, line -2. Change "-if(ix)" to "-f(ix)".

Page 141, lines -20 and -19. Change "this linear functional takes the value" to "this linear functional takes its maximum value".

Page 141, lines -22 to -18. Change "continuous linear functional whose real part ... arrive at a contradiction" to

"continuous linear functional ℓ such that $\sup_{x \in E} \operatorname{Re} \ell(x) < \operatorname{Re} \ell(x_0)$. Let m be the maximum value of $\operatorname{Re} \ell(x)$ for x in K. The first paragraph of the proof shows that the subset of K where $\operatorname{Re} \ell$ takes the value m is a face of K, and the second part of the proof shows that this face has an extreme point x_1 . Since x_1 is in E, $m = \operatorname{Re} \ell(x_1) \leq \sup_{x \in E} \operatorname{Re} \ell(x) < \operatorname{Re} \ell(x_0) \leq \sup_{x \in K} \operatorname{Re} \ell(x) = m$, and we arrive at the contradiction m < m"

Page 153, line 2 at the end. Insert footnote mark with a footnote saying, "Another way of proceeding is to use the remarks after the statement of the present corollary to identify λ as the composition of the continuous quotient mapping of \mathcal{A} onto \mathcal{A}/I , followed by the isomorphism of the Banach space \mathcal{A}/I with \mathbb{C} ."

Page 158, line -3. Change " \mathcal{A} " to " \mathcal{A}_m^* ".

Page 162, lines 7 to 10. Change "suppose that B lies in $\mathcal{A}' \ldots$ This proves (iv)" to "suppose that B lies in \mathcal{A}' . Since \mathcal{A}^* is stable under $(\cdot)^*$, $B + B^*$ and $iB - iB^*$ lie in \mathcal{A} . Then $B + B^*$ and \mathcal{A} together generate a C^* subalgbera that is commutative and contains \mathcal{A} . By maximality, $B + B^*$ lies in \mathcal{A} . Similarly $iB - iB^*$ and \mathcal{A} together generate a C^* subalgebra that is commutative and contains \mathcal{A} . Again by maximality, $iB - iB^*$ lies in \mathcal{A} . Consequently the linear combination B of $B + B^*$ and $i(B - B^*)$ lies in \mathcal{A} . This proves (iv)".

Page 162, lines -3 and -2. Change "Since $E^* = E$ and since \mathcal{A} is stable under $(\cdot)^*$," to "This conclusion applied to A^* gives".

Page 162, line -2. Change "Consequently" to "Since $E^* = E$ ". Page 164, line -1. Change " $\ell(A^*A)$ " to " $\ell(\widehat{A^*A})$ ".

Page 215, lines 8–12. Change "This descends to ... and this is open" to "The mapping $1 \times q$ descends to a well-defined one-one continuous mapping $\tilde{q}: (G \times G)(H \times H)/(1 \times H)$ given by $(g, a)(1 \times H) \mapsto (g, aH)$. In symbols, $\tilde{q} \circ r = 1 \times q$, where r is the quotient mapping $R: G \times G \to (G \times G)/(1 \times H)$ given by $r(g_1, g_2) = (g_1, g_2)(1 \times H)$. If U is open in $(G \times G)/(1 \times H)$, then $r^{-1}(U)$ is open in $G \times G$, and the equality of sets $\tilde{q}(U) = \tilde{q}(rr^{-1}(U)) = (1 \times q)(r^{-1}(U))$ shows that $\tilde{q}(U)$ is open".

Page 216, line 9. Change " X_x " to " V_x "

Page 219, line 3 of the proof of Corollary 6.7. Change " $\sup_{x \in G} |f(gx - f(g_0x)| < \epsilon$ " to " $\sup_{x \in G} |f(gx) - f(g_0x)| < \epsilon$ ".

Page 222, line -10 of the text. Change " $(f^{L_h})^{L_g}$ " on the left end of the line to " $(f^{L_g})^{L_h}$ ".

Page 231, lines 7 and 10. Change "K support(f)" to " K^{-1} support(f)" at both occurrences.

Page 234, line -6 (with the display counted as one line). Change " \widetilde{K} '" to " \widetilde{K} ".

Page 238, line 12. Change "Proposition 6.8" to "Proposition 6.8 of Basic".

Page 238, line 13. Change " $f(xy^{-1})g(y)$ " to " $f(xy^{-1})h(y)$ ".

Page 259, line -5. Change "sum" to "algebraic direct sum".

Page 260, line 1. Change "for every N and every $u \in U$ " to "for every N".

Page 262, last four lines. Change " $\chi_{\tau}(x)$ " to " $\overline{\chi_{\tau}(x)}$ " in three places.

Acknowledgment. The author is grateful to Arjun Sudan, who communicated most of the corrections above.

12/12/2022